黎曼幾何筆記    習作簿
    
Topics :
    - 3-sphere
- Killing 
fields
- Jacobi 
fields
- Minimal 
Surface
- Surface 
of revolution
- Torus]  [Geodesics] 
- Spinning 
    Top   Euler-Lagrange 
    equation(1)   用 Euler-Lagrange equation[R.Herman] 
    求geodesic equation and Christoffel symbols
- [Ricci---curvatrer 
flow solitons]
-  [Comparison 
theorem] 
    
第一章 向量場
    
         [Topological 
manifolds]   [RG01 Jose Natario 第一章 
習作]   
    
         [黎曼幾何簡介] 
3.4.3節 Schwarzschild metric
第二章 微分式(Differential forms)
    
           [RG01 Jose Natario 第二章 
習作]
第三章 黎曼流形
    
[002 
Cartan formalism] 
有(1) p.18 把旋轉曲面看成IxS 求得 K Ric and R (2) p.19 先算IxS^2 再會去算p.22 
S^3 (3) p.23 H^3  p.35 H^3 by Ivo 
Terek Couto
  [RG01 
Jose Natario 第三章  習作] 
 [KillingandJacobi] 
    
    - Gauss-Bonnet theorem   [Gauss 
Bonnet Chern theorem] by Yin 
Li
- 幾何與廣義相對論中的純量曲率 
      Richard(Rick) Schoen [專訪] 
     [Yamabe問題與正質量問題] 
    
- [Spacetime and Geometry 第三章 
Curvature] 第四章 
[Gravitation] 
[習作 and Answers] Sean 
M. Carroll 1966- [ResearchGate]
         [RG01 Jose Natario 第四章 
習作] [Curvature 
of IS^2] [Ricci curvature] 
[Isotropic] [Exam2020]
[RicciSoliton]里奇孤子 
  [Sine-Gordon equation]
第五章 幾何力學
第六章 重力場
第七章 變分法
    
第八章 李群
 [Lie 
groups]  一個電腦資訊科學家的微分幾何與李群筆記  Jean
Gallier  [Jean 
Gallier] 這裡有很多書
第九章 向量叢
    
第十章  CMC曲面 
  [CMC曲面]
    - An Introduction to Riemannian Geometry      Jose Natario
- 	Riemannian Geometry                                                   Manfredo 
    P. do Carmo
- Spacetime and Geometry                              Sean Carroll     [ProfoundPhysics]
    
    
    
    [Spacetime and 
Geometry(Exercises)] 
- 物理學家用微分幾何 侯伯元 侯伯宇        檔名 DGforP
- Differential Geometry in Physics                   Gabriel 
    Lugo  [ResearchGate]
- 	Geometry of Manifolds                                            Richard L.Bishop
- 	Lectures   on Geometry of Manifolds                Liviu I. Nicolaescu
- 	大域微分幾何                                                                    黃武雄
- 微分幾何講義                                             陳省身
- Differental Geometry                                    杜武亮
- An Introduction to Manifolds                       杜武亮
- 	Differential Forms and Connections]            Richard 
W.R. Darling
- Riemannian 
    Geometry                                  Peter 
    Petersen 
- Differential 
    Forms for Physics Students        William 
O. Straub
- A course in modern mathematical physics    Peter Szekeres
- 	Differential Geometry with Application to Mechanics and Physics        Yves Talpaert
- Mathematical physics : Classical Mechanics  Andreas Kmauf
- Differential forms with applications to the physical sciences          Harley Flanders
- A Course in Differential Geometry 
    by Thierry Aubin 
    (1942~2009) Yamabe 
    problem
- 教科書/參考書書評 
      [Books]                    [Differential 
    Geometry論壇]