黎曼幾何筆記


img1.gif第一章 向量場

  1. 向量場 張量 [Vectorfields]   [complete vector fields]  旋量[Spinor]
  2. 奇點的標數把Gauss-Bonnet定理(切線轉角定理是特例)與Hopf-Poincare定理結合在一起
  3. 散度(Divergence)定理:通量對體積的變化率 是Stokes定理的特例 從古典微分幾何推廣到manifold
    [On the divergence theorem on manifold]
  4. 在曲率的脈絡上 [Christoffel symbols]對廣義相對論提供了數學(計算)基礎 用Euler-Lagrange equation[R.Herman]可方便求之
  5. 似乎Jacobi場有很深的物理意義  CMC上的Jacobi場
  6. 各種幾何流線[Flows

[Topological manifolds]   

[磁單極 Magnetic monopole]的問題

第二章 微分式(Differential forms)

  1. [Differential forms]把計算整合起來 例如[Stokes] [Structure equation]
  2. Check a formula of differential form dw(X^Y)=
  3. 何謂可積   [Frobenius theorem] 有兩種形式 (1)vector fields (2)differential forms
  4. [Inner product]

 [Differential Forms and Connections] by Richard W.R. Darling

第三章 黎曼流形

  1. (1) Levi-Civita connection (2)自旋聯絡
  2. 正交活動標架法
  3. [Parallel and Foucault] 鐘擺運動的方向是幻象
  4. Calculus on manifold (1)Lie derivative (2)covariant derivative (3)exterior derivative (4)Killing field
    流形上有三個微分運算 Cartan magic formula把它們串起來  [elementary proof] by Oleg Zubelevich [ResearchGate]
    Why are Killing fields relevant in physics ? [Notes on Killing fields]( by Ivo Terek)
    [等距同構 isometry]
  5. Exponential map
    指數映射 是一個局部的可微同胚(local diffeomorphism) 可以建構(1)正則鄰域 (2)Jacobi field Geodesics
  6. Geodesics  
    [虛功原理與Euler-lagrange方程式] [the curvature and geodesics on Torus]
    [蟲洞的測地線]   [the geodsic equations for metric of a charged BH] [Worm hole]
  7. Hopf-Rinow theorem
  8. (1)S^2  (2)IxS^2  (3)S^3  (4)Hyperbolic plane  [Hyperbolic plane]
    Geometry of the 3-phere] by Garret Sobczyk     [Ruth Gregory ResearchGate] GR and BH
  9. immersion and embedding   Tangent bundle   Einstein manifold  

         [Lie groups]  一個電腦資訊科學家的微分幾何與李群筆記  Jean Gallier

第四章 曲率

  1. 黎曼流形(M,g)  度量[metric] 決定流形的性質   [induced metric]
  2. 曲率[Curvature]作用在物質上 顯現出重力 energy-momentum影響時空 創造出曲率
  3. 黎曼曲率張量
    (1)截面曲率(sectional curvature) (2)Ricci curvature (3)scalar curbature
  4. Ricci tensor]說反映非歐幾何中體積的扭曲
    (1)據稱Sir Halmiton在衝浪時想到Ricci flow
    (2)Cedric Villani流連在羊角麵包店時 思考著最優運輸
    (3)Ricci curvature for BH
  5. Jacobi fields
  6. Gauss-Bonnet theorem
  7. 幾何與廣義相對論中的純量曲率

[Spacetime and Geometry 第三章 Curvature] 第四章 [Gravitation] [習作 and Answers] Sean M. Carroll 1966- [ResearchGate]

[侯伯元]

Ricci 曲率是曲率張量的跡(trace),是曲率的某種平均值,它滿足比安奇恆等式,奇妙地可以看成一條守恆率,

愛因斯坦利用了這條守恆律來把重力幾何化,從此我們不再視重力為物體之間的吸引力。[丘成桐]

[RicciSoliton]

第五章 幾何力學

  1. Spinning top  Killing field  SO(3)

第七章 變分法

  1. 變分法 [Variations] 幾何變分學是[大域微分幾何]的第三卷
  2. 能量的變分    Bonnet-Myers定理   Rauch比較定理  Morse 指標定理  Synge-Weistein定理

Space of constant curvature  The Morse Index theorem

The fundamental group of Manifolds of negative curvature      Preissman's theorem

雜記

  1. 用高斯曲率分類: [Hyperbolic plane] K=-1   [Torus] K=0  [Sphere] K=1   Hyperbolic plane上的一個保映射射(isometry)
    在可積的動力系統一文中提到 :  Richard S. Palais的Homepage中蒐集了各種Seudosphere(偽球曲面) [滕楚蓮Chuu-Lian Terng]
  2. (1)何謂對稱  [Killing vectors and Symmetry]
    (2)自然的內稟(intrinsic)幾何對稱   Stefan Haesen
    (3)Noether定理:對稱與守恆律
  3. 對兩黎曼流形的曲率關係比較相應的微分幾何與拓撲性質,然後研究標準空間(例如常曲率流形)的性質,這方面的結果稱為 [Comparison theorems]
  4. [時空的樂章---引力波百年漫談]
  5. [相對論中一些未解決的問題]
  6. 黎曼流形與人工智能         [The Manifold Ways of Perception]      黎曼流形與流形學習
  7.  [John Lighton Synge 1897~1995] [GR:Papers in honour of J.L.Synge]
    潮汐力(tidal force)   [Distant star moved by tides] (原文) Jacobi field and Tidal Effects in Kerr spacetime
  8. 微分幾何(幾何分析) 老顧有真實本領 :   [ResearchGate] [Homepage]
    將幾何分析推廣到工程實踐是老顧銘記在心的歷史使命    [A new Gold Age of Minimal Surfaces] [我看Antoni Gaudi]
    這裡有提到Ricci flow 的應用
    顧險峰
    先生的3D世界 與Computational Conformal Geometry
    微分幾何的逼近理論(1)  (2)
  9. 宇宙論[FLRW model參考書目(1) p.284 CH 6.6)
  10. [丘成桐]   [從細胞世界看微分幾何](林俊吉)

習作

  1. [Exercises]  

  1. An Introduction to Riemannian Geometry     Jose Natario
  2. Riemannian Geometry                                   Manfredo P. do Carmo
  3. Spacetime and Geometry                              Sean Carroll     [ProfoundPhysics]
  4. 物理學家用微分幾何 侯伯元 侯伯宇        檔名 DGforP
  5. Differential Geometry in Physics                   Gabriel Lugo  [ResearchGate]
  6. Geometry of Manifolds                                 Richard L.Bishop
  7. Lectures on Geometry of Manifolds              Liviu I. Nicolaescu
  8. 大域微分幾何                                             黃武雄
  9. 微分幾何講義                                             陳省身
  10. Differental Geometry                                    杜武亮
  11. An Introduction to Manifolds                       杜武亮
  12. Differential Forms and Connections              Richard W.R. Darling
  13. Differential Forms for Physics Students        William O. Straub
  14. A course in modern mathematical physics    Peter Szekeres
  15. Differential Geometry with Application to Mechanics and Physics        Yves Talpaert
  16. Mathematical physics : Classical Mechanics  Andreas Kmauf
  17. Differential forms with applications to the physical sciences          Harley Flanders
  18. A Course in Differential Geometry by Thierry Aubin (1942~2009) Yamabe problem
  19. 教科書/參考書書評   [Books]                    [Differential Geometry論壇]
  20. Riemannian Geometry                                  Peter Petersen    Exercises