§ Ricci Soliton

(M,g) is a Riemannian manifold , X is a smooth vector field satisfy

(2.1)
$$Ric(g) + \frac{1}{2}L_{\chi}g = \frac{\lambda}{2}g$$
 tracing it we get :

(2.2)
$$R + divX = \frac{n\lambda}{2}$$
 where $divX = tr(\nabla X) = \sum_{i} \nabla_{i} X^{i}$

The most important class of Ricci solitons is those for which $X = \nabla f$ for some smooth function f on $M \circ$

For these so-called gradient Ricci solitons , equation (2.1) simplifies to (2.3)

$$Ric(g) + \nabla^2 f = \frac{\lambda}{2}g$$

The groups R+ of positive real numbers and Diff(*Mn*) of diffeomorphisms act naturally by dilation via $\alpha \cdot g = \alpha g$ and pull back via $\varphi \cdot g = \varphi *g$, respectively, on the space Met(*Mn*) of Riemannian metrics on *Mn*. Via the scaling and diffeomorphism invariances (2.4) Ric(αg) = Ric(g), Ric($\varphi *g$) = $\varphi *$ Ric(g) of the Ricci tensor, they act on Ricci solitons (*Mn*, g, X, λ) as follows :

(1) (Metric scaling) If $\alpha \in \mathbb{R}^+$, then $(\mathbf{M}, \alpha g, \alpha^{-1}X, \alpha^{-1}\lambda)$ is a Ricci soliton \circ (2) (Diffeomorphism invariance) If $\phi: \mathbb{N} \to M$ is a diffeomorphism, then $(\mathbb{N}, \phi^* g, \phi^* X, \lambda)$ is a Ricci soliton \circ

- 1. Gradient 梯度
- 2. $L_{\nabla f}g = 2\nabla^2 f$, here ∇^2 denotes the Hessian, i.e. the second covariant

derivative \circ This acts on tensors \cdot and when acting on a function $f \cdot \nabla^2 f = \nabla df \circ$

3. If K is a Killing vector field , then $(M, g, X + K, \lambda)$ is a Ricci soliton \circ