For any Killing field K, prove that divK=0

1. Killing equation

A Killing vector field K satisfies $\nabla_a K_b + \nabla_b K_a = 0$, which is the condition for K to generate isometries (metric-preserving transformations).

2. Contraction with metric

Contract both sides of the Killing equation with the inverse metric g^{ab}

$$g^{ab}(\nabla_a K_b + \nabla_b K_a) = 0$$

Using the symmetry $g^{ab} = g^{ba}$, this simplifies to $2g^{ab}\nabla_a K_b = 0$

3. Divergence as trace

The divergence of K is defined as $divK = \nabla_a K^a = g^{ab} \nabla_a K_b$

From the constracted equation : $g^{ab}\nabla_a K_b \Longrightarrow divK = 0$

4. Alternative Interpretation: The antisymmetry $\nabla_a K_b = -\nabla_b K_a$ implies $\nabla_a K_b$ is antisymmetric. Contracting a symmetric tensor (g^{ab}) with an antisymmetric tensor yields zero, confirming $\operatorname{div} K = 0$.

A vector field K is a Killing vector field if it satisfies the Killing equation:

$$\nabla_{\mu}K_{\nu} + \nabla_{\nu}K_{\mu} = 0$$

The divergence of a vector field K is given by $div(K) = \nabla_{\mu}K^{\mu}$, this can be written as :

$$div(K) = g^{\mu\nu} \nabla_{\mu} K_{\nu}$$

From the Killing equation , we have $\nabla_{\mu}K_{\nu}=-\nabla_{\nu}K_{\mu}$

$$div(K) = g^{\mu\nu}(\nabla_{\mu}K_{\nu}) = g^{\mu\nu}(-\nabla_{\nu}K_{\mu})$$

Since $g^{\mu\nu}$ is symmetric and $\nabla_{\nu}K_{\mu}$ is antisymetric, their contraction is zero:

$$g^{\mu\nu}\nabla_{\mu}K_{\nu} = -g^{\mu\nu}\nabla_{\nu}K_{\mu}$$

But $g^{\mu\nu}\nabla_{\mu}K_{\nu}$ is equal to $g^{\mu\nu}\nabla_{\nu}K_{\mu}$ because the indices are dummy indices and can be

relabeled
$$\circ$$
 Therefor $g^{\mu\nu}\nabla_{\mu}K_{\nu}=-g^{\mu\nu}\nabla_{\mu}K_{\nu}$, this implies $2g^{\mu\nu}\nabla_{\mu}K_{\nu}=0$

Hence divK=0

Laplacian $\Delta f = \sum_i \frac{\partial^2 f}{\partial x_i^2}$,在 Manifold 上 Δ 在座標變換上不順暢,因此考慮

 $\Delta := div(grad)$

在 Manifold M 上 grad f 是一個向量場,用黎曼度量作內積 < gradf(x),v >= df(v) Div 的定義是由 $L_X(dv) = (divX)dv$ 定義 div X,

其中 L_x 是 Lie derivative , $dv = dx^1 \wedge ... \wedge dx^n$ 是 volume element

當然,就上文 divergence 的另一種定義是 $divX = tr(\nabla X)$ 在流形上 Laplacian f := div(grad f)

Let ξ be a Killing field and assume that $\xi = gradf$ for some smooth function $f: M \to R$ Then $\nabla \xi = 0$ and $\Delta f = 0$

We have that $\langle \nabla_X \xi, Y \rangle = Hess(f)(X, Y)$ for any vector fields $X, Y \in \chi(M)$

This is skew-symmetric in X and Y since $\nabla \xi$ is skew-adjoint \circ

On the other hand , it is also symmetric , since torsion-free connections produce symmetric Hessian tensors \circ

So $\langle \nabla_X \xi, Y \rangle = 0$ for all Y implies that $\nabla_X \xi = 0$ for all X , and so $\nabla \xi = 0$

On the other hand, since Hess(f)=0, taking the trace we obtain $\Delta f = 0$ as well \circ