An introduction to Riemannian Geometry Jose Natari
Ch4 Curvature
4.1 Curvature

Exercise 1.12
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(a) Show that the curvature operator satisfies
(i) R(fX1+9X2,Y)Z=fR(X\,Y)Z+ gR(X2,Y)Z;
(i) R(X, fYi+gY2)Z = fR(X,Y1)Z +gR(X,Y2)Z;
(i) R(X,Y)(fZ1+gZ2) = [R(X,Y)Z1 + gR(X,Y)Zs,
for all vector fields X, X1, X», Y, Y1, Y2, Z, Z1, Z» € X(M) and smooth
functions f, g € C*(M).
(b) Show that (R(X,Y)Z), € T,M depends only on X, Y,, Z,. Conclude
that R defines a (3, 1)-tensor. (Hint: Choose local coordinates around p £ M).

Let (M, g) be an n-dimensional Riemannian manifold and p € M. Show that if
(x!, ..., x")are normal coordinates centered at p [cf. Exercise 4.8(2)in Chap. 3]
then
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Recall that if G is a Lie group endowed with a bi-invariant Riemannian metric,
V is the Levi—Civita connection and X, Y are two left-invariant vector fields
then

1
VxY = Z[X, Y]
2
[cf. Exercise 4.8(3) in Chap. 3]. Show that if Z is also left-invariant, then

R(X.Y)Z = %[z, [X, Y]]

Show that || X, ||2 | Ypll2 — (X, Yp)2 gives us the square of the area of the
parallelogramin 7), M spanned by X ,, ¥ ,. Conclude that the sectional curvature
does not depend on the choice of the linearly independent vectors X, ¥, that
is, when we change the basis on I, both R(X , ¥j,, X5, Y) and || X, ||2|| Y, ||2 —
(Xp, ¥ p)2 change by the square of the determinant of the change of basis matrix.
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Show that Ric is the only independent contraction of the curvature tensor:
choosing any other two indices and contracting, one either gets = Ric or 0.



(6) Let M be a 3-dimensional Riemannian manifold. Show that the curvature tensor
is entirely determined by the Ricci tensor.

(7) Let (M, g) be an n-dimensional isotropic Riemannian manifold with sectional
curvature K. Show that Ric = (n — 1)Kgand S =n(n — 1)K.

(8) Let g1, g2 be two Riemannian metrics on _a manifold M such that g; = pg», for
some constant p > 0. Show that:

(a) thecorresponding sectional curvatures K1 and K> satisfy K| (IT) = p~ ! K»(IT)
for any 2-dimensional section of a tangent space of M

(b) the corresponding Ricci curvature tensors satisfy Ricy = Rica;
(c) the corresponding scalar curvatures satisfy §; = p~'S5.

(9) If V is not the Levi—-Civita connection can we still define the Ricci curvature
tensor Ric? Is it necessarily symmetric?

4.2 Cartan Structure Equations

Exercise 2.8

(1) Let{Xy,...,X,}beafieldof frames on an open set V of a Riemannian manifold
(M, (-, -)) with Levi—Civita connection V. The associated structure functions
C fj are defined by

[Xi. X;1=D CkX,.
k=1

Show that:
@ Cj =T —Tjs
(b) Ty =5 309" (X - 90 + Xe - gjt = Xi - 9x)
+%Cj,-k — 3 2 w1 9 (gfmcf?:' + gk’"cﬂ);

© dw' + 33 Chew! A wk = 0, where {w!, ..., w"} is the field of dual
coframes.
(2) Let{Xy,..., X,}beafield of frames on an open set V of a Riemannian manifold

(M, (-, -)). Show that a connection V on M is compatible with the metric on V
if and only if

Xi-(Xi, Xj)=(Vx, Xi, X;) +(Xi, Vx, X;)

foralli, j, k.



(3) Compute the Gauss curvature of:

(a) the sphere $2 with the standard metric;
(b) the hyperbolic plane, i.e. the upper half-plane

H={(x,y)eR*|y>0}

with the metric
1

[cf. Exercise 3.3(5) of Chap. 3].

(4) Determine all surfaces of revolution with constant Gauss curvature.

(5) Let M be the image of the parameterization ¢ : (0, +0c) x R — R3 given by
p(u,v) = (ucosv, usinv, v),
and let N be the image of the parameterization ¢/ : (0, +00) xR — R? given by
Ww(u,v) = (ucosv, usinv, logu).

Consider in both M and N the Riemannian metric induced by the Euclidean
metric of R3. Show that the map f : M — N defined by

flp(u, v)) =¥(u,v)

preserves the Gauss curvature but is not a local isometry.

(6) Consider the metric
g=A*(r)dr @ dr +r*d0 ® d6 + r*sin>0dyp @ dyp

on M = I x S%, where r is a local coordinate on / R and (8, ¢) are spherical
local coordinates on §2.

(a) Compute the Ricci tensor and the scalar curvature of this metric.
(b) What happens when A(r) = (1 —r?)™2 (that is, when M is locally isometric
to §3)?
(c) And when A(r) = (1 4 r%)~2 (that is, when M is locally isometric to the
hyperbolic 3-space)?



(d) For which functions A(r) is the scalar curvature constant?

(7) Let M be an oriented Riemannian 2-manifold and let p be a pointin M. Let D
be a neighborhood of p in M homeomorphic to a disc, with a smooth boundary
dD. Consider a point ¢ € dD and a unit vector X, € T,M. Let X be the
parallel transport of X, along 0D in the positive direction. When X returns
to ¢ it makes an angle A@ with the initial vector X, . Using fields of positively
oriented orthonormal frames { £, E2} and { F}, F>} such that F; = X, show that

2= [ k
D
Conclude that the Gauss curvature of M at p satisfies

K(p) = li .
(p)= hm S

(8) Compute the geodesic curvature of a positively oriented circle on:

(a) R? with the Euclidean metric and the usual orientation;
(b) $2 with the usual metric and orientation.

(9) Let ¢ be a smooth curve on an oriented 2-manifold M as in the definition of
geodesic curvature. Let X be a vector field parallel along ¢ and let ) be the angle
between X and ¢(s) along ¢ in the given orientation. Show that the geodesic
curvature of C, kg, 18 equal o % . (Hint: Consider two fields of orthonormal frames { £, E7} and

X

{F|, F>} positively oriented such that £y = TXT and F| = L)

4.3 Gauss-Bonnet Theorem
Exercise 3.6

(1) Show thatif (-, -)g, (-, )1 are two Riemannian metrics on M then
('! ').‘ = (1 - t)('! ')0 + t('s ')1

is also a Riemannian metric on M, and that the index /,(¢) computed using the
metric (-, -); is a continuous function of 7.



(2) (Gauss—Bonnet theorem for non-orientable manifolds) Let (M, g) be acompact,
non-orientable, 2-dimensional Riemannian manifold and let w : M — M be its
orientable double covering [cf. Exercise 8.6(9) in Chap. 1]. Show that:

@ x(M)=2x(M);

(b) K = ﬂ':’z, where K is the Gauss curvature of the Riemannian metric g :=
g on M;

(c) 2mx(M) = %/_ K.

M
(Remark: Even though M is not orientable, we can still define the integral of a function f on M through

j f= % [_ 7* f; with this definition, the Gauss—Bonnet theorem holds for non-orientable Riemannian
M “JM

2—manif01ds) .

(3) (Gauss—Bonnet theorem for manifolds with boundary) Let M be a compact,
oriented, 2-dimensional manifold with boundary and let X be a vector field in
M transverse to M (i.e. such that X, ¢ T,0M forall p € OM), with isolated
singularities p1, ..., pr € M\OM. Prove that

k
K+/k=27r I,
fox+ =22

for any Riemannian metric on M, where K is the Gauss curvature of M and k,
is the geodesic curvature of OM.

(4) Let (M, g) be a compact orientable 2-dimensional Riemannian manifold, with
positive Gauss curvature. Show that any two non-self-intersecting closed geo-
desics must intersect each other.

(5) Let M be a differentiable manifold and f : M — R a smooth function.

(a) (Hessian) Let p € M be a critical point of f (i.e. (df), = 0). The Hessian
of f at pisthe map (Hf)p, : TyM x TyM — R given by

2

0
(Hf)p(v, w) = ﬁu:;:[)(f °Y)(s, 1),

where v : U C R? — M is such that 7(0,0) = p, ‘g%(o, 0) = v and
%(0, 0) = w. Show that (Hf), is a well-defined symmetric 2-tensor.



(b)

(6)

(Morse theorem) If (H f), 1s nondegenerate then p is called a nondegener-
ate critical point. Assume that M is compact and f is a Morse function,
1.e. all its critical points are nondegenerate. Prove that there are only a finite
number of critical points. Moreover, show that if M is 2-dimensional then

X(M)=m —s +n,

where m, n and s are the numbers of maxima, minima and saddle points
respectively. (Hinl: Choose a Riemannian metric on M and consider the vector field X := grad f )

Let (M, g) be a 2-dimensional Riemannian manifold and A C M a geodesic
triangle, i.c. an open set homeomorphic to an Euclidean triangle whose sides
are images of geodesic arcs. Let «, 3, v be the inner angles of A, i.e. the angles
between the geodesics at the intersection points contained in JA. Prove that for
small enough A one has

(:u+/3+’y:ﬂ'+/ K,
A

where K is the Gauss curvature of M, using:

(a) the fact that [, A K is the angle by which a vector parallel-transported once
around OA rotates;
(b) the Gauss—Bonnet theorem for manifolds with boundary.

(Remark: We can use this result to give another geometric interpretation of the Gauss curvature: K (p) =

. o+ f4y—m
Hma— p oAy

(7) Let (M, g) be a simply connected 2-dimensional Riemannian manifold with

nonpositive Gauss curvature. Show that any two geodesics intersect at most in
one pOiIlt. (Hint: Note that if two geodesics intersected in more than one point then there would exist a
geodesic biangle, i.e. an open set homeomorphic to a disc whose boundary is formed by the images of two

geodesic arcs) .

4.4 Manifolds of Constant Curvature

Exercise 4.7

(1) Show that the metric of H"(a) is a left-invariant metric for the Lie group

structure induced by identifying (x!, ..., x") € H"(a) with the affine map
g : R"1 — R"1 given by

g, ... " =x"¢ .+l T,



(2) Prove that if the forms w' in a field of orthonormal coframes satisfy dw' =
a A w' (with o a 1-form), then the connection forms w;’ are given by w;' =

a(Epw! — a(E}-)w" = —w;. Use this to confirm the results in Example 4.2.

(3) Let K be a real number and let p = 1 + (%) Zf=l(xf)2. Show that, for the
Riemannian metric defined on R" by

1
gij(p) = ;50‘,

the sectional curvature is constant equal to K.

(4) Show that any isometry of the Euclidean space R” which preserves the
coordinate function x” is an isometry of H"(a). Use this fact to determine

all the geodesics of H" (a).

(5) (Schur theorem) Let M be a connected isotropic Riemannian manifold of
dimension n > 3. Show that M has constant curvature. (Hint: Use the structure

equations to show that dK = 0) .

(6) To complete the details in Example 4.4, show that:

(a) the isometries of R? with no fixed points are either translations or gliding

reflections;
(b) any discrete group of isometries of R? acting properly and freely is generated
by at most two elements, one of which may be assumed to be a translation.

(7) Let f, g : R2 — R? be the isometries
f,y)=(=x,y+1) and g, y)=x+1y)
(thus f is a gliding reflection and ¢ is a translation). Check that R2/(f) is

homeomorphic to a Mobius band (without boundary), and that R?/(f, g) is
homeomorphic to a Klein bottle.



(8) Let H? be the hyperbolic plane. Show that:

(a) the formula

ab az+b
(Cd)-z.— o (ad —bc=1)

defines an action of PSL(2,R) := SL(2,R)/{£1d} on H? by orientation-
preserving isometries;

(b) for any two geodesics ¢, ¢ : R — H?, parameterized by the arclength,
there exists g € PSL(2, R) such that c1(s) = g - ca(s) forall s € R;

(c) given z1,22,23,24 € H* with d(z1,z2) = d(z3, z4), there exists g €
PSL(2,R)suchthatg-z; =z3and g - 20 = z4;

(d) an orientation-preserving isometry of H? with two fixed points must be the
identity. Conclude that all orientation-preserving isometries are of the form
f(z) =¢g-zforsome g € PSL(2, R).

(9) Check that the isometries g(z) = z + 2 and h(z) = zzﬁ of the hyperbolic

plane in Example 4.5 identify the sides of the hyperbolic polygon in Fig.4.5.

(10) A tractrix is the curve described parametrically by

= u — tanh
X u ann u (u>0)
y =sechu

(its name derives from the property that the distance between any point in the
curve and the x-axis along the tangent is constant equal to 1). Show that the
surface of revolution generated by rotating a tractrix about the x-axis (trac-
troid) has constant Gauss curvature K = —1. Determine an open subset of the
pseudosphere isometric to the tractroid. (Remark: The tractroid is not geodesically complete;
in fact, it was proved by Hilbert in 1901 that any surface of constant negative curvature embedded in Euclidean

3-space must be incomplele).

(11) Show that the group of isometries of §” i1s O(n + 1).



(12) Let G be a compact Lie group of dimension 2. Show that:

(a) G is orientable;

() x(G) =0;

(c) any left-invariant metric on G has constant curvature;
(d) G is the 2-torus 72

4.5 Isometric Immersions

Exercise 5.7

(1) Let M be a Riemannian manifold with Levi—Civita connection 6’, and let N be
a submanifold endowed with the induced metric and Levi—Civita connection V.
Let X,Y € X(M) be local extensions of X, Y € X(N). Recall that the second
fundamental form of the inclusion of N in M is the map B : T,N x T,N —
(TPN)L defined at each point p € N by

B(X,Y):=VzY —VxVY.

Show that:

(a) B(X,Y) does not depend on the choice of the extensions X . ?;
(b) B(X,Y) is orthogonal to N;

(c) B issymmetric,i.e. B(X,Y) = B(Y, X);

(d) B is bilinear;

(e) B(X,Y)), depends only on the values of X, and Y,;

() Viz.7,X — Vix.y) X is orthogonal to N.

(2) Let $"(r) ¢ R"*! be the n dimensional sphere of radius r.

(a) Choosing at each point the outward pointing normal unit vector, what is the
Gauss map of this inclusion?

(b) What are the eigenvalues of its derivative?

(c) Show that all sectional curvatures are equal to ,% (so §"(r) has constant

curvature r%).

(3) Let (M, (-, -)) be a Riemannian manifold. A submanifold N C M is said to be
totally geodesic if the the geodesics of N are geodesics of M. Show that:

(a) N istotally geodesicifand only if B = 0, where B is the second fundamental
form of N;

(b) if N is the set of fixed points of an isometry then N is totally geodesic. Use
this result to give examples of totally geodesic submanifolds of R”, " and
H".
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(4) Let N beahypersurface in R" ™! andlet p be a pointin N. Show that if K (p) # 0

then (D))
T Vollg
Kpl= lm =D

where g : V. C N — §" is the Gauss map and D is a neighborhood of p whose
diameter tends to zero.

(5) Let (M, (-,-)) be a Riemannian manifold, p a point in M and Il a section
of T,M. For B:(p) = expP(BE (0)) a normal ball around p consider the set
N, = expp(Bg(O) M IT). Show that:

(a) the set N, is a 2-dimensional submanifold of M formed by the segments of
geodesics in B.(p) which are tangent to IT at p;

(b) ifin N, we use the metric induced by the metric in M, the sectional curvature
KM (I1) is equal to the Gauss curvature of the 2-manifold N p-

(6) Let (M, {-,-)) be a Riemannian manifold with Levi—Civita connection V and
let N be a hypersurface in M. The geodesic curvature of a curve ¢ : I C
R — M, parameterized by arclength, 1s k4(s) = ||€’c=(s)é(s) |. Show that the
absolute values of the principal curvatures are the geodesic curvatures (in M)
of the geodesics of N tangent to the principal directions. (Remark: In the case of an
oriented 2-dimensional Riemannian manifold, kg is taken to be positive or negative according to the orientation

of {é(s), Ve(s)é(s)}—cf. Sect. 4.2).

(7) Use the Gauss map to compute the Gauss curvature of the following surfaces in
R3:

(a) the pal‘aboloid 7= % (xz 4+ yz),
(b) the saddle surface z = xy.

(8) (Surfaces of revolution) Consider the map f : R x (0, 27) — R3 given by
f(s,0) = (h(s)cos@, h(s)sin, g(s))
with # > 0 and g smooth maps such that
(H()* + (') = L.
The image of f is the surface of revolution S with axis Oz, obtained by rotating

the curve a(s) = (h(s), g(s)), parameterized by the arclength s, around that
axis.

(a) Show that f i1s an immersion.
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(b) Show that f, := (df) (di) and fj := (df)(%;) are orthogonal.

(c) Determine the Gauss mzlp and compute the matrix of the second fundamental
form of § associated to the frame {E;, Ey}, where E; := f; and Ey :=

1
IR
(d) Compute the mean curvature H and the Gauss curvature K of §.

(e) Using these results, give examples of surfaces of revolution with:
(1) K=0;
2) K=1;
3) K=-1,

(4) H = 0 (not a plane).
(Remark: Surfaces with constant zero mean curvature are called minimal surfaces; it can be proved
that if a compact surface with boundary has minimum area among all surfaces with the same boundary

then it must be a minimal surface).



