[RG01] Jose Natario

Ch4 Curvature

4.1 Curvature

Definition 1.1 The **curvature** R of a connection ∇ is a correspondence that to each pair of vector fields $X, Y \in \mathfrak{X}(M)$ associates the map $R(X, Y) : \mathfrak{X}(M) \to \mathfrak{X}(M)$ defined by

$$R(X, Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z.$$

Hence, R is a way of measuring the non-commutativity of the connection.

$$R_{ijk}^{\ \ l} = \frac{\partial \Gamma_{jk}^{l}}{\partial x^{i}} - \frac{\partial \Gamma_{ik}^{l}}{\partial x^{j}} + \sum_{m=1}^{n} \Gamma_{jk}^{m} \Gamma_{im}^{l} - \sum_{m=1}^{n} \Gamma_{ik}^{m} \Gamma_{jm}^{l}.$$

When the connection is symmetric (as in the case of the Levi–Civita connection), the tensor *R* satisfies the so-called **Bianchi identity**.

Proposition 1.3 (Bianchi identity) *If M is a manifold with a symmetric connection then the associated curvature satisfies*

$$R(X, Y)Z + R(Y, Z)X + R(Z, X)Y = 0.$$

Proposition 1.4 If X, Y, Z, W are vector fields in M and ∇ is the Levi–Civita connection, then

- (i) R(X, Y, Z, W) + R(Y, Z, X, W) + R(Z, X, Y, W) = 0;
- (ii) R(X, Y, Z, W) = -R(Y, X, Z, W);
- (iii) R(X, Y, Z, W) = -R(X, Y, W, Z);
- (iv) R(X, Y, Z, W) = R(Z, W, X, Y).

Definition 1.5 Let Π be a 2-dimensional subspace of T_pM and let X_p , Y_p be two linearly independent elements of Π . Then, the **sectional curvature** of Π is defined as

$$K(\Pi) := -\frac{R(X_p, Y_p, X_p, Y_p)}{\|X_p\|^2 \|Y_p\|^2 - \langle X_p, Y_p \rangle^2}.$$

Proposition 1.6 The Riemannian curvature tensor at p is uniquely determined by the values of the sectional curvatures of sections (that is, 2-dimensional subspaces) of T_pM .

A Riemannian manifold is called **isotropic at a point** $p \in M$ if its sectional curvature is a constant K_p for every section $\Pi \subset T_pM$. Moreover, it is called **isotropic** if it is isotropic at all points. Note that every 2-dimensional manifold is trivially isotropic. Its sectional curvature $K(p) := K_p$ is called the **Gauss curvature**.

Isotroic 各向同性的(均質的)

Exercise 1.12

- (1) (a) Show that the curvature operator satisfies
 - (i) $R(fX_1 + gX_2, Y)Z = fR(X_1, Y)Z + gR(X_2, Y)Z$;
 - (ii) $R(X, fY_1 + gY_2)Z = fR(X, Y_1)Z + gR(X, Y_2)Z;$
 - (iii) $R(X,Y)(fZ_1 + gZ_2) = fR(X,Y)Z_1 + gR(X,Y)Z_2$, for all vector fields $X, X_1, X_2, Y, Y_1, Y_2, Z, Z_1, Z_2 \in \mathfrak{X}(M)$ and smooth functions $f, g \in C^{\infty}(M)$.
 - (b) Show that $(R(X, Y)Z)_p \in T_pM$ depends only on X_p, Y_p, Z_p . Conclude that R defines a (3, 1)-tensor. (Hint: Choose local coordinates around $p \in M$).
- (2) Let (M, g) be an n-dimensional Riemannian manifold and $p \in M$. Show that if (x^1, \ldots, x^n) are normal coordinates centered at p [cf. Exercise 4.8(2) in Chap. 3] then

$$R_{ijkl}(p) = \frac{1}{2} \left(\frac{\partial^2 g_{jl}}{\partial x^i \partial x^k} - \frac{\partial^2 g_{il}}{\partial x^j \partial x^k} - \frac{\partial^2 g_{jk}}{\partial x^i \partial x^l} + \frac{\partial^2 g_{ik}}{\partial x^j \partial x^l} \right) (p).$$

(3) Recall that if G is a Lie group endowed with a bi-invariant Riemannian metric, ∇ is the Levi–Civita connection and X, Y are two left-invariant vector fields then

$$\nabla_X Y = \frac{1}{2} [X, Y]$$

[cf. Exercise 4.8(3) in Chap. 3]. Show that if Z is also left-invariant, then

$$R(X, Y)Z = \frac{1}{4}[Z, [X, Y]].$$

- (4) Show that $\|X_p\|^2 \|Y_p\|^2 \langle X_p, Y_p \rangle^2$ gives us the square of the area of the parallelogram in $T_p M$ spanned by X_p, Y_p . Conclude that the sectional curvature does not depend on the choice of the linearly independent vectors X_p, Y_p , that is, when we change the basis on Π , both $R(X_p, Y_p, X_p, Y_p)$ and $\|X_p\|^2 \|Y_p\|^2 \langle X_p, Y_p \rangle^2$ change by the square of the determinant of the change of basis matrix.
- (5) Show that Ric is the only independent contraction of the curvature tensor: choosing any other two indices and contracting, one either gets $\pm Ric$ or 0.

- (6) Let *M* be a 3-dimensional Riemannian manifold. Show that the curvature tensor is entirely determined by the Ricci tensor.
- (7) Let (M, g) be an n-dimensional isotropic Riemannian manifold with sectional curvature K. Show that Ric = (n-1)Kg and S = n(n-1)K.
- (8) Let g_1 , g_2 be two Riemannian metrics on a manifold M such that $g_1 = \rho g_2$, for some constant $\rho > 0$. Show that:
 - (a) the corresponding sectional curvatures K_1 and K_2 satisfy $K_1(\Pi) = \rho^{-1}K_2(\Pi)$ for any 2-dimensional section of a tangent space of M;
 - (b) the corresponding Ricci curvature tensors satisfy $Ric_1 = Ric_2$;
 - (c) the corresponding scalar curvatures satisfy $S_1 = \rho^{-1} S_2$.
- (9) If ∇ is not the Levi–Civita connection can we still define the Ricci curvature tensor Ric? Is it necessarily symmetric?

4.2 Cartan Structure Equations

Reformuate the properties of the Levi-Civita connection and of the Riemannian curvature tensor in terms of differential forms •

$$\{X_1, X_2, ..., X_n\}$$
 form a basis for $T_n M$

 $\{\omega^1, \omega^2, ..., \omega^n\}$ a field of dual coframes such that $\omega^i(X_i) = \delta_{ij}$

$$\nabla_{X_i} X_j = \sum_{k=1}^n \Gamma_{ij}^k X_k$$

$$\omega_j^k := \sum_{i=1}^n \Gamma_{ij}^k \omega^i$$
 called the connection forms \circ

Theorem 2.1 (Cartan) Let V be an open subset of a Riemannian manifold M on which we have defined a field of frames $\{X_1, \ldots, X_n\}$. Let $\{\omega^1, \ldots, \omega^n\}$ be the corresponding field of coframes. Then the connection forms of the Levi–Civita connection are the unique solution of the equations

For orthonormal system, Cartan structure equations:

(i)
$$d\omega^i = \sum_{j=1}^n \omega^j \wedge \omega_j^i$$
,

(ii)
$$\omega_i^j + \omega_i^i = 0$$
.

(iii)
$$d\omega_i^j = \Omega_i^j + \sum_{k=1}^n \omega_i^k \wedge \omega_k^j$$
 (and so $\Omega_i^j + \Omega_i^i = 0$).

Where
$$\omega^i(X_j) = \delta_{ij}$$
, $\omega^k_j = \sum_{i=1}^n \Gamma^k_{ij} \omega^i$, $\Omega^j_i = \sum_{k < l} R^j_{kli} \omega^k \wedge \omega^l$

Proposition 2.6 If M is a 2-dimensional manifold, then for an orthonormal frame we have $\Omega_1^2 = -K\omega^1 \wedge \omega^2$, where the function K is the Gauss curvature of M (that is, its sectional curvature).

Exercise 2.8

(1) Let $\{X_1, \ldots, X_n\}$ be a field of frames on an open set V of a Riemannian manifold $(M, \langle \cdot, \cdot \rangle)$ with Levi–Civita connection ∇ . The associated **structure functions** C_{ij}^k are defined by

$$[X_i, X_j] = \sum_{k=1}^n C_{ij}^k X_k.$$

Show that:

(a) $C^i_{jk} = \Gamma^i_{jk} - \Gamma^i_{kj}$;

(b)
$$\Gamma_{jk}^{i} = \frac{1}{2} \sum_{l=1}^{n} g^{il} \left(X_j \cdot g_{kl} + X_k \cdot g_{jl} - X_l \cdot g_{jk} \right) + \frac{1}{2} C_{jk}^{i} - \frac{1}{2} \sum_{l,m=1}^{n} g^{il} \left(g_{jm} C_{kl}^m + g_{km} C_{jl}^m \right);$$

- (c) $d\omega^i + \frac{1}{2} \sum_{j,k=1}^n C^i_{jk} \omega^j \wedge \omega^k = 0$, where $\{\omega^1, \ldots, \omega^n\}$ is the field of dual coframes.
- (2) Let $\{X_1, \ldots, X_n\}$ be a field of frames on an open set V of a Riemannian manifold $(M, \langle \cdot, \cdot \rangle)$. Show that a connection ∇ on M is compatible with the metric on V if and only if

$$X_k \cdot \langle X_i, X_j \rangle = \langle \nabla_{X_k} X_i, X_j \rangle + \langle X_i, \nabla_{X_k} X_j \rangle$$

for all i, j, k.

- (3) Compute the Gauss curvature of
- (a) the sphere S^2 with the standard metric
- (b) the hyperbolic plane $H = \{(x, y) \in R^2 \mid y > 0\}$ with the metric $g = \frac{1}{y^2}(dx^2 + dy^2)$

(a)
$$\phi: (0,\pi) \times (0,2\pi) \to R^3$$

 $\phi(\theta,\varphi) = (\sin\theta\cos\varphi, \sin\theta\sin\varphi, \cos\varphi)$ then $g = d\theta^2 + \sin^2\theta d\varphi^2$

With the field of frames
$$\{X_1, X_2\}$$
 where $X_1 \coloneqq \frac{\partial}{\partial \theta}, X_2 \coloneqq \frac{\partial}{\partial \varphi}$

And so a field of ortonormal frames
$$\{E_1, E_2\}$$
 is given by $E_1 := X_2, E_2 := \frac{1}{\sin \theta} X_2$

And
$$\{\omega^1, \omega^2\}$$
, with $\omega^1 := d\theta, \omega^2 := \sin\theta d\varphi$
 $d\omega^1 = 0$ and $d\omega^2 = \cos\theta d\theta \wedge d\varphi = \cot\theta \omega^1 \wedge \omega^2$
 $d\omega^1 = \omega^2 \wedge \omega_2^1 \Rightarrow 0 = \sin\theta d\varphi \wedge \omega_2^1$

$$d\omega^2 = \omega^1 \wedge \omega_1^2 = d\theta \wedge \omega_1^2 = \cos\theta d\theta \wedge d\varphi \quad \therefore \omega_1^2 = \cos\theta d\varphi$$

$$d\omega_{\rm l}^2 = -\sin\theta d\theta \wedge d\varphi = -\omega^{\rm l} \wedge \omega^{\rm 2} = \Omega_{\rm l}^2 = -K\omega^{\rm l} \wedge \omega^{\rm 2}$$

$$\therefore K = 1$$

$$g = \frac{1}{y^2} (dx^2 + dy^2) \quad X_1 := \frac{\partial}{\partial x}, X_2 := \frac{\partial}{\partial y} \quad \text{then} \quad E_1 = yX_1, E_2 = yX_2$$

$$\omega^1 = \frac{1}{y} dx, \omega^2 = \frac{1}{y} dy$$

$$d\omega^{1} = \frac{-1}{y^{2}}dy \wedge dx = \frac{1}{y^{2}}dx \wedge dy = \omega^{1} \wedge \omega^{2}$$

$$d\omega^2 = 0$$

$$d\omega^1 = \omega^2 \wedge \omega_2^1 \Longrightarrow \omega_1^2 = \omega^1$$

$$d\omega_1^2 = d\omega^1 = \omega^1 \wedge \omega^2 \Longrightarrow K = -1$$

- (4) Determine all surfaces of revolution with constant Gauss curvature.
- (5) Let M be the image of the parameterization $\varphi:(0,+\infty)\times\mathbb{R}\to\mathbb{R}^3$ given by

$$\varphi(u, v) = (u \cos v, u \sin v, v),$$

and let N be the image of the parameterization $\psi:(0,+\infty)\times\mathbb{R}\to\mathbb{R}^3$ given by

$$\psi(u, v) = (u \cos v, u \sin v, \log u).$$

Consider in both M and N the Riemannian metric induced by the Euclidean metric of \mathbb{R}^3 . Show that the map $f: M \to N$ defined by

$$f(\varphi(u,v)) = \psi(u,v)$$

preserves the Gauss curvature but is not a local isometry.

(6) Consider the metric

$$g = A^{2}(r)dr \otimes dr + r^{2}d\theta \otimes d\theta + r^{2}\sin^{2}\theta \,d\varphi \otimes d\varphi$$

on $M = I \times S^2$, where r is a local coordinate on $I \subset \mathbb{R}$ and (θ, φ) are spherical local coordinates on S^2 .

- (a) Compute the Ricci tensor and the scalar curvature of this metric.
- (b) What happens when $A(r) = (1-r^2)^{-\frac{1}{2}}$ (that is, when M is locally isometric to S^3)?
- (c) And when $A(r) = (1 + r^2)^{-\frac{1}{2}}$ (that is, when M is locally isometric to the **hyperbolic** 3-space)?
- (d) For which functions A(r) is the scalar curvature constant?

N3802

(7) Let M be an oriented Riemannian 2-manifold and let p be a point in M. Let D be a neighborhood of p in M homeomorphic to a disc, with a smooth boundary ∂D . Consider a point $q \in \partial D$ and a unit vector $X_q \in T_q M$. Let X be the parallel transport of X_q along ∂D in the positive direction. When X returns to q it makes an angle $\Delta \theta$ with the initial vector X_q . Using fields of positively oriented orthonormal frames $\{E_1, E_2\}$ and $\{F_1, F_2\}$ such that $F_1 = X$, show that

$$\Delta \theta = \int_D K.$$

Conclude that the Gauss curvature of M at p satisfies

$$K(p) = \lim_{D \to p} \frac{\Delta \theta}{\text{vol}(D)}.$$

- (8) Compute the geodesic curvature of a positively oriented circle on:
 - (a) \mathbb{R}^2 with the Euclidean metric and the usual orientation;
 - (b) S^2 with the usual metric and orientation.
- (9) Let c be a smooth curve on an oriented 2-manifold M as in the definition of geodesic curvature. Let X be a vector field parallel along c and let θ be the angle between X and $\dot{c}(s)$ along c in the given orientation. Show that the geodesic curvature of c, k_g , is equal to $\frac{d\theta}{ds}$. (Hint: Consider two fields of orthonormal frames $\{E_1, E_2\}$ and $\{F_1, F_2\}$ positively oriented such that $E_1 = \frac{X}{\|X\|}$ and $F_1 = \dot{c}$).

4.3 Gauss-Bonnet Theorem

[GaussBonnet] 1944 年陳省身

M is a closed oriented Riemannian manifold with an even dimension d, then

$$\int_{M} \Omega = \chi(M) \text{ where } \Omega_{i}^{j} = R_{ikj}^{j} d\omega^{k} \wedge d\omega^{l}$$

p.141 有向量場標數
$$I_p = \lim_{r \to 0} \frac{1}{2\pi} \int_{S_r(p)} \overset{-2}{\omega_1} (2\pi I_p = \int_{\partial D} \sigma)$$
)then

Theorem 3.3 (Gauss–Bonnet) Let M be a compact, oriented, 2-dimensional manifold and let X be a vector field in M with isolated singularities p_1, \ldots, p_k . Then

$$\int_{M} K = 2\pi \sum_{i=1}^{k} I_{p_{i}} \tag{4.7}$$

for any Riemannian metric on M, where K is the Gauss curvature.

Exercise 3.6

(1) Show that if $\langle \cdot, \cdot \rangle_0$, $\langle \cdot, \cdot \rangle_1$ are two Riemannian metrics on M then

$$\langle \cdot, \cdot \rangle_t := (1 - t) \langle \cdot, \cdot \rangle_0 + t \langle \cdot, \cdot \rangle_1$$

is also a Riemannian metric on M, and that the index $I_p(t)$ computed using the metric $\langle \cdot, \cdot \rangle_t$ is a continuous function of t.

- (2) (Gauss-Bonnet theorem for non-orientable manifolds) Let (M, g) be a compact, non-orientable, 2-dimensional Riemannian manifold and let $\pi : \overline{M} \to M$ be its orientable double covering [cf. Exercise 8.6(9) in Chap. 1]. Show that:
 - (a) $\chi(\overline{M}) = 2\chi(M)$;
 - (b) $\overline{K} = \pi^* K$, where \overline{K} is the Gauss curvature of the Riemannian metric $\overline{g} := \pi^* g$ on \overline{M} ;
 - (c) $2\pi\chi(M) = \frac{1}{2} \int_{\overline{M}} \overline{K}$.

(**Remark:** Even though M is not orientable, we can still define the integral of a function f on M through $\int_M f = \frac{1}{2} \int_{\overline{M}} \pi^* f$; with this definition, the Gauss–Bonnet theorem holds for non-orientable Riemannian 2-manifolds).

(3) (Gauss–Bonnet theorem for manifolds with boundary) Let M be a compact, oriented, 2-dimensional manifold with boundary and let X be a vector field in M transverse to ∂M (i.e. such that $X_p \notin T_p \partial M$ for all $p \in \partial M$), with isolated singularities $p_1, \ldots, p_k \in M \setminus \partial M$. Prove that

$$\int_{M} K + \int_{\partial M} k_g = 2\pi \sum_{i=1}^{k} I_{p_i}$$

for any Riemannian metric on M, where K is the Gauss curvature of M and k_g is the geodesic curvature of ∂M .

- (4) Let (M, g) be a compact orientable 2-dimensional Riemannian manifold, with positive Gauss curvature. Show that any two non-self-intersecting closed geodesics must intersect each other.
- (5) Let M be a differentiable manifold and $f: M \to \mathbb{R}$ a smooth function.
 - (a) (Hessian) Let $p \in M$ be a critical point of f (i.e. $(df)_p = 0$). The **Hessian** of f at p is the map $(Hf)_p : T_pM \times T_pM \to \mathbb{R}$ given by

$$(Hf)_p(v,w) = \frac{\partial^2}{\partial t \partial s}\Big|_{s=t=0} (f \circ \gamma)(s,t),$$

where $\gamma: U \subset \mathbb{R}^2 \to M$ is such that $\gamma(0,0) = p$, $\frac{\partial \gamma}{\partial s}(0,0) = v$ and $\frac{\partial \gamma}{\partial t}(0,0) = w$. Show that $(Hf)_p$ is a well-defined symmetric 2-tensor.

(b) (Morse theorem) If $(Hf)_p$ is nondegenerate then p is called a **nondegenerate critical point**. Assume that M is compact and f is a **Morse function**, i.e. all its critical points are nondegenerate. Prove that there are only a finite number of critical points. Moreover, show that if M is 2-dimensional then

$$\chi(M) = m - s + n,$$

where m, n and s are the numbers of maxima, minima and saddle points respectively. (Hint: Choose a Riemannian metric on M and consider the vector field $X := \operatorname{grad} f$).

(6) Let (M, g) be a 2-dimensional Riemannian manifold and $\Delta \subset M$ a **geodesic triangle**, i.e. an open set homeomorphic to an Euclidean triangle whose sides are images of geodesic arcs. Let α, β, γ be the inner angles of Δ , i.e. the angles between the geodesics at the intersection points contained in $\partial \Delta$. Prove that for small enough Δ one has

$$\alpha + \beta + \gamma = \pi + \int_{\Delta} K,$$

where K is the Gauss curvature of M, using:

- (a) the fact that $\int_{\Delta} K$ is the angle by which a vector parallel-transported once around $\partial \Delta$ rotates;
- (b) the Gauss–Bonnet theorem for manifolds with boundary. (Remark: We can use this result to give another geometric interpretation of the Gauss curvature: $K(p) = \lim_{\Delta \to p} \frac{\alpha + \beta + \gamma \pi}{\text{vol}(\Delta)}$).
- (7) Let (M, g) be a simply connected 2-dimensional Riemannian manifold with nonpositive Gauss curvature. Show that any two geodesics intersect at most in one point. (Hint: Note that if two geodesics intersected in more than one point then there would exist a geodesic biangle, i.e. an open set homeomorphic to a disc whose boundary is formed by the images of two geodesic arcs).

4.4 Manifolds of Constant Curvature

Exercise 4.7

(1) Show that the metric of $H^n(a)$ is a left-invariant metric for the Lie group structure induced by identifying $(x^1, \ldots, x^n) \in H^n(a)$ with the affine map $g: \mathbb{R}^{n-1} \to \mathbb{R}^{n-1}$ given by

$$g(t^1, \dots, t^{n-1}) = x^n(t^1, \dots, t^{n-1}) + (x^1, \dots, x^{n-1}).$$

(2) Prove that if the forms ω^i in a field of orthonormal coframes satisfy $d\omega^i = \alpha \wedge \omega^i$ (with α a 1-form), then the connection forms ω^j_i are given by $\omega^j_i = \alpha(E_i)\omega^j - \alpha(E_j)\omega^i = -\omega^i_j$. Use this to confirm the results in Example 4.2.

(3) Let K be a real number and let $\rho = 1 + (\frac{K}{4}) \sum_{i=1}^{n} (x^{i})^{2}$. Show that, for the Riemannian metric defined on \mathbb{R}^{n} by

$$g_{ij}(p) = \frac{1}{\rho^2} \, \delta_{ij},$$

the sectional curvature is constant equal to K.

(4) Show that any isometry of the Euclidean space \mathbb{R}^n which preserves the coordinate function x^n is an isometry of $H^n(a)$. Use this fact to determine all the geodesics of $H^n(a)$.

- (5) (Schur theorem) Let M be a connected isotropic Riemannian manifold of dimension $n \geq 3$. Show that M has constant curvature. (Hint: Use the structure equations to show that dK = 0).
- (6) To complete the details in Example 4.4, show that:
 - (a) the isometries of \mathbb{R}^2 with no fixed points are either translations or gliding reflections;
 - (b) any discrete group of isometries of \mathbb{R}^2 acting properly and freely is generated by at most two elements, one of which may be assumed to be a translation.

(7) Let $f, g : \mathbb{R}^2 \to \mathbb{R}^2$ be the isometries

$$f(x, y) = (-x, y + 1)$$
 and $g(x, y) = (x + 1, y)$

(thus f is a gliding reflection and g is a translation). Check that $\mathbb{R}^2/\langle f \rangle$ is homeomorphic to a Möbius band (without boundary), and that $\mathbb{R}^2/\langle f,g \rangle$ is homeomorphic to a Klein bottle.

- (8) Let H^2 be the hyperbolic plane. Show that:
 - (a) the formula

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z := \frac{az+b}{cz+d}$$
 $(ad-bc=1)$

defines an action of $PSL(2, \mathbb{R}) := SL(2, \mathbb{R})/\{\pm id\}$ on H^2 by orientation-preserving isometries;

- (b) for any two geodesics $c_1, c_2 : \mathbb{R} \to H^2$, parameterized by the arclength, there exists $g \in PSL(2, \mathbb{R})$ such that $c_1(s) = g \cdot c_2(s)$ for all $s \in \mathbb{R}$;
- (c) given $z_1, z_2, z_3, z_4 \in H^2$ with $d(z_1, z_2) = d(z_3, z_4)$, there exists $g \in PSL(2, \mathbb{R})$ such that $g \cdot z_1 = z_3$ and $g \cdot z_2 = z_4$;
- (d) an orientation-preserving isometry of H^2 with two fixed points must be the identity. Conclude that all orientation-preserving isometries are of the form $f(z) = g \cdot z$ for some $g \in PSL(2, \mathbb{R})$.
- (9) Check that the isometries g(z) = z + 2 and $h(z) = \frac{z}{2z+1}$ of the hyperbolic plane in Example 4.5 identify the sides of the hyperbolic polygon in Fig. 4.5.

(10) A **tractrix** is the curve described parametrically by

$$\begin{cases} x = u - \tanh u \\ y = \operatorname{sech} u \end{cases}$$
 $(u > 0)$

(its name derives from the property that the distance between any point in the curve and the x-axis along the tangent is constant equal to 1). Show that the surface of revolution generated by rotating a tractrix about the x-axis (**tractroid**) has constant Gauss curvature K = -1. Determine an open subset of the pseudosphere isometric to the tractroid. (**Remark**: The tractroid is not geodesically complete; in fact, it was proved by Hilbert in 1901 that any surface of constant negative curvature embedded in Euclidean 3-space must be incomplete).

[曳物線 tractrix]繞 x 軸旋轉的旋轉面 K=-1

(11) Show that the group of isometries of S^n is O(n+1).

- (12) Let G be a compact Lie group of dimension 2. Show that:
 - (a) G is orientable;
 - (b) $\chi(G) = 0$;
 - (c) any left-invariant metric on G has constant curvature;
 - (d) G is the 2-torus T^2 .

4.5 Isometric Immersions

Exercise 5.7

(1) Let M be a Riemannian manifold with Levi–Civita connection $\widetilde{\nabla}$, and let N be a submanifold endowed with the induced metric and Levi–Civita connection ∇ . Let $\widetilde{X}, \widetilde{Y} \in \mathfrak{X}(M)$ be local extensions of $X, Y \in \mathfrak{X}(N)$. Recall that the second fundamental form of the inclusion of N in M is the map $B: T_pN \times T_pN \to (T_pN)^{\perp}$ defined at each point $p \in N$ by

$$B(X,Y) := \widetilde{\nabla}_{\widetilde{X}} \, \widetilde{Y} - \nabla_X \, Y.$$

Show that:

- (a) B(X, Y) does not depend on the choice of the extensions \widetilde{X} , \widetilde{Y} ;
- (b) B(X, Y) is orthogonal to N;
- (c) B is symmetric, i.e. B(X, Y) = B(Y, X);
- (d) B is bilinear;
- (e) $B(X, Y)_p$ depends only on the values of X_p and Y_p ;
- (f) $\widetilde{\nabla}_{[\widetilde{X},\widetilde{Y}]}\widetilde{X} \nabla_{[X,Y]}X$ is orthogonal to N.
- (2) Let $S^n(r) \subset \mathbb{R}^{n+1}$ be the *n* dimensional sphere of radius *r*.
 - (a) Choosing at each point the outward pointing normal unit vector, what is the Gauss map of this inclusion?
 - (b) What are the eigenvalues of its derivative?
 - (c) Show that all sectional curvatures are equal to $\frac{1}{r^2}$ (so $S^n(r)$ has constant curvature $\frac{1}{r^2}$).

- (3) Let $(M, \langle \cdot, \cdot \rangle)$ be a Riemannian manifold. A submanifold $N \subset M$ is said to be **totally geodesic** if the geodesics of N are geodesics of M. Show that:
 - (a) N is totally geodesic if and only if $B \equiv 0$, where B is the second fundamental form of N;
 - (b) if N is the set of fixed points of an isometry then N is totally geodesic. Use this result to give examples of totally geodesic submanifolds of \mathbb{R}^n , S^n and H^n .
- (4) Let N be a hypersurface in \mathbb{R}^{n+1} and let p be a point in N. Show that if $K(p) \neq 0$ then

$$|K(p)| = \lim_{D \to p} \frac{\operatorname{vol}(g(D))}{\operatorname{vol}(D)},$$

where $g: V \subset N \to S^n$ is the Gauss map and D is a neighborhood of p whose diameter tends to zero.

- (5) Let $(M, \langle \cdot, \cdot \rangle)$ be a Riemannian manifold, p a point in M and Π a section of T_pM . For $B_{\varepsilon}(p) := \exp_p(B_{\varepsilon}(0))$ a normal ball around p consider the set $N_p := \exp_p(B_{\varepsilon}(0) \cap \Pi)$. Show that:
 - (a) the set N_p is a 2-dimensional submanifold of M formed by the segments of geodesics in $B_{\varepsilon}(p)$ which are tangent to Π at p;
 - (b) if in N_p we use the metric induced by the metric in M, the sectional curvature $K^M(\Pi)$ is equal to the Gauss curvature of the 2-manifold N_p .
- (6) Let $(M, \langle \cdot, \cdot \rangle)$ be a Riemannian manifold with Levi-Civita connection $\widetilde{\nabla}$ and let N be a hypersurface in M. The **geodesic curvature** of a curve $c: I \subset \mathbb{R} \to M$, parameterized by arclength, is $k_g(s) = \|\widetilde{\nabla}_{\dot{c}(s)}\dot{c}(s)\|$. Show that the absolute values of the principal curvatures are the geodesic curvatures (in M) of the geodesics of N tangent to the principal directions. (Remark: In the case of an oriented 2-dimensional Riemannian manifold, k_g is taken to be positive or negative according to the orientation of $\{\dot{c}(s), \widetilde{\nabla}_{\dot{c}(s)}\dot{c}(s)\}$ —cf. Sect. 4.2).

- (7) Use the Gauss map to compute the Gauss curvature of the following surfaces in \mathbb{R}^3 :
 - (a) the paraboloid $z = \frac{1}{2}(x^2 + y^2)$;
 - (b) the saddle surface z = xy.

(8) (Surfaces of revolution) Consider the map $f: \mathbb{R} \times (0, 2\pi) \to \mathbb{R}^3$ given by

$$f(s, \theta) = (h(s)\cos\theta, h(s)\sin\theta, g(s))$$

with h > 0 and g smooth maps such that

$$(h'(s))^2 + (g'(s))^2 = 1.$$

The image of f is the surface of revolution S with axis Oz, obtained by rotating the curve $\alpha(s) = (h(s), g(s))$, parameterized by the arclength s, around that axis.

- (a) Show that f is an immersion.
- (b) Show that $f_s := (df) \left(\frac{\partial}{\partial s} \right)$ and $f_{\theta} := (df) \left(\frac{\partial}{\partial \theta} \right)$ are orthogonal.
- (c) Determine the Gauss map and compute the matrix of the second fundamental form of S associated to the frame $\{E_s, E_\theta\}$, where $E_s := f_s$ and $E_\theta := \frac{1}{\|f_\theta\|} f_\theta$.
- (d) Compute the mean curvature H and the Gauss curvature K of S.
- (e) Using these results, give examples of surfaces of revolution with:
 - (1) $K \equiv 0$;
 - (2) $K \equiv 1$;
 - (3) $K \equiv -1$;
 - (4) $H \equiv 0$ (not a plane).

(Remark: Surfaces with constant zero mean curvature are called **minimal surfaces**; it can be proved that if a compact surface with boundary has minimum area among all surfaces with the same boundary then it must be a minimal surface).