An introduction to Riemannian Geometry Jose Natario
Ch3 Riemannian Manifolds

Exercise 1.10
(1) Letg = Z?’j=] gij dx' ® dx’ € Tz(T;M). Show that:

(a) gissymmetricifandonlyifg;; =g;; (i,j=1,...,n);

(b) g is nondegenerate if and only if det(g;;) # 0;

(c) g is positive definite if and only if (g;;) is a positive definite matrix;

(d) if g is nondegenerate, the map &, : T,M — T;M given by ®,(v)(w)
g(v, w) for all v, w € T, M is a linear isomorphism;

(e) if g is positive definite then g is nondegenerate.

(2) Prove that any differentiable manifold admits a Riemannian structure without
invoking the Whitney theorem. (Hint: Use partitions of unity).

e

(3) (a) Let (M, g) be a Riemannian manifold and let G be a discrete Lie group

acting freely and properly on M by isometries. Show that M / G has a natural
Riemannian structure (called the quotient structure).

(b) How would you define the flat square metric on the n-torus 7" = R" /Z"?

(c) How would you define the standard metric on the real projective n-space
RP" = §"]7Z»?
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tﬁ a left-invariant metric on G
(4) Recall that givén a Lie group G and x € G, the left translation by x is the
diffeomorphism L, : G — G givenby L,(y) = xyforally € G. ARiemannian

metric g on G is said to be left-invariant if L, is an isometry for all x € G.
Show that:

(a) g(-,-) = (-, ) is left-invariant if and only if

(v, whx = ((dLy1), v, (dL,—1) w),

X

forall x € G and v, w € TG, where e € G is the identity and (-, -}, is an
inner product on the Lie algebra g = T.G;



(b) the standard metric on S° = SU (2) is left-invariant;

(c) the metric induced on O(n) by the Euclidean metric of M,,x, = R" is
left-invariant.

(5) We say that a differentiable curve y : [«, B] — M is obtained from the curve
¢ : [a, b] — M by reparameterization if there exists a smooth bijection f :
[, B] — la, b] (the reparameterization) such that y = ¢ o f. Show that if y is
obtained from ¢ by reparameterization then /(y) = I(c).

(6) Let (M, g) be a Riemannian manifold and f € C®(M). Show that if a € R is
a regular value of f then grad( f) is orthogonal to the submanifold f~'(a).

3.2 Affine Connections V, Y

Parallel transport of v along ¢
Exercise 2.6
(1) (a) Show thatif X,Y € I(Mg coincide with X, Y € X (M) in some open set
W C M then VX Y = Vf Y onW. (Hint: Use bump functions with support contained on W
and the properties listed in definition 2.1).
(b) Obtain the local coordinate expression (3.1) for Vx Y.

(c) Obtain the local coordinate Eq. (3.3) for the parallel transport law.
(d) Obtain the local coordinate Eq. (3.4) for the geodesics of the connection V.

(2) i)étermine all affine connections on R"“. Of the;e, determine the connections
whose geodesics are straight lines ¢(t) = at + b (with a, b € R").

(3) Let V be an affine connection on M. If € Q!(M) and X € X(M), we define
the covariant derivative of w along X, Vxw € Ql(M), by

Vxo) =X (o)) —wo(VxY)

forall Y € X(M).

(a) Show that this formula defines indeed a 1-form, i.e. show that (Vyw(Y)) (p)
is a linear function of ¥,.



(b) Show that
(1) Vixigro = fVxo + gVyow;
(i) Vx(w+n) = Vxo+ Vxn;
(iii)) Vx(fw)=(X- flo+ fVxw
forall X,Y € X(M), f,g € C®°(M) and w, n € QL (M).

(c) Letx : W — RR" be local coordinates on an open set W C M, and take
n
W = Z w;idx'.
i=1

Show that

Vo= [X-wi— D> T)X o) dx"
i=1 Jj.k=1

(d) Define the covariant derivative Vx T for an arbitrary tensor field 77 in M,
and write its expression in local coordinates.
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3.3 Levi-Civita Connection

Exercise 3.3

(1) Show that the Koszul formula defines a connection.

(2) We introduce in R3, with the usual Euclidean metric (-, -), the connection V
defined in Cartesian coordinates (x', x2, x3) by

Fj‘k = Wejjk,
where @ : R? — R is a smooth function and
+1 1if (i, j, k) is an even permutation of (1, 2, 3)
gijk =y —1 1f (i, j, k) 1s an odd permutation of (1, 2, 3)
0 otherwise.
Show that:

(a) V is compatible with (-, -);

(b) the geodesics of V are straight lines;



(c) the torsion of V is not zero in all points where w # 0 (therefore V is not the

Levi-Civita connection unless w = 0);

(d) the parallel transport equation is

3
Vit D oepi/VE=06 V4ol xV)=0

jk=1

(where x is the cross product in R?); therefore, a vector parallel along a
straight line rotates about it with angular velocity —wx.

(3) Let (M, g) and (NL@ be isometric Riemannian manifolds with Levi-Civita
connections V and V, and let f : M — N be an isometry. Show that:

(a) fiVxY = ﬁ_f*xf*l’ forall X,Y € X(M);
(b) if¢: 1 — M is a geodesic then f oc: I — N is also a geodesic.

(4) Consider the usual local coordinates (@, ¢) in $2 c R3 defined by the parame-
terization ¢ : (0, 7) x (0, 27) — R3 given by

¢ (0, @) = (sinf cos ¢, sinf sin ¢, cos H).

(a) Using these coordinates, determine the expression of the Riemannian metric
induced on S2 by the Euclidean metric of R3.

(b) Compute the Christoffel symbols for the Levi-Civita connection in thes:

coordinates.
(c) Show that the equator is the image of a geodesic. ‘

(d) Show that any rotation about an axis through the origin in R’ induces an

isometry of S2.
(e) Show that the images of geodesics of S are great circles.

(f) Find a geodesic triangle (i.e. a triangle whose sides are images of geodesics)
whose internal angles add up to 37”



(g) Letc: R — S? be given by ¢(t) = (sin fy cos t, sin 6y sin ¢, cos fy), where
6y € (0, %) (therefore c is not a geodesic). Let V be a vector field parallel

along ¢ such that V(0) = % (% is well defined at (sin#fp, 0, cos fy) by
continuity). Compute the angle by which V is rotated when it returns to the
initial pOiI‘l[. (Remark: The angle you have computed is exactly the angle by which the oscillation
plane of the Foucault pendulum rotates during a day in a place at latitude % — #, as it tries to remain fixed

with respect to the stars on a rotating Earth) .
-~

(h) Use this result to prove that no open set U C S is isometric to an open set
W c R? with the Euclidean metric.

(i) Given a geodesic ¢ : R — R? of R? with the Euclidean metric and a point
p ¢ c(R), there exists a unique geodesic ¢ : R — R? (up to reparameter-
ization) such that p € ¢(R) and ¢(R) N ¢(R) = & (parallel postulate). Is
this true in 27

@ [N3801]
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(5) Recall that identifying each point in
H={(x.y)eR*|y>0}
with the invertible affine map & : R — R given by h(t) = yt + x induces a Lie
group structure on H [cf. Exercise 7.17(3) in Chap. 1].

(a) Show that the left-invariant metric induced by the Euclidean inner product
dx @dx +dy @dy inh =Ty 1 )H is

1
g= ?(dx@)dx—l—dy@dy)
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(b) Compute the Christoffel symbols of the Levi-Civita connection in the coor-
dinates (x, y).
(c) Show that the curves «, f : R — H given in these coordinates by

a(t) = (0,¢€)

1
ﬁ(f) = ([anhf, m)

are g_eodesics. What are the sets «(R) and ﬁ_(R)‘?
(d) Determine all images of geodesics.

(e) Show that, giventwo points p, g € H, there exists aunique geodesic through
them (up to reparameterization).
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(f) Give examples of connected Riemannian manifolds containing two points
through which there are (i) infinitely many geodesics (up to reparameteri-
zation); (ii) no geodesics.

(g) Show that no open set U C H is isometric to an open set V C R? with
the Euclidean metric. (Hint: Show that in any neighborhood of any point p € H there is always a

geodesic quadrilateral whose internal angles add up to less than 211').

(h) Does the parallel postulate hold in the hyperbolic plane?

[N3804Hyperbolicplane]

(6) Let (M, {-,-)) be a Riemannian manifold with Levi-Civita connection v, and
let (N, ({-,-))) be a submanifold with the induced metric and Levi-Civita
connection V.

(a) Show that

VxY = (Vg¥)'

for all X,Y € X(N), where g, Y are any extensions of X, Y to X(M)
and ' : TM|y — TN is the orthogonal projection.

(b) Use this result to indicate curves that are, and curves that are not, geodesics
of the following surfaces in R3:
(i) the sphere S2;
(i1) the torus of revolution;
(ii1) the surface of a cone;
(1v) a general surface of revolution.

(c) Show that if two surfaces in R> are tangent along a curve, then the parallel
transport of vectors along this curve in both surfaces coincides.

(d) Use this result to compute the angle Af by which a vector V is rotated when
it is parallel transported along a circle on the sphere. (Hint: Consider the cone which
is tangent to the sphere along the circle (cf. Fig.3.1); notice that the cone minus a ray through the vertex is

isometric to an open set of the Euclidean plane).

(7) Let (M, g) be a Riemannian manifold with Levi-Civita connection V. Show that
g is parallel along any curve, i.e. show that

Vxg=0
for all X € X(M) [cf. Exercise2.6(3)].

p.103


../notebook/N3804Hyperbolicplane.pdf

(8) Let (M, g) be a Riemannian manifold with Levi-Civita connection V, and let

©)

¥, : M — M be a 1-parameter group of isometries. The vector field X € X(M)

defined by
d

X, =—
d dt |-

Y (p)

is called the Killing vector field associated to 1/;. Show that:

(a) Lxg =0 [cf. Exercise2.8(3)];
(b) X satisfies (Vy X, Z) + (VzX.,Y) = 0 for all vector fields ¥, Z € X(M);

(c) ifc: 1 — M is a geodesic then (é‘(t), XL-(,)) 1S constant.

Recall that if M is an oriented differential manifold with volume element @ €
Q"(M), the divergence of X is the function div(X) such that

Lxo = (div(X))w

[cf. Exercise 6.4(5) in Chap.2]. Suppose that M has a Riemannian metric and
that w is a Riemannian volume element.Show that at each point p € M,

n

div(X) = Z(Vy,.X, Y;),

i=1

where {Yy, ..., Y,} is an orthonormal basis of 7, M and V is the Levi-Civita
connection.

3.4 Minimizing Properties of Geodsics
p.110

exponential map Normal neighborhood
p.114

geodesic flow

Exercise 4.8

(D

Let (M, g) be a Riemannian manifold and f : M — IR a smooth function. Show
that if || grad(f)|| = 1 then the integral curves of grad( f) are geodesics, using:

(a) the definition of geodesic;
(b) the minimizing properties of geodesics.



(2) Let M be a Riemannian manifold and V the Levi—Civita connection on M. Given
p € M and a basis {vy, ..., v,} for T, M, we consider the parameterization
¢ : U C R" = M of a normal neighborhood given by

px!, ... x") = expp(x'vl + -+ x"vy)
(the local coordinates (x!, ..., x") are called normal coordinates).

Show that:

(a) in these coordinates, 1";. 1 (P) = O (Hint: Consider the geodesic equation);
(b) if {vi, ..., v,}is an orthonormal basis then g;; (p) = §;;.

(3) Let G be a Lie group endowed with a bi-invariant Riemannian metric (i.e.
such that L, and R, are isometries for all g € G), and leti : G — G be the

diffeomorphism defined by i (g) = ¢~ .

(a) Compute (di), and show that

(di)g = (dR,-1), (di)e (dLy1),

for all ¢ € G. Conclude that i is an isometry.

(b) Letv € g = T,.G and ¢, be the geodesic satisfying ¢, (0) = e and ¢, (0) = v.
Show that if ¢ is sufficiently small then ¢, (—1) = (¢, (t))’l. Conclude that
¢y 18 defined in R and satisfies ¢, (t +5) = ¢, (t)cy(s) forall t, s € R. (Hint:
Recall that any two points in a totally normal neighborhood are connected by a unique geodesic in that

nei ghborhood) .

(c) Show that the geodesics of G are the integral curves of left-invariant vector
fields, and that the maps exp (the Lie group exponential) and exp, (the
geodesic exponential at the identity) coincide.

(d) Let V be the Levi-Civita connection of the bi-invariant metric and X, ¥ two
left-invariant vector fields. Show that

1
Vx¥ = S[X.Y].

(e) Check that the left-invariant metrics Exercise 1.10(4) are actually
bi-invariant.



(f) Show that any compact Lie group admits a bi-invariant metric. (Hint: Take the

average of a left-invariant metric over all right translations) .
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(4) Use Theorem 4.6 to prove thatif f : M — N isanisometryandc :  — M is
a geodesic then f oc: I — N is also a geodesic.

(5) Let f : M — M be an isometry whose set of fixed points is a connected
I-dimensional submanifold N C M. Show that N is the image of a geodesic.

(6) Let (M, (-, -)) be a Riemannian manifold whose geodesics c;n be e;tended for
all values of their parameters, and let p € M.

(a) Let X and Y; be the vector fields defined on a normal ball centered at p as
in (3.6) and (3.7). Show that ¥; satisfies the Jacobi equation

VxVxYi = R(X,Y;)X,

where R : X(M) x X(M) x X(M) — X(M), defined by
R(X,Y)Z =VxVyZ —VyVxZ — Vix.v\Z,

is called the curvature operator (cf. Chap.4). (Remark: It can be shown that
(R(X,Y)Z)p depends only on X p, ¥, Zp).

(b) Consider a geodesic ¢ : R — M parameterized by the arclength such that

¢(0) = p. A vector field Y along c is called a Jacobi field if it satisfies the
Jacobi equation along c,

DZY .l .x
F = R(C, Y) C.

Show that Y is a Jacobi field with ¥ (0) = 0 if and only if

ad
V() = 5o exp,(v(s)

§ 0

with v : (—¢, &) — T, M satisfying v(0) = ¢(0).
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(¢c) Apointg € M is said to be conjugate to p if it is a critical value of exp,.
Show that g is conjugate to p if and only if there exists a nonzero Jacobi
field Y along a geodesic ¢ connecting p = ¢(0) to ¢ = c(b) such that
Y (0) = Y (b) = 0. Conclude that if ¢ is conjugate to p then p is conjugate
tog.

(d) The manifold M is said to have nonpositive curvature if (R(X,Y)X,Y) >
0 for all X,Y € X(M). Show that for such a manifold no two points are

conjugate.

(e) Given a geodesic ¢ : I — M parameterized by the arclength such that
c¢(0) = p, let ¢, be the supremum of the set of values of # such that ¢ is the
minimizing curve connecting p to ¢(t) (hence 7. > 0). The cut locus of p is
defined to be the set of all points of the form c(z.) for 7, < +o00. Determine

the cut locus of a given point p € M when M is:
(1) the torus T" with the flat square metric;

(1) the sphere §" with the standard metric;

(ii1) the projective space R P" with the standard metric.

Check in these examples that any point in the cut locus is either conjugate to
p or joined to p by two geodesics with the same length but different images.
(Remark: This is a general property of the cut locus—see [dC93] or [GHL04] for a proof).

54T p.373
3.5 Hopf-Rinow Theorem

Exercise 5.8

(1) Prove Proposition 5.4.

(2) Consider R? \ {(x,0) | =3 < x < 3} with the Euclidean metric. Determine
B7(0, 4).

(3) (a) Prove that a connected Riemannian manifold is complete if and only if the

compact sets are the closed bounded sets.
(b) Give an example of a connected Riemannian manifold containing a non-

compact closed bounded set.

10
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(4) A Riemannian manifold (M, (-, -)) is said to be homogeneous if, given any two
points p,q € M, there exists an isometry f : M — M such that f(p) = q.
Show that:

(a) any homogeneous Riemannian manifold is complete;
(b) if G 1s a Lie group admitting a bi-invariant metric [cf. Exercise 4.8(3)] then
the exponential map exp : g — G 1is surjective;

(c) SL(2,R) does not admit a bi-invariant metric.

(5) Let (M, g) be a complete Riemannian manifold. Show that:

(a) (Ambrose theorem) if (N, h) is a Riemannian manifold and f : M — N is
a local isometry then f is a covering map;

(b) there exist surjective local isometries which are not covering maps;

(¢) (Cartan—Hadamard theorem) if (M, g) has nonpositive curvature [cf. Exer-
cise4.8(6)] then for each point p € M the exponential map exp,, : )M —
M is a COVS[‘iI‘lg map. (Remark: In particular, if M is simply connected then M must be diffeo-
morphic to R™).
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