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1. INTRODUCTION

This module has a number of goals which are not entirely consistent with one
another. Our first objective is to develop the initial stages of Lobachevski ge-
ometry in as natural a manner as possible given tools which are commonly
available. These are elementary complex analysis and elementary differential
geometry. The second goal is to use Lobachevski geometry as an example of a
Riemannian Geometry. In some sense it is a maximally simple example since
it is not a surface embeddable in 3 space but it is still two dimensional and
topologically trivial. Hence it can serve as a sandbox for learning concepts such
as geodesic curvature and parallel translation in a context where these concepts
are not totally trivial but still not very difficult. Third, by considering the upper
half plane model and the disk model we have a good example of how easy things
can be when placed in an appropriate setting. We also have a non-trivial and
splendidly useful example of an isometry.

The novice at Lobachevski geometry would profit from looking at the in-
toroductory material which shows pictures of the upper half plane model (Book
0).

A word of caution. Much of the material I develop here can be developed
in a more elementary manner, and some persons, for example philosophy stu-
dents, might be more comfortable going that route, in which case there are
many good books available. Some of the material, for example the geodesic
curvature of horocycles and equidistants, could also be so developed (I think)
but it would require developing special equipment on site, so the differential
geometry approach might be more natural for this material.

My primary reason for presenting this material is to have an easily avail-
able reference for myself and my students. Since the material is not intended
for publication the style is informal and certain niceties have been neglected.
However, I believe the material to be accurate, even if occasionally there are
missing details. It is important to understand the reference goal of this mod-
ule; occasional sections compute things like Christoffel symbols so that I have
them available when I want them. Other sections, for example the section on
Hyperbolic functions, contain well known material which is once again included
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for reference purposes. The user should skim or skip these sections which are
rather tedious to read.

I have consulted almost no references for this work, relying on my memory
of the material from many years ago. Hence there will undoubtedly be places
where the development is suboptimal. I intend to fix this given time.

I would not have bothered with this project if it were not fun and I hope
you users will also find it fun. However, without some knowledge of elementary
differential geometry and complex variables I’m afraid it won’t be much fun.

This module has been divided into Books in order to keep the PDFs from
becoming too long for convenience.

Capitalization of words is non-standard, and used to lightly emphasize the
words or make them stand out in the text. And remember, if you find the
material incomprehensible, exasperating, dull or turgid, you didn’t pay much
for it.
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2. A BIT OF HISTORY

Lobachevski geometry developed out of a desire to fix what was perceived as a
flaw in Euclid’s presentation of Euclidean geometry. Euclid’s first four postu-
lates are very simple and the fifth is very complicated. It seemed reasonable to
attempt to derive the fifth from the other four. Many people, Greeks, Arabs,
Europeans, claimed to have done this but they were always mistaken, because
it cannot be done. The usual method was to slip in some equivalent of postu-
late five without realizing it, for example the existence of two similar but not
congruent triangles.

One of the methods used was to assume more than one parallel to a
point could be drawn through a given line and reach a contradiction. This
was the method used by Sacchieri in 1733. Sacchieri developed a good deal of
Lobachevski geometry without finding the sought for contradiction but in the
end backed out and disowned his discovery. His social situation was complex
and his final rejection of his own discovery may have been a political decision
rather than his honest conclusion.

From this point on the question of who influenced whom is difficult to
answer.

Lambert (c 1766) was the next person to show an interest in our subject and
developed hyperbolic trigonometry (sinh and cosh) as part of his investigations.
He looked at the geometry of a sphere with complex radius iR, and this is
indeed one entry point to Lobachevski geometry but he did not follow up his
discoveries very far or did not publish them. The work of Sacchieri and Lambert
seems to have been ignored. Sacchieri’s book seems to have always been rare
but Lambert’s work may have influenced people later, since it was available.

The first person to figure it all out was Gauss, and he kept it quiet, since
he knew there would be controversy if he published it. Both Janos Bolyai
and Lobachevski have connections to Gauss, Bolyai was the son of a close friend
Farkas (Wolfgang) Bolyai and Lobachevski’s teacher, Bartels, was also a lifelong
friend of Gauss. Thus in both cases leakage of information, perhaps no more
than Gauss’s belief in an alternative to Euclidean geometry and maybe not even
that much, is possible.

Gauss’s students Mindung and Taurinus developed a sort of Lobachevski
geometry using the pseudosphere. This was simply a constant negative curva-
ture surface but it is not a model of the entire Lobachevski plane. It is, however,
eminently noncontroversial and in my opinion of modest importance. Others
hold different views on this point.

Bolyai and Lobachevski were the first to assert publicly that they had in-
vented a new geometry for the plane and that it was well worth studying. Bolyai
was disappointed by the lack of fame and fortune that followed his discoveries
and became a military officer. Lobachevski alone had the courage and the forti-
tude to develop the theory into a large body of material. He accomplished this
in near total isolation at the University of Kazan, where the local population
was Tatar and remarkably indifferent to the theory of parallels. In later years
he had some correspondence with Gauss who realized the importance of the
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work but, as usual, could not bring himself to point it out publicly which would
have been of enormous help to Lobachevski. (The only person Gauss seems to
have helped was his mother.) Lobachevski published several books on his ge-
ometry, which were largely ignored because in the opinion of philosophers and
others Lobachevski geometry was inconsistent; the contradiction was lurking
right around the next corner.

Finally about 1860 Beltrami was able to construct the Upper Half Plane
(UHP) model of Lobachevski geometry which proved beyond all doubt that it
was both consistent and interesting. Sadly, by this time Lobachevski was dead.

Over time Lobachevski geometry and the UHP model and their general-
izations have taken an important place in higher mathematics, partly due to
the close connections with modular functions. So of the three sisters, Spherical,
Plane and Lobachevski geometry, it is the despised youngest that has turned
out to be critical for the future of mathematics. John Stillwell has called this
our Cinderella story.
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3. REVIEW OF HYPERBOLIC FUNCTIONS

In this section we do a brief review of sinh(x), cosh(x), and other hyperbolic
functions. Skip to the next section if this material is familiar to you. We will be
using this material from time to time throughout this module. Hyperbolic func-
tions were invented by Lambert in 1766 in a context equivalent to Lobachevski
geometry

The definitions are

sinh(x) =
ex − e−x

2

cosh(x) =
ex + e−x

2

tanh(x) =
sinh(x)

cosh(x)
=

ex − e−x

ex + e−x

coth(x) =
1

tanh(x)

sech(x) =
1

cosh(x)

csch(x) =
1

sinh(x)

Clearly

ex = cosh(x) + sinh(x)

e−x = cosh(x) − sinh(x)

Note that for real x we have sinh(0) = 0, cosh(0) = 1, and sinh(x) is an odd
function and cosh(x) is an even function. Also note that | sinh(x)| < cosh(x) and
thus | tanh(x)| < 1. To get the fundamental formulas, the addition formulas,
we use

exe−y = (cosh(x) + sinh(x))(cosh(y) − sinh(y))

= (cosh(x) cosh(y) + sinh(x) cosh(y) − cosh(x) sinh(y) − sinh(x) sinh(y)

e−xey = (cosh(x) − sinh(x))(cosh(y) + sinh(y))

= (cosh(x) cosh(y) − sinh(x) cosh(y) + cosh(x) sinh(y) − sinh(x) sinh(y)

1

2
(ex−y − e−x+y) = sinh(x) cosh(y) − cosh(x) sinh(y)

sinh(x − y) = sinh(x) cosh(y) − cosh(x) sinh(y)

1

2
(ex−y + e−x+y) = cosh(x) cosh(y) − sinh(x) sinh(y)

cosh(x − y) = cosh(x) cosh(y) − sinh(x) sinh(y)

and hence, using the odd/even properties again,

sinh(x + y) = sinh(x) cosh(y) + cosh(x) sinh(y)
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cosh(x + y) = cosh(x) cosh(y) + sinh(x) sinh(y)

tanh(x ± y) =
tanh(x) ± tanh(y)

1 ± tanh(x) tanh(y)

Now if y = −x we get

cosh(0) = cosh(x − x) = cosh(x) cosh(x) − sinh(x) sinh(x)

1 = cosh2(x) − sinh2(x)

which can also be gotten from the formula for exe−y by setting x = y. By
dividing the last equaton by cosh2(x) or sinh2(x) we get

sech2(x) = 1 − tanh2(x)

csch2(x) = coth2(x) − 1

Next doubling formulas

sinh(2x) = 2 sinh(x) cosh(x)

cosh(2x) = cosh2(x) + sinh2(x)

= 2 cosh2(x) − 1

= 1 + 2 sinh2(x)

and halving formulas

sinh
(1

2
x
)

=

√

cosh(x) − 1

2

cosh
(1

2
x
)

=

√

cosh(x) + 1

2

Now we look at the inverse functions which we will write argsinh(s), argcosh(s)
etc. Let x = argsinh(s). Then we have

x = argsinh(s)

sinh(x) = s

1

2
(ex − e−x) = s

e2x − 2sex − 1 = 0

ex =
1

2

(

2s ±
√

4s2 + 4
)

= s ±
√

s2 + 1

argsinh(s) = ln(s ±
√

s2 + 1) (Plus sign for real output)

If x is to be real we must replace ± by + in the last formula Similarly we have
for argcosh(x)

1

2
(ex + e−x) = s
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e2x − 2sex + 1 = 0

ex = s ±
√

s2 − 1

argcosh(s) = ln(s ±
√

s2 − 1)

where in this case we do get two real values provided that s ≥ 1 and no real
values of s < 1. Note also that s−

√
s2 − 1 = 1/(s +

√
s2 − 1) so the two values

are negatives of one another, as expected for an even function.
For our purposes the most important of the inverse functions is argtanh(s)

which will be important in the formula for distance in the Disk Model of
Lobachevski Geometry. We derive this formula which we notice lacks the square
root characteristic of argsinh and argcosh and instead has a Möbius transfor-
mation in it

x = argtanh(s)

tanh(x) = s

ex − e−x

ex + e−x
= s

e2x − 1 = s(e2x + 1)

(1 − s)e2x = 1 + s

e2x =
1 + s

1 − s

argtanh(s) = x =
1

2
ln

1 + s

1 − s

This formula will produce real output if and only if |s| < 1.
The derivative formulas

d

dx
sinh(x) = cosh(x)

d

dx
cosh(x) = sinh(x)

d

dx
tanh(x) = sech(x)

are trivial to derive.
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4. METRIC COEFFICIENTS, CHRISTOFFEL

SYMBOLS AND THE RIEMANN CURVA-

TURE TENSOR

The Upper Half Plane (UHP) model is parametrized by the complex variable
z with ℑ(z) > 0 or by the x and y of z = x + iy. Straight lines are defined
to be either vertical Euclidean straight lines or semicircles perpendicular to the
x-axis.

Because the UHP is not a surface isometrically embedded in a larger three
space we cannot proceed as, for example, we do in the Sphere Module. Here we
must use the techniques of Riemannian Geometry.

This section is completely computational; I wanted to make the Christoffel
symbols and Riemann curvature tensor as well as the connection and curvature
forms available for later when I want them. It would certainly be possible to
skip this section and return to it when necessary.

For computational purposes remember that u1 = x and u2 = y.
A Lobachevski plane comes with a natural unit of length, which is related

to the Gaussian Curvature. We build it into the metric for the differential
geometry of the space as the positive parameter a. The characteristic length is
then 1/a, which has the dimension of a length. It will turn out in the sequel that
the Gaussian Kurvature K = −a2. Hence a2 fits in the position of K = 1/R2 for
the sphere, and if we put a = 1/(iR) we see what Lambert already saw in 1760;
that the Lobachevski plane is formally similar to a sphere of radius iR instead of
R. This allowed J. H. Lambert to develop the hyperbolic functions in analogy
to spherical trigonometry and to predict the form Lobachevski trigonometry
would take.

For almost all purposes we could set a = 1, but we will keep our options
open. The parameter a is analogous to 1/R for the sphere and setting a = 1 is
analogous to using a unit sphere.

The metric is given by

ds2 =
dx2 + dy2

a2 y2

It is not fair to give both a definition of straight lines and a metric, but we will
verify later that the straight lines are indeed geodesics, so there is no problem.
From the above formula we read off the metric coefficients gij . These are

(gij) =

( 1
a2y2 0

0 1
a2y2

)

We will also need the inverse matrix

(gij) = (gij)
−1 =

(

a2y2 0
0 a2y2

)
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Now we can compute the Γi
jk. This is a little inconvenient, but not that

bad. We need the basic formulas

Γij|k =
1

2

(∂gik

∂uj
+

∂gjk

∂ui
− ∂gij

∂uk

)

and
Γi

jk = gimΓjk|m

From these we get, remembering that Γi
jk = Γi

kj ,

Γ11|1 =
1

2

∂g11

∂u1
= 0

Γ11|2 =
1

2

(∂g12

∂u1
+

∂g12

∂u1
− ∂g11

∂u2

)

=
1

a2y3

Γ12|1 =
1

2

(∂g11

∂u2
+

∂g21

∂u1
− ∂g12

∂u1

)

= − 1

a2y3

Γ12|2 =
1

2

(∂g12

∂u2
+

∂g22

∂u1
− ∂g12

∂u2

)

= 0

Γ22|1 =
1

2

(∂g21

∂u2
+

∂g21

∂u2
− ∂g22

∂u1

)

= 0

Γ22|2 =
1

2

∂g22

∂u2
= − 1

a2y3

Then

Γ1
11 = g1mΓ11|m = 0

Γ2
11 = g2mΓ11|m = a2y2 · 1

a2y3
=

1

y

Γ1
12 = g1mΓ12|m = a2y2 · −1

a2y3
=

−1

y

Γ2
12 = g2mΓ12|m = 0

Γ1
22 = g1mΓ22|m = 0

Γ2
22 = g2mΓ22|m = a2y2 · −1

a2y3
=

−1

y

For future purposes we place these in matrices:

(Γi
j1) =

(

Γ1
11 Γ1

21

Γ2
11 Γ2

21

)

=

(

0 −1
y

1
y

0

)

and

(Γi
j2) =

(

Γ1
12 Γ1

22

Γ2
12 Γ2

22

)

=

( −1
y

0

0 −1
y

)

Now we want to put this information into differential form form; the connection
one form is

ω i
j = Γi

jk duk
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which we can put in matrix form as

(ω i
j ) =

(

0 −1
y

1
y

0

)

du1 +

( −1
y

0

0 −1
y

)

du2 =

( −1
y

dy −1
y

dx
1
y
dx −1

y
dy

)

Our next job is the Riemann Curvature Tensor defined as

Ri
j
kℓ =

∂Γj
iℓ

∂uk
− ∂Γj

ik

∂uℓ
+ Γj

mkΓm
iℓ − Γj

mℓΓ
m
ik

We will compute one of these by hand and then go over to more efficient meth-
ods.

R1
2
12 =

∂Γ2
12

∂u1
− ∂Γ2

11

∂u2
+ Γ2

11Γ
1
12 − Γ2

12Γ
1
11 + Γ2

21Γ
2
12 − Γ2

22Γ
2
11

= −∂Γ2
11

∂u2
+ Γ2

11Γ
1
12 − Γ2

22Γ
1
11 (omitting 0 terms)

= − ∂

∂y
(
1

y
) + (

1

y
)(
−1

y
) − (

−1

y
)(

1

y
)

=
1

y2
− 1

y2
+

1

y2

=
1

y2

By coincidence, the formula for Gaussian curvature happens to use R1
2
12 and

in fact is

K = −g2mR1
m
12

det(gij)
= −g22R1

2
12

det(gij)
= − 1

a2y2
· a4y4 · 1

y2
= −a2

Now we will present the Riemann Curvature tensor in terms of differential
forms. We assume a nodding acquaintence with differential forms. The impor-
tant part to to remember is that dx∧ dy = −dy ∧ dx and that the proper order
is dx ∧ dy and that dx ∧ dx = dy ∧ dy = 0.

We have already defined the connection 1-forms as

ω i
j = Γi

jk duk

and the Curvature 2-forms are then defined by

Ω = dω + ω ∧ ω

or in less impenetrable language

Ω i
j = dω i

j + ω i
k ∧ ω k

j

We have already manufactured (ω k
j ) above, so we need

d(ω i
j ) = d

( − 1
y
dy − 1

y
dx

1
y
dx − 1

y
dy

)

=

(

0 − 1
y2 dx ∧ dy

1
y2 dx ∧ dy 0

)
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and

(ω i
k ) ∧ (ω k

j ) =

( − 1
y
dy − 1

y
dx

1
y
dx − 1

y
dy

)

∧
( − 1

y
dy − 1

y
dx

1
y
dx − 1

y
dy

)

=

(

0 0
0 0

)

Hence we have the Curvature 2-form Ω = dω + ω ∧ ω explicitly as

(Ω i
j ) =

(

0 − 1
y2 dx ∧ dy

1
y2 dx ∧ dy 0

)

This tells us that

Ω 1
2 = − 1

y2
dx ∧ dy

Ω 2
1 =

1

y2
dx ∧ dy

and thus that

R2
1
12 = − 1

y2

R1
2
12 =

1

y2

This gives us all the coefficients of the Riemann Curvature Tensor if we remem-
ber that Rj

i
kl

= −Rj
i
lk

Note that the result matches what we found previously
by cruder methods. Note also the interesting absence of the parameter a, which
suggests that Ri

j
kl is really a sort of relative curvature. If we look back at the

formula for the Gaussian Curvature we see that a enters only through the (gij),
which provides the absolute scale.
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5. FIRST EXAMPLES

The formula

ds2 =
dx2 + dy2

a2 y2

is not very convenient for direct calculation, and part of the fun of Lobachevski
geometry is finding clever ways to get around this. However, in a few cases one
can directly use the formula to calculate lengths.

The first example is calculating lengths up the y-axis. Since traveling up
the y-axis has a dx of 0, the formula becomes

d(iy1, iy2) =

∫ iy2

iy1

dy

ay

=
1

a

∫ iy2

iy1

dy

y

=
1

a

(

ln(iy2) − ln(iy2)
)

=
1

a
ln(

iy2

iy1
)

=
1

a
ln(

y2

y1
)

which is the formula we want.
We notice now a very important point. Since this distance formula is in

terms of the quotient of y2 and y1, it is insensitive to a similarity transformation,
or homothety, z → kz where k > 0. A moment’s reflection shows that, more
generally, ds is insensitive to homotheties. This is an important property of the
UHP model, and will be used extensively. It is only a special case of our later
results, but it is important because of its intuitive directness.

Next we will compute distance along an equidistant. In Fig 1 the vertical
line is a Lobachevski straight line as is the Euclidean circle perpendicular to
the x-axis. The oblique (Euclidean) line meeting the vertical line at the origin
is an equidistant, as is the arc of the second circle which does not meet the
x-axis at right angles. An equidistant is a Lobachevski curve having a fixed
distance from a straight line. In both cases in Fig 1, the arcs P1Q1 and P2Q2

are Lobachevski straight lines of equal lengths. We will find these lengths later
and show their equality. For now we are interested in the the distance from Q1

to Q2 on the oblique Euclidean line which makes an angle θ with the vertical,
the angle counting as positive to the right and negative to the left, as is the
case in Fig 1. The equation of the equidistant is x = y tan(θ) The points are
Q1 = z1 = x1 + iy1 and Q2 = z2 = x2 + iy2. Then

d(Q1, Q2) =

∫ z2

z1

ds =

∫ x2+iy2

x1+iy1

√

dx2 + dy2

ay
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=

∫ iy2

iy1

√
tan2 θ + 1dy

ay

=

√
tan2 θ + 1

a

∫ iy2

iy1

dy

y

=
sec θ

a
ln

y2

y1

Origin
O

Two straight lines and two equidistants

∞ ∞

∞

P

P

Q

Q

1

2

1

2

P

P

QQ

1

2

12

θ

Figure 1: Some straight lines and equidistants

Equidistants have no analogy in Euclidean geometry because there an
equidistant to a stright line is a straight line, and a pair of equidistant straight
lines will force the geometry to be Euclidean locally. For example, two circles
around a circular cylinder are equidistant, and these are straight lines (geodesics)
on the cylinder, so the cylinder is locally Euclidean. Equidistants and the soon
to be introduced horocycles make Lobachevski geometry much more amusing
than Euclidean geometry.

Straight lines form a 2-parameter family of curves in Lobachevski space.
We can parametrize them by center on R or at ∞ and radius r ∈ (0,∞) so a
possible parameter space for the straight lines is

P
1(R) × R

Equidistants are determined by θ ∈ (−π
2 , π

2 ) ≡ R so they form a 3-parameter
with possible parameter space

P
1(R) × R × R

Before introducing horocyles we note (and will later prove) that Euclidean
circles and Lobacevski circles in the upper half plane are identical as point sets,
but it is very important to realize that the Euclidean center does not coincide

13



with the Lobachevski center, which is always lower than the Euclidean center.
For example, a Euclidean circle with center 2i and radius 1 goes throught the
points i and 3i. The point equidistant in Lobachevski distance from these two
is
√

3i which is lower than 2i. Indeed

d(i,
√

3 i) = ln

√
3

1
=

1

2
ln 3

and

d(
√

3 i, 3i) = ln
3√
3

= ln
√

3 =
1

2
ln 3

We note that given a circle with center on the y-axis and going through
the two points y1 i and y2 i the Euclidean center is the arithmetic mean and the
Lobachevski center is the geometric mean of y1 and y2.

The next Lobachevski curve which has no Euclidean analogy is the horocy-
cle. Horocycles result in two (merely cosmetically) different ways. If the lowest
point on a Lobachevski circle is fixed and the center moves vertically upwards
the limit will be a horizontal line which is the first form of the horocycle. Simi-
larly if the highest point on a Lobachevski circle is fixed and the center moved
vertically toward the x-axis the limit will be a horocycle which appears in the
UHP model as a circle tangent to the x-axis. Thus horocycles, very like straight
lines, form a 2-parameter family which can be parametrized by

P
1(R) × R

We will later show that all horocycles are congruent. As we would guess, it is

Origin
O

A circle and three Horocycles

∞ ∞

∞

Q Q Q1 2

O

P

Q

Figure 2: Some horocycles and a circle

easy to find the length along the horizontal line horocycle. We set things up as
in the figure with Q = yi, Q1 = x1 + yi, Q2 = x2 + yi and tan(θ1) = x1

y
. Then
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we have

d(Q, Q1) =

∫ x1+iy

iy

ds =

∫ x1+iy

iy

dx

ay

=
1

ay

∫ y tan(θ1)+iy

iy

dx =
1

ay
(y tan(θ1) + iy − iy)

=
1

a
tan(θ1)

thus we see that the Length depends only on the subtended angles

d(Q1, Q2) =
1

a
(tan(θ2) − tan(θ1))

and not on the height y, as we would expect given the invariance of ds under
homothety.

Since neither equidistants nor horocycles are straight lines they must be
curved lines and hence have curvature. We mean at this point to investigate the
curvature of horocyles and staight lines, which uses slightly heavier equipment
than we have used up to this point. The casual reader might well wish to skip
to the next section or skim the rest of this section and read it in detail when
she needs it. The calculation is not too bad for horocycles but a little annoying
for equidistants.

Since all horocycles are congruent, the curvature calculation should come
out the same for them all, as we will show when we have more equipment.
For now we will show that the horizontal line horocycle has non-zero constant
curvature independent of y.

The concept we need here is the geodesic curvature. In order to calculate
with the following formula the curve parameter must be the arc length s, which
fortunately in the cases we need is fairly simple. The formula is

κg = εliu
′l(u′′i + Γi

jku′ju′k)

where the prime indicates differentiation with respect to arc length and εli is
defined by

ε12 =
√

g =
√

det(gij)

ε21 = −√
g

ε11 = ε22 = 0

and
u1 = x, u2 = y

and for the horocycle
u′2 = u′′2 = 0

Hence, putting in only the non-zero terms,

κg = ε12u
′1(u′′2 + Γ2

11u
′1u′1) + ε21u

′2(u′′1 + Γ1
11u

′1u′1)
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The tricky part is that this formula assumes parametrization by arc length. But
we know s = (1/a) tan(θ) so s = x/(ay) and so u1 = x = ays and so u′1 = ay
and u′′1 = 0. Hence κg comes down to

κg = ε12ay(0 + Γ2
11(ay)(ay)) + 0

=

√

1

a4y4

1

y
(ay)3 =

1

a2y2

1

y
a3y3

= a =
√
−K

where K is the Gaussian Curvature (which is negative). As we predicted the
geodesic cuvature is the same for every point on every horizontal horocycle. We
will later show that this is true for horocyles in general.

For equidistants things are rather more complicated. We will use the
oblique Euclidean line characterized by the angle θ. Since the value θ = 0
gives an actual straight line we would hope that κg(0) = 0 if, as we suspect, κg

turns out to be a function of θ that increases with θ. So it is now time for the
computation. For equidistants (taking Q1 = i)

u1 = x = y tan(θ) u2 = y s =
sec(θ)

a
ln(

y

1
)

Thus

u2 = y = e
as

sec(θ) = eas cos(θ)

u1 = y tan(θ) = tan(θ)eas cos(θ)

u′2 = a cos(θ)eas cos(θ)

u′1 = tan(θ)u′2 = a tan(θ) cos(θ)eas cos(θ) = a sin(θ)eas cos(θ)

u′′2 = a2 cos2(θ)eas cos(θ)

u′′1 = tan(θ)u′′2 = a2 sin(θ) cos(θ)eas cos(θ)

Putting all this into the formula for geodesic curvature (and writing down only
the non-zero terms) we have

κg = εliu
′l(u′′i + Γi

jku′iu′j)

= ε12u
′1(u′′2 + Γ2

11u
′1u′1 + Γ2

22u
′2u′2) + ε21u

′2(u′′1 + Γ1
12u

′1u′2 + Γ1
21u

′2u′1)

=
√

ge2as cos(θ)a3{u′1u′′2 − u′2u′′2}

+
√

ge3as cos(θ)a3{sin(θ)(
1

y
sin2(θ) − 1

y
cos2(θ))

− cos(θ)(−1

y
sin(θ) cos(θ) − 1

y
cos(θ) sin(θ))}

=
√

ge2as cos(θ)a3{u′1 tan(θ)u′′1 − tan(θ)u′1u′′1}

+
√

gy3a3 1

y
{sin(θ) sin2(θ) − sin(θ) cos2(θ) + sin(θ) cos2(θ) + cos2(θ) sin(θ)}

= 0 +
1

a2y2
a3y2 sin(θ)

= a sin(θ)
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So we have shown that indeed κg is a function κg(θ) of θ. Another important
point is that, as predicted, κg(0) = 0 and when the equidistant is actually a
straight line (the y-axis) the geodesic curvature is indeed 0, at least for the
vertical kind of straight lines. We will soon see we can carry this over to the
other straight lines also. This was a critical point to verify, since it means our
choice of metric is consistent with our choice of what should count as a straight
line.
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6. MÖBIUS TRANSFORMATIONS AND THE

CROSS RATIO

To go further with the metric properties of the UHP we will need some additional
equipment. Recall that

Tz =
az + b

cz + d
ad − bc 6= 0

is a fractional linear or Möbius transformation which maps the Riemann Sphere
P(C) onto itself in a bijective manner. (∞ → a/c, −d/c → ∞, with obvious
modifications if c = 0). Möbius transformations have a great many interesting
properties but the one that will be most critical for us initially is the

Theorem A Möbius transformation takes lircles to lircles.

The proof of this theorem uses methods somewhat different from those of
this module and so has been put in its own module entitled Möbius transforma-

tions and lircles.
It is important that Möbius transformations are closely connected to ma-

trices but as we will not make any use of this connection here we will not go
into it at this time.

We need the inverse of a Möbius transformation which is

T−1z =
dz − b

−cz + a

Next we deal with the cross ratio of four points. It is defined by

D(z1, z2, z3, z4) =
z1−z3

z1−z4

z2−z3

z2−z4

=
(z1 − z3)

(z1 − z4)

(z2 − z4)

(z2 − z3)

The cross ratio was originally developed as an invariant of projective transfor-
mations of the extended Euclidian line P1(R). Since the Riemann Sphere P1(C)
is a close analog of the extended line, it is not surprising the cross ratio will
have similar properties for it.

There are difficulties if too many of the points z1, z2, z3, z4 are identical.
We will work with the case where at least three of them are distinct, in which
case there is no difficulty. For example

D(z1, z2, z2, z4) =
(z1 − z2)

(z1 − z4)

(z2 − z4)

(z2 − z2)
= ∞

This ∞ is the ∞ ∈ P2(C) and we will identify it with the ∞ atop the y-axis in
the UHP when convenient.

Next we have a few useful Lemmas and a critical theorem.

Lemma If T takes 1, 0, ∞ to 1, 0, ∞ in that order then Tz = z

Proof sketch: T (∞) = ∞ ⇒ c = 0, T (0) = 0 ⇒ b = 0 and T (1) = 1 ⇒ a = d
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Lemma If z2, z3, z4 are distinct points in C, then there is a unique Möbius
transformation T which takes z2, z3, z4 to 1, 0, ∞ in that order.

Proof: Tz is defined if no zi = ∞ by

Tz =
z − z3

z − z4

z2 − z4

z2 − z3

If zi = ∞ for some i then one finds the correct form by taking limits:

Tz =
z − z3

z2 − z3

z2 − z4

z − z4
→ z2 − z4

z − z4
as z3 → ∞

Uniqueness follows from the previous Lemma.

Lemma D(z1, z2, z3, z4) gives the value T (z1) where T is the Möbius transfor-
mation defined in the previous lemma

Proof:

Tz1 =
z1 − z3

z1 − z4

z2 − z4

z2 − z3
= D(z1, z2, z3, z4)

Theorem D is invariant under Möbius transformations;

D(Tz1, T z2, T z3, T z4) = D(z1, z2, z3, z4)

Proof: Let Sz = D(z, z2, z3, z4). Then D(Tz1, T z2, T z3, T z4) = the value of
U(Tz1) where U is defined as the transformation satifying

UT (z2) = 1, UT (z2) = 0, UT (z2) = ∞

But
S(z2) = 1, S(z2) = 0, S(z2) = ∞

By uniqueness UT = S. Thus

D(Tz1, T z2, T z3, T z4) = UTz1 = Sz1 = D(z1, z2, z3, z4)

This gives us a method of finding the Möbius transformation that takes
z2, z3, z4 into w2, w3, w4. We just solve

D(w, w2, w3, w4) = D(z, z2, z3, z4)

for w in terms of z.
We can now prove the important

Theorem The cross ratio of four distinct points is real if and only if the four
distinct points lie on a lircle.

Proof: Let the four points be z1,z2, z3, and z4, and let T be the Möbius trans-
fomation that takes

Tz2 = 1, T z3 = 0, T z4 = ∞
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Let C be the unique lircle though z2, z3, and z4. Since a Möbius transformation
takes lircles to lircles, T [C] = R.
⇐: Let z1 ∈ C. Then Tz1 ∈ R. But then D(z1, z2, z3, z4) = D(Tz1, 1, 0,∞) =
Tz1 which is real.
⇒: Suppose D(z1, z2, z3, z4) is real. Then

Tz1 = D(Tz1, 1, 0,∞) = D(Tz1, T z2, T z3, T z4)

= D(z1, z2, z3, z4)

so Tz1 ∈ R = T [C]. Hence z1 ∈ C since T is bijective.

It is useful to have a few facts about permuting the order of terms in the
cross ratio. It is easiest to figure these out using D(x, 1, 0,∞) = x and then
tranfer the knowledge to D(z1, z2, z3, z4) by a Möbius transformation. There are
24 = 4! permutations of 4 elements. The cross ratio has, in general, 6 different
values each of which corresponds to 4 permutations. In the following table x
may be complex. The D in D(x, 1, 0,∞) is omitted in the table to minimize
clutter.

x (x, 1, 0,∞) (1, x,∞, 0) (0,∞, x, 1) (∞, 0, 1, x)
1
x

(1, x, 0,∞) (x, 1,∞, 0) (0,∞, 1, x) (∞, 0, x, 1)
1

1−x
(0, x, 1,∞) (x, 0,∞, 1) (1,∞, 0, x) (∞, 1, x, 0)

1 − x (x, 0, 1,∞) (0, x,∞, 1) (1,∞, x, 0) (∞, 1, 0, x)
x−1

x
(1, 0, x,∞) (0, 1,∞, x) (x,∞, 1, 0) (∞, x, 0, 1)

x
x−1 (0, 1, x,∞) (1, 0,∞, x) (x,∞, 0, 1) (∞, x, 1, 0)

By mapping Tz1 = x, Tz2 = 1, Tz3 = 0, Tz4 = ∞ and using invarience of the
cross ratio we see, for example, that

1

D(z1, z2, z3, z4)
= D(z2, z1, z3, z4) = D(z1, z2, z4, z3)

= D(z3, z4, z2, z1) = D(z4, z3, z1, z2)

The six functions in the table form a group under composition which is a
representation of S4 but we need not go into this here.

Now a few words about orientation. We have

D(x, 1, 0,∞) =
x−0
x−∞
1−0
1−∞

=
x

1

1 −∞
x −∞ = x

and

D(1, x, 0,∞) =
1

x

If x is real then these cross ratios are positive when x is postive. Because a
holomorphic function preserves orientation, we can map a lircle with the points
z1, z2, z3, z4 going around the lircle clockwise to x, 0, 1, ∞ with real x which
must satisfy x < 0 to preserve the orientation. Thus

D(z1, z2, z3, z4) = D(x, 0, 1,∞) = 1 − x > 0
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In the other direction

D(z4, z3, z2, z1) = D(z2, z1, z4, z3) = D(z1, z2, z3, z4) > 0

Hence the cross ratio is positive if the points z1, z2, z3, z4 on the circle are
arranged in order going around the circle in either direction, which we will call
coherant ordering. What happens if we excange the middle pair?

D(z1, z3, z2, z4) = D(x, 1, 0,∞) = x < 0

If we exchange the middle two points in a coherant set the resulting cross ratio
is negative.

We note that the T taking a coherant ordering to x, 0,1, ∞ must take the
exterior and the interior of the circle to the two half planes determined by R.
If the ordering is clockwise then the interior goes to the lower half plane by
continuity, and similarly if the ordering is counterclockwise the interior goes to
the upper half plane.
Example Let the lircle be the unit circle and z2 = −i, z3 = 1, and z4 = i.
Then

Tz =
1

i

z + i

z − i

Indeed we have

T (−i) = 0

T (1) =
1

i

1 + i

1 − i
=

1 + i

i + 1
= 1

T (i) = ∞

Our prediction is that the interior of the unit circle will be carried to the upper
half plane and indeed

T (0) =
1

i

i

−i
= i ∈ UHP

One further point; we will be interested in the particular combinations

D(z2, z3, z1, z4) D(z3, z2, z4, z1)

for coherantly placed z1, z2, z3, z4 on a lircle. Mapping the points to x, 0, 1, ∞
as before (with x < 0) we have

D(z2, z3, z1, z4) = D(0, 1, x,∞) =
x

x − 1
> 0

D(z3, z2, z4, z1) = D(1, 0, x,∞) =
x − 1

x
> 0

So the two cross ratios of interest are postive if the points are coherantly ar-
ranged.
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7. MOTIONS OF THE UHP AND DISTANCE

We now wish to investigate distance and motions in the upper half plane (UHP)
model of Lobachevski geometry, which is quite a bit less straightforward than
in the Euclidean plane.

An isometry is a function f : X → Y where X and Y are metric spaces
and f preserves distance:

d(f(x), f(y)) = d(x, y)

If X and Y have orientations then f can be orientation preserving or orientation
reversing (assuming X is connected). Isometries are injective but need not be
surjective.

If Y = X then a surjective isometry is often called a motion, and if it
preserves orientation it is called an orientation preserving motion or a proper

motion. For example, in Euclidean Space two figures are congruent if and only
if there is a motion which takes one to the other. Reflections in Euclidean space
are examples of motions which are not proper motions; they reverse orientation.
We will be concerned in this section with the proper motions of Lobachevski
space, which turn out to be certain Möbius transformations.

It is important to realize that there are two rather different formulas for the
distance from z1 to z2 in the Lobachevski plane. Let l be the lircle perpendicular
to the x-axis through z1 and z2 with z0 and z∞ being the points where the lircle
hits R ∪ {∞} and arranged coherantly; that is z0, z1, z2, and z∞ follow one
another along the lircle in that order. Then

d(z1, z2) =
1

a
lnD(z2, z1, z0, z∞)

where D(z2, z1, z0, z∞) is the cross ratio of the four points as discussed in the
previous section:

D(z2, z1, z0, z∞) =
z2 − z0

z2 − z∞

z1 − z∞
z1 − z0

A result in the previous section guarantees that the cross ratio will be real and
positive in this case, but this will also be obvious from the derivation, which is
easy.

The second formula is

d(z1, z2) =
2

a
argsinh

|z2 − z1|
2
√
ℑz1

√
ℑz2

which is more difficult to derive although I present a reasonably plausible path.
It is not trivial to get from the first formula to the second formula, although
it is probably possible with an orgy of trig and hyperbolic functions, though I
have not succeeded in doing it.

Both formulas are important for future use and will be derived after some
preliminary material on motions.
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A third formula

d(z1, z2) =
2

a
argtanh

|z2 − z1|
|z2 − z1|

will be derived in Book 2. It is a variant of the second formula.
Our first important job is to identify those Möbius transformations that

take the upper half plane (UHP) to itself. This is easy and will eventually
provide us with a large supply of motions of the Lobachevski plane.

The topological closure of the UHP (regarded as a subset of the Riemann
sphere) is

U = UHP ∪ R ∪ {∞}
We then have

Theorem A Möbius transformation T is a bijection of U if and only if T has a
representation in which

a, b, c, d ∈ R and det(
a b
c d

) > 0

Proof: (sketch) Because T must take ∂U = R into ∂U = R, it is fairly obvious

that we can restrict our attention to a, b, c, d ∈ R. Let z ∈ UHP so ℑz > 0.
Then

ℑTz =
1

2i

(az + b

cz + d
− az + b

cz + d

)

=
1

2i

ad(z − z) − bc(z − z)

(cz + d)(cz + d)

=
ad − bc

|cz + d|2ℑz

Hence

ℑTz > 0, ℑz > 0 ⇒ det(
a b
c d

) = ad − bc > 0

and

ℑz > 0, det(
a b
c d

) > 0 ⇒ ℑTz > 0

Bijectivity follows from the bijectivity of T on the Riemann sphere.

Recall that the metric for the UHP model of Lobachevski space is

ds2 =
dx2 + dy2

a2y2

=
(dx + idy)(dx − idy)

a2 ( z−z
2i

)2

=
−4dz dz

a2(z − z)2
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We wish to show that w = Tz with a, b, c, d ∈ R and ad− bc > 0 is an isometry
of the UHP. To do this it suffices to show that

−4dw dw

a2(w − w)2
= ds2 =

−4dz dz

a2(z − z)2

Since distance along a curve is determined by integrating ds, this will show that
distance along a curve C from z1 to z2 is the same as distance along T [C] from
T (z1) to T (z2), which is enough to guarantee isometry.

However, we have other ends in mind besides derivation of the formula
for isometry, which is why the following is not as straightforward as one might
expect.

The primary formula for this material is w2 − w1 in terms of z2 − z1:

w2 − w1 =
az2 + b

cz2 + d
− az1 + b

cz1 + d

=
acz1z2 + adz2 + bcz + bd − acz1z2 − bcz2 − adz1 − bd

(cz1 + d)(cz2 + d)

=
(ad − bc)(z2 − z1)

(cz1 + d)(cz2 + d)

=
∆(z2 − z1)

(cz1 + d)(cz2 + d)

where, as usual, ∆ = ad − bc. Just for amusement I note

dw

dz
= lim

z2→z

w2 − w

z2 − z
=

∆

(cz + d)2

so

dw =
∆ dz

(cz + d)2

Because a, b, c, d ∈ R we have w = Tz. Hence our formula gives

w − w =
∆(z − z)

(cz + d)(cz + d)

Dividing the previous two formulas

dw

w − w
=

dz

z − z

cz + d

cz + d
,

a formula I like although I have found no direct use for it. Conjugating we have

dw

w − w
=

dz

z − z

cz + d

cz + d

Multiplying the last two formulas together and then multiplying both sides by
−4/a2 gives

−4 dw dw

a2(w − w)2
=

−4 dz dz

a2(z − z)2
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which proves

Theorem The Möbius transformation T with a, b, c, d ∈ R and ad− bc > 0 is a
proper motion of the Upper Half Plane.

Proof: Bijectivity follows from T being a Möbius transformation, proper comes
from the orientation preserving property of any holomorphic funtion, and isom-
etry was just proved above.

Next we will prove a formula which will later be critical for the second
distance formula. Observe the last formula may be rewritten as

|dw|2
a2(ℑw)2

=
|dz|2

a2(ℑz)2

Since dz mystically suggests z2−z1 (a difference) we conjecture that the quantity

|z2 − z1|2
a2(ℑz1)(ℑz2)

might prove interesting. Recall we started with

w2 − w1 =
∆(z2 − z1)

(cz1 + d)(cz2 + d)

so

w2 − w1 =
∆(z2 − z1)

(cz1 + d)(cz2 + d)

and recall

2iℑw1 = w1 − w1 =
∆(z1 − z1)

(cz1 + d)(cz1 + d)
=

∆2i(ℑz1)

(cz1 + d)(cz1 + d)

and

2iℑw2 = w2 − w2 =
∆(z2 − z2)

(cz2 + d)(cz2 + d)
=

∆2i(ℑz2)

(cz2 + d)(cz2 + d)

Of the last four formulas, cancel the 2i’s in the last two and then divide the
product of the first two formulas by the product of the last two formulas; the
∆’s and the denominators will cancel out and we will be left with

(w2 − w1)(w2 − w1)

(ℑw1)(ℑw2)
=

(z2 − z1)(z2 − z1)

(ℑz1)(ℑz2)

It is important for proper appreciation of this result to notice that the cancelled
out denominator (cz1+d)(cz1+d)(cz2+d)(cz2+d) is formed in different ways in
the product of the first two equations and the product of the last two equations,
but comes out the same in the end. It is this circumstance that makes it all
work. This circumstance occurs from time to time in mathematics and is often
important.
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The importance of the last equation is that the expression

|z2 − z1|2
(ℑz1)(ℑz2)

is invariant under Möbius transformations, like ds2. However, one must realize
that it is not the finite analog of ds2, which is a little more complicated. We
will return to this matter later.

We now turn out attention to the derivation of the first distance formula
in UHP. Given points z1 and z2 we put a Lobachevski straight line l (which is
uniquely determined by the two points) through them and and we determine z0

and z∞ as the points where this straight line hits ∂(UHP)= R∪ {∞} chosen in
such a way so that if one travels along the straight line from z0 toward z∞ one
first encounters z1 and then z2. That is, one encounters the points in the order
z0, z1, z2, z∞ on the half-lircle. We now form a Möbius transformation T by
requiring that

Tz0 = 0, T z1 = i, T z∞ = ∞
In fact, the Möbius transformation T is given (typically) by

Tz = i
z − z0

z − z∞

z1 − z∞
z1 − z0

(If l is a vertical Euclidean line one makes the obvious modifications.)
Since the positive y-axis is a geodesic (as we have previously proved) and

since T−1 takes the y-axis to l and since T−1 is a motion (isometery) it follows
that l is also a geodesic and that d(z1, z2) = distance along l from z1 to z2. But
since T is a motion we have

d(z1, z2) = d(Tz1, T z2) = d(i, iy)

=
1

a
ln

iy

i
=

1

a
ln

(1

i
iy

)

=
1

a
ln

(1

i
T z2

)

=
1

a
ln

z2 − z0

z2 − z∞

z1 − z∞
z1 − z0

=
1

a
lnD(z2, z1, z0, z∞)

where D(z2, z1, z0, z∞) is the cross ratio. Note the unintuitive order of the zi’s.
Thus we have derived the first distance formula fairly easily. Note that if we
reverse the roles of z1 and z2 we will also reverse the roles of z0 and z∞ and so

d(z2, z1) =
1

a
D(z1, z2, z∞, z0)

=
1

a
D(z2, z1, z0, z∞) = d(z1, z2)
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using properties of the cross ratio (which can also be verified directly). Now let
z0, z1, z2, z3, z∞ go along the Lobacevski straight line in the order given. Then

D(z2, z1, z0, z∞)D(z3, z2, z0, z∞) =
z2 − z0

z2 − z∞

z1 − z∞
z1 − z0

z3 − z0

z3 − z∞

z2 − z∞
z2 − z0

=
z3 − z0

z3 − z∞

z1 − z∞
z1 − z0

= D(z3, z1, z0, z∞)

so that, taking logs we have

d(z1, z2) + d(z2, z3) = d(z1, z3)

Example Now for fun let’s do an example. Let z1 = −4 + 3i and z2 = 4 + 3i.
The straight line l is thus the Euclidean semicircle of radius 5 and center at the
origin. Hence z0 = −5 and z∞ = 5. Then using our formulas

d(z1, z2) =
1

a
ln

(4 + 3i + 5

4 + 3i − 5

−4 + 3i − 5

−4 + 3i + 5

)

=
1

a
ln

( 9 + 3i

−1 + 3i

−9 + 3i

1 + 3i

)

=
1

a
ln

(−90

−10

)

≈ 2.19722
1

a

For contrast, let us calculate the distance along the (horizontal) horocyle on
which z1 and z2 lie. Here dy = 0. If h is the segment of the horocyle we have

∫

h

ds =

∫ 4+3i

−4+3i

dx

ay
=

1

3a

∫ 4+3i

−4+3i

dx

=
1

3a

(

4 + 3i − (−4 + 3i)
)

=
1

a

8

3
≈ 2.666

1

a

Hence, as expected, it is shorter along the Lobachevski straight line (which is
a geodesic) than along the horocycle (which is a curve in Lobachevski space).
Note the ratio of the two lengths is independent of a, whose role is to set an
absolute scale of length.

From the formula

d(z1, z2) =
1

a
ln

z2 − z0

z2 − z∞

z1 − z∞
z1 − z0

we see that as z1 approaches z0 (other points being fixed) along the Lobachevski
straight line we have d(z1, z2) → ∞. The points on R ∪ {∞} are infinitly far
away from all points in the UHP.

For various purposes we would like to derive a formula for the distance from
a point z to the positive y-axis. Let the line Oz make an angle θ with the positive
y-axis and draw a Euclidean circle with center 0 and radius |z|. The Euclidean
circle is perpendicular to the positive y-axis and is a Lobachevski straight line.
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This might be described as “dropping a perpendicular to the positive y-axis”.
Hence the distance sought is d(i|z|, z) and we have

d(i|z|, z) =
1

a
lnD(z, i|z|,−|z|, |z|)

=
1

a
ln

(z + |z|
z − |z|

i|z| − |z|
i|z|+ |z|

)

= ln
(z + |z|

z − |z|
i − 1

i + 1

)

=
1

a
ln

(z + |z|
z − |z| i

1 + i

i + 1

)

=
1

a
ln

(

i
z + |z|
z − |z|

)

This is an interesting formula but we can do a little better and get some more
interesting things. Set for convenience d = d(i|z|, z) and r = |z| and z = x + iy.
Then

d =
1

a
ln

(

i
z + r

z − r

)

=
1

a
ln

(

i
z + r

z − r

z − r

z − r

)

=
1

a
ln

(

i
zz − r(z − z) − r2

zz − r(z + z) + r2

)

=
1

a
ln

(

i
−2iyr

2r2 − 2rx

)

=
1

a
ln

y

r − x

=
1

a
ln

y(r + x)

r2 − x2
=

1

a
ln

r + x

y

Since the quotients are invariant under homothety we already know that d is a
function of θ alone. To find this function we resort to hyperbolic functions. We
have

ead =
y

r − x
=

r + x

y

e−ad =
r − x

y
=

y

r + x

sinh ad =
1

2
(ead − e−ad) =

1

2

(r + x

y
− r − x

y

)

=
x

y
= tan θ

coshad =
1

2
(ead + e−ad) =

1

2

(r + x

y
+

r − x

y

)

=
r

y
= sec θ

tanh ad =
sinh ad

coshad
=

tan θ

sec θ
= sin θ

Hence

d =
1

a
argsinh tan θ =

1

a
argcosh sec θ =

1

a
argtanh sin θ

We can now once again discuss equidistants. First we note that for any
z1 and z2 we have found a Möbius transformation T which transforms the
Lobachevski straight line l through z1 and z2 into the y-axis. An equidistant
to the y-axis is a Euclidean line eθ inclined at an angle θ from the y-axis.

28



The y-axis and eθ intersect at the origin and ∞. T−1 will take the y-axis to
(typically) a Euclidean semicircle perpendicular to the x-axis with T−1(0) = z0

and T−1(∞) = z∞. Then T−1[eθ] will be an arc of a Euclidean circle in the
UHP from z0 to z∞ and inclined at an angle θ to l at z0. Let l1 be a Lobachevski
straight line orthogonal to l meeting l and T−1[eθ] at P and Q. By conformality
T [l1] is orthogonal to T [l] = y-axis and thus T [l1] is (typically) a Euclidean
semicircle with center at the origin. But then T [l1] is also orthogonal to eθ

which means that l1 is orthogonal to the equidistant T [eθ] at Q. We then have

d(P, Q) = d(T (P ), T (Q)) =
1

a
argsinh tan θ

which is independent of the choice of the straight line l1 perpendicular to l, which
shows T−1[eθ] is indeed an equidistant and determines the distance between
T−1[eθ] and l. The reasoning reverses easily; any Euclidean circle through z0

and z∞ is an equidistant to l with distance given by the above formula. This
proves all assertions about equidistants made up to this point

Now for horocycles. Recall that one type of horocycle was represented in
the UHP by a horizontal Euclidean line. The horocyles h1 : ℑz = y1 and
h2 : ℑz = y2 are conguent via the motion

Tz =
y2

y1
z

which carries h1 to h2. Next consider the Euclidean circle h with radius r tan-
gent to the x-axis at x0. Then T1z = z − x0 is a motion carrying h to h0

which is tangent to the x-axis at the origin. Next the motion T2z = −1/z
carries h0 to a lircle which goes through ∞ and i/2r and is perpendicular to
T2[positive y-axis] = [positive y-axis]. Thus T2[h0] must be a horizontal Eu-
clidean line ℑz = 1/2r and thus a horocycle. Thus any Euclidean circle tangent
to the x-axis is taken by a motion to a horizontal horocycle and they are all
congruent. Hence these are all horocycles and all horocycles are congurent. This
justifies everything we have previously said about horocycles except that they
are limiting cases of circles, which we will deal with in the circle section.

Our next project is to derive the second distance formula. This requires
some trickery. Recall that

|z2 − z1|2
(ℑz1)(ℑz2)

is invariant under motions of the UHP, from which we conclude that

|z2 − z1|√
ℑz1

√
ℑz2

is also invariant. Let’s map the straight line through (with the usual notation)
z0, z1, z2, z∞ onto the y-axis with Tz1 = y1i and Tz2 = y2i. (y1 = 1 but we
ignore this for the sake of symmetry.) Thus

d(z1, z2) = d(y1i, y2i) =
1

a
ln

y2

y1
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Setting d(z1, z2) = d we have

ead =
y2

y1
e−ad =

y1

y2

e
ad

2 =

√
y2√
y1

e
−ad

2 =

√
y1√
y2

sinh
ad

2
=

1

2

(

e
ad

2 − e
−ad

2

)

=
1

2

(

√
y2√
y1

−
√

y1√
y2

)

=
1

2

( y2 − y1

(
√

y1
√

y2

)

=
1

2

|y2 − y1|√
y1

√
y2

because by construction we have y2 > y1, so

sinh
ad

2
=

|iy2 − iy1|
2
√

y1
√

y2

=
|Tz2 − Tz1|

2
√
ℑTz1

√
ℑTz2

=
|z2 − z1|

2
√
ℑz1

√
ℑz2

since the expression is invariant under motions. Hence we have the second
distance formula

d(z1, z2) =
2

a
argsinh

|z2 − z1|
2
√
ℑz1

√
ℑz2

In my opinion this formula is the first thing we have encountered that is
not a natural outgrowth of the metric formula and the fact that certain Möbius
transformations are motions of the UHP. If you didn’t know this formula existed
(which I ddin’t) then you would have to be lucky to find it (which I was). In
some circumstances it can simplify things which would be more difficult to
handle with the first distance formula, for example circles.

We could, at this point, develop a lot of circle theory. However, I would
prefer to wait until we have the Unit Disk (UD) model where things will be
somewhat easier to see.
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8. PARALLELS AT LAST

As noted in the introduction, Lobachevski Geometry was created (or discovered)
in the process of studying the theory of parallels. Euclids complicated fifth
postulate is equivalent to the following

P1: Through a point outside a given line there is exactly one line parallel to the
given line.

If ”exactly one line” is replaced by (P0): ”no line” or (P2): ”more than one
line” we obtain the three classical geometries of the two dimensional plane.

l 0 l∞

P

d

M

αα ls

Figure 3: Straight line , point, two parallels and skew line

In the P2 case we will obtain easier descriptions of phenomena if we refine
the notion of parallel. In a P1 geometry (Euclid) Parallel Lines are simply lines
that, no matter how far extended, never meet. However, from the projective
point of view we replace this by saying that two parallel lines meet at a unique
point (which we imagine to be found at infinity on either end of the parallel line
pair). In P2 geometry parallel lines share a point at infinity on one side, but
not on the other. In fact we can define

DEF Two lines are parallel if they meet at an infinitly distant point.

From the point of view of developing Lobachevski geometry in the plane and
not within a model this might be problematical, but it is perfectly clear in the
UHP model, since the infinitly distant points are the points in R ∪ {∞}. Thus
in the UHP model there are three cases of parallel lines

1. both lines are vertical

2. l1 is vertical, l2 is a semicircle perpendicular to the x-axis, and l1 meets l2 at
either z0 or z∞.

3. Both l1 and l2 are semicircles perpendicular to the x-axis and they have a
common point on the x-axis
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l1 l2

l3

l4

l5

Figure 4: Parallel lines in the UHP

With this definition we see in the UHP model that through a point P
outside a given line exactly two parallel lines can be drawn. In the diagrams
l0 and l∞ are the parallels and any ls which lies between them and thus never
meets the given line is called a skew line.

In the illustration showing parallel lines in the UHP, l2 is parallel to l1 and
l3, l3 is parallel to l4 and l4 is parallel to l5; no other pairs are parallel. Note in
particular that while l4 is parallel both to l3 and l5, l3 and l5 are not parallel to
each other.

The next illustration shows, in the UHP model, three cases of a point P
outside a line l, a perpendicular dropped from P to l hitting l at M , and the
parallel lines l0 and l∞ through P intersecting l at ∞. The angle of parallelism

α is also shown in each case.
Since Euclid’s Axioms 1-4 and our axiom P2 are true in the UHP model, we

see that Axioms 1-4 and P2 together must be consistent. Since Euclid’s Axiom
5 (and all its equivalents) are false in the UHP model, we see that Axiom 5
is actually independent of Axioms 1-4 and cannot be proved from them. Thus
the UHP model settles this question completely. Lobachevski’s own work did
not quite settle the consistency question, since philosophers and others could
argue that the contradiction might not yet have been found. Since the UHP
model is a model inside Euclidean Geometry, a contradiction in the UHP model
would force a contradiction in Euclidean Geometry. Not even a philosopher
would be willing to pay that price to have Lobachevski’s geometry inconsistent.
Lobachevski himself did not live quite long enough to see the consistency proof.
It is worth noting that the method of relative modeling for consistency and
independence results starts with this material.

Now that the Philosophical Question is settled, let’s ask a very interesting
mathematical question. Returning to Lobachevski’s picture, we can ask what
the angle α is between PM and l∞ that makes l∞ a parallel to l. This is called
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αα

M

P

l

l0l∞
P

M

α α

l

l

l0

∞

P

M
l

l l0 ∞

α
α

Figure 5: Lines parallel to l through P in the UHP

the angle of parallelism. Although it is not quite clear, one suspects that the
angle of parallelism depends on the distance d from P to M ; for small d, α will
be close to π/2 and for large d it might decrease toward 0. Lobachevski and
Janos Bolyai both discovered the formula for α, which is not so trivial, although
it is not difficult if Lobachevski Trigonometry is available. I was surprised to find
that the formula is an easy consequence of material from the previous section.

Next let’s look at the picture in the UHP model that corresponds to the
picture in the Lobachevski plane.

Origin
O

A point, a line, two parallels and a dropped perpendicular

∞ ∞

∞ ∞

M
P

l l

l

l

0

∞

θ

s

d

α

α

Figure 6: Straight line, point, two parallels and a skew line in UHP

Lines inclined less than α from line PM intersect l; lines inclined more than α

33



from PM are skew to l. Now let us use a motion to take z0 → 0, z∞ → ∞ and
M → i.

Next we note that we are back, as in the last section, to the situation of
dropping a perpendicular from P at z = x + iy to the y-axis. We recall the
equations for that situation:

sin θ = tanhad

sec θ = coshad

and these will immediately solve our problem, because as the picture shows
α + θ = π/2 so α = π/2 − θ.

Thus

sinα = sin
(π

2
− θ

)

= cos θ =
1

coshad

and
cosα = cos

(π

2
− θ

)

= sin θ = tanh ad

These equations show that

as d → 0 coshad → 1

sin α → 1

α → π

2

and

as d → ∞ coshad → ∞
sin α → 0

α → 0

which is the behavior we predicted. Lobachevski and Bolyai’s formula is a
variant of those above; recall from trig

tan
α

2
=

sin α
2

cos α
2

=

√

1 − cosα

1 + cosα
=

1 − cosα

sin α

=
1 − tanh ad

1
cosh ad

= coshad(1 − tanh ad)

= coshad − sinh ad =
1

2
[ead + e−ad − (ead − e−ad)]

= e−ad

This is the famous Lobachevski-Bolyai formula for the angle of parallelism.
We are next interested in finding a sort of interpretation of 1/a where a is

the parameter originally introduced in the ds2 metric formula and where −a2

turned out to be the Gaussian Curvature. If we take the last formula and rewrite
it we have

d = −1

a
ln tan

α

2
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and this will allow us to interpret 1/a. Toward this purpose define α0 as

α0 = arctan
1

sinh 1
≈ .705027 radians ≈ 40.395◦

Now let’s compute the d which will have α0 for its angle of parallelism. By the
previous formula

tan α0 =
1

sinh 1

secα0 =

√

1 +
1

sinh2 1
=

cosh 1

sinh 1

cosα0 =
sinh 1

cosh 1

sin α0 =
1

cosh 1

tan
α0

2
=

1 − cosα0

sin α0
=

1 − sinh 1
cosh 1
1

cosh 1

= cosh 1 − sinh 1 = e−1

d = −1

a
ln tan

α0

2
= −1

a
(−1) =

1

a

To reiterate, set the line l∞ at an inclination of α0 at P and increase the distance
of P from l until l∞ is parallel to l (that is, the intersection of l∞ and l recedes
to ∞). Then the distance from P to l will be 1/a, which can be considered a
charactreristic distance for the Lobachevski plane with parameter a. In terms
of the Gaussian Curvature, the characteristic distance is 1/

√
−K.

We note that a has the dimension of inverse length and so the Gaussian
Curvature K = −a2 has the dimension of inverse length squared, which is
obvious from other formulas for K
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