Let $X = \{(x, y, z) \in \mathbb{R}^3 | x^3 + xyz + y^2 = 1\}$

- (a) Show that X is a 2-manifold
- (b) Consider the map $\pi: X \to R^2$ taking (x,y,z) to (x,y) , Find all points of X at which π fails to be a local diffeomorphism

Consider the function $f: \mathbb{R}^3 \to \mathbb{R} \to f(x, y, z) = x^3 + xyz + y^2 - 1$ The set X is the level set : $X = f^{-1}(0)$ f is smooth $\nabla f = (3x^2 + yz, xz + 2y, xy)$

Implicit function theorem states that if f is smooth and $\nabla f \neq 0$ for all $(x,y,z) \in X$, then X is locally diffeomorphic to \mathbb{R}^2 , this would mean X is a 2-dimensional manifold \circ 仔細討論 X 上任一點皆不使得 $\nabla f = 0$

Then by implicit function theorem $X = \{(x, y, z) \in \mathbb{R}^3 | f(x, y, z) = 0\}$ is a 2-

dimensional manifold in $R^3 \circ$

X is a **2-manifold** because it is the level set of a smooth function $F : \mathbb{R}^3 \to \mathbb{R}$ whose gradient never vanishes on that level set.

Implicit function theorem

DeepSeek 說:

The **Implicit Function Theorem** is a fundamental result in multivariable calculus that provides conditions under which a system of equations can be solved for certain variables in terms of others , even when an explicit solution is not feasible .

Given an equation $F(\mathbf{x}, \mathbf{y}) = 0$, where $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{y} \in \mathbb{R}^m$, the theorem determines when \mathbf{y} can be expressed as a smooth function $\mathbf{y} = f(\mathbf{x})$ locally near a point (\mathbf{a}, \mathbf{b}) , even if f cannot be written explicitly.

Conditions

- 1. Smoothness: F is continuously differentiable (C^1).
- 2. Point Condition: $F(\mathbf{a}, \mathbf{b}) = 0$.
- 3. Non-Degenerate Jacobian: The Jacobian matrix of F with respect to \mathbf{y} , evaluated at (\mathbf{a}, \mathbf{b}) , is invertible. For a single equation F(x, y) = 0, this reduces to $\frac{\partial F}{\partial y} \neq 0$.

Conclusion

- Existence: There exist neighborhoods $U \ni \mathbf{a}$ and $V \ni \mathbf{b}$, and a unique C^1 function $f: U \to V$ such that $F(\mathbf{x}, f(\mathbf{x})) = 0$ for all $\mathbf{x} \in U$.
- **Derivative Formula**: The derivative of f is computable using:

$$Df(\mathbf{x}) = -\left(D_{\mathbf{y}}F(\mathbf{x},f(\mathbf{x}))
ight)^{-1}D_{\mathbf{x}}F(\mathbf{x},f(\mathbf{x}))$$

For a single equation F(x, y) = 0, this simplifies to:

$$rac{dy}{dx} = -rac{\partial F/\partial x}{\partial F/\partial y}$$

Examples

1. Circle Equation: $x^2+y^2=1$. At (0,1), $rac{\partial F}{\partial y}=2
eq 0$, so $y=\sqrt{1-x^2}$ locally.

2. Sphere Equation:
$$x^2 + y^2 + z^2 = 1$$
. At $(0,0,1)$, $rac{\partial F}{\partial z} = 2
eq 0$, so $z = \sqrt{1-x^2-y^2}$.

Remarks :

- Local Nature: The solution is guaranteed only near the point where the Jacobian is invertible.
- Sufficient, Not Necessary: The Jacobian condition is sufficient but not necessary; solutions may exist even if it fails.
- Relation to Inverse Function Theorem: A special case where $F(\mathbf{x},\mathbf{y})=f(\mathbf{y})-\mathbf{x}$.

Summary :

The Implicit Function Theorem ensures the local existence , uniqueness , and differentiability of implicitly defined functions under non-degenerate Jacobian conditions , enabling analysis of complex systems without explicit solutions °