- (1) Riemann tensor $R(X,Y)Z = \nabla_X \nabla_Y Z \nabla_Y \nabla_X Z \nabla_{[X,Y]} Z$
- (2) J(t) is a vector field J(t) along γ , satisfies $\frac{D^2 J}{dt^2} + R(J, T)T = 0$ for all $t \in [0, l] \circ$ Then J(t) is called a Jacobi field \circ
- (3) A Killing vector field
 - (a) $L_X g = 0$ ($L_X g_{\mu\nu} = \nabla_{\mu} X_{\nu} + \nabla_{\nu} X_{\mu} = 0$ in local coordinates)
 - (b) div(K)=0
 - (c) In terms of the Levi-Civita connection, that is $g(\nabla_Y X, Z) + g(Y, \nabla_Z X) = 0$ for

all vectors Y and Z \circ Or $\nabla_{\mu}K^{\nu} = -\nabla_{\nu}K^{\mu}$ in local coordinates \circ

1. On a Remannian manifold (M, g) , a vector field U is called a Killing vector field if it is infinitesimally an isometry , namely $\frac{d}{dt}\Big|_{t=0} \varphi_t^* g = 0$

Where φ_t is the one-paremeter family of diffeomorphism generate by U

- (a) For a Killing vector field U , show that $g(\nabla_X U, Y) + g(\nabla_Y U, X) = 0$ for any two vector fields X , Y
- (b) Suppose that U is a Killing vector field , and γ is a geodesic \circ

Prove that $U|_{\gamma}$ is a Jacobi field

Prove

- (a) A vector field U is called a Killing vector field if $L_U g = 0$, in terms of the Levi-Civita connection, this condition is equivalent to $g(\nabla_X U, Y) + g(\nabla_Y U, X) = 0$ for any two vector fields X,Y
- (b) A vector field J along a geodesic γ is a Jacobi field if it satisfies the Jacobi equation : ∇_v∇_vJ+R(V,J)V=0

Where $\mathbf{V} = \gamma$ is the tangent vector to the geodesic \circ

R(X,Y)Z is the Riemann curvature tensors \circ Since U is a Killing vector field , it satisfies the Killing equation : $g(\nabla_x U, Y) + g(\nabla_y U, X) = 0$, applying to X=V and Y=U, we get $\nabla_v U = -\nabla_U V$ Since γ is a geodesic, $\nabla_v V = 0$ Taking the covariant derivative along V, $\nabla_v \nabla_v U = -\nabla_v \nabla_U V$ $R(X,Y)Z = \nabla_x \nabla_y Z - \nabla_y \nabla_x Z$, we substitute X=V,Y=U and Z=V to get : $R(V,U)V = \nabla_v \nabla_U V - \nabla_U \nabla_v V = \nabla_v \nabla_U V$ since $\nabla_v V = 0$ And then $\nabla_V \nabla_V U = -R(V,U)V$ i.e. $\nabla_V \nabla_V U + R(V,U)V = 0$ This is just the Jacobi equation , meaning that U

restricted to γ , denoted $U|_{\gamma}$ is a Jacobi field \circ

重寫一遍

Since U is a Killing field , $\nabla_v U = -\nabla_v V$, 兩邊取 $\nabla_v \exists \nabla_v \nabla_v U = -\nabla_v \nabla_v V$ $R(V,U)V = \nabla_v \nabla_v V - \nabla_v \nabla_v V = \nabla_v \nabla_v V$ (因為 γ is a geodesic , $\nabla_v V = 0$) $R(V,U)V = \nabla_v \nabla_v V = -\nabla_v \nabla_v U$ $\nabla_v \nabla_v U + R(V,U)V = 0$ 此即為 Jacobi equation , U 是一 Jacobi field , 換句話說 $U|_{\gamma}$ 是一 Jacobi field 。

Killing vector field 與 Jacobi field 的關係比較清楚一些了。