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In Riemannian geometry ° the comparison results in terms of sectional curvature of
Rauch > Toponogov * Morse-Schoenberg and others are basic tools used to prove
resucherlts such as sphere theorem > the Bonnet-Myers theorem > and the maximal
diameter theorem of Toponogov

1. Harry E. Rauch 1925-1979 A Contribution to Diffreential Geometry in the Large
Lectures on the Ricci flow Peter Topping [Using Rauch comparison theorem to
get an estimation of two metric]

2. Victor Andreevich Toponogov 1903-2004 [Toponogov's theorem and

Applications]
[International conference on Geometry in the Large] [A relative Toponogov

comparison theorem]

More recently ° comparison theorems in terms of the Ricci curvature such as Bishop-
Gromov volume comparison theorem have played an important role leading to such results
as the Chern maximal diameter theorem °
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> (Sectional curvature)
K(7) =<R(e,e,)e,,e, > where {e,e,}is an orthonormal basis of 7=

<R(X,Y)Y, X >

Prove K(7)= |X|2 |Y|2—< Xy o

One important class of results in Riemannian geometry are the “gap
type” rigidity theorems. Let us mention a few examples of model gap results.
We do not try to state these results under the weakest hypotheses. Let (M, g)
be a complete connected Riemannian manifold, isometric to Euclidean R™
in the complement of a compact set with n > 3.

e Scalar curvature: Assume that (M, g) is spin and has non-negative
scalar curvature. Then (M,g) is isometric to Euclidean R™. This
follows from the Witten argument for the positive mass theorem.

¢ Ricci curvature: Assume that (M, g) has non-negative Ricci curva-
ture. Then the conclusion follows from the Bishop—Gromov volume
comparison theorem.

e Sectional curvature: If (M,g) has either non-negative or non-
positive sectional curvature, then theorems of Greene and Wu [16]
(for non-negative sectional curvature) and Kasue and Sugahara [24]
(for non-positive sectional curvature) imply (M, g) is isometric to R™.
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The Hadamard-Cartan Theorem 1. Let M be complete.
(1) Let ~ : [0, 3] — M be a unit speed geodesic in M such that

I <0 for all sectional curvatures along -~y .

[0,5]
Then ~ contains no point conjugate to v(0) along ~.
0,8

(2) Therefore, if M is complete and all sectional curvatures are nonpositive, then M
has no conjugate points.

The Hadamard-Cartan Theorem 2. If M is complete, and all of its sectional
curvatures are nonpositive, then for any p € M, exp, : T,M — M is of maximal
rank.

Theorem 3. Suppose M and M are connected Riemannian manifolds, with M
complete, and w : M — M is a local isometry. Then M is complete and 7 is a
covering map.

The Hadamard-Cartan Theorem 4. If M is complete, and all of its sectional
curvatures are nonpositive, then for any p € M, exp, : T,M — M is a covering.

Theorem 5 (The Cartan-Hadamard Theorem). If M is a complete, con-
nected manifold all of whose sectional curvatures are nonpositive, then for any
point p € M, exp,, : T,M — M is a covering map. In particular, the universal
covering space of M is diffeomorphic to R™.

e If M is simply connected, then M itself is diffeomorphic to R"™.

e Because of this theorem, a complete, simply-connected Riemannian manifold
with nonpositive sectional curvature is called a Cartan-Hadamard manifold.

e An immediate consequence of the Cartan-Hadamard theorem is that there are
stringent topological restrictions on which manifolds can carry metrics of non-
positive sectional curvature.

Example. (1) If M is a product of compact manifolds M; x Ms where either M,
or My is simply connected (such as, for example, S' x S2), then any metric on M
must have positive sectional curvature somewhere.
(2) Any manifold whose universal cover is contractible is aspherical, which means
that the higher homotopy groups (M) vanish for £ > 1, so many manifolds
cannot admit metrics of nonpositive curvature.



Proof. The assumption of nonpositive curvature guarantees that p has no conjugate

points along any geodesic.

— Therefore, exp,, is a local diffeomorphism on all of T}, M.

— Let g be the (variable-coeffient) 2-tensor field exp;, g defined on T, M.

— Because expj, is everywhere nonsingular, g is a Riemannian metric, and exp,, :
(T,M,g) — (M, g) is a local isometry.

— It then follows from Theorem 3 that exp, is a covering map.

— The remaining statement of the theorem follow immediately from uniqueness of
the universal covering space. [
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Bonnet’s Theorem 1. Let M be a complete, connected Riemannian manifold
all of whose sectional curvatures are bounded below by a positive constant 1/R?.
Then M is compact with diameter less than or equal to TR.

Meyer Theorem 1. Suppose M is a complete, connected Riemannian n-manifold
whose Ricci tensor satisfies the following inequality for all V € T'M :

n—1

R?

Ric(V,V) = V1%

Then M is compact and with diameter less than or equal to wIR.

e One of the most important applications of Meyer’s theorem is to Einstein met-
rics.
— If g is a complete Einstein metric with positive scalar curvature, then Ric= 3—159
satisfies the hypotheses of the theorem.
— It follows that complete, noncompact Einstein manifolds must have nonpositive
scalar curvature.

e On the other hand, it is possible for complete, noncompact manifolds to have
strictly positive Ricci or even sectional curvature, as long as it gets arbitrarily
close to zero.

Proposition 1. If : M — M is a Riemannian covering, then M is complete iff
M is complete.



Theorem 2 (Myers (1941)). If M satisfies the hypothesis of the Bonnet-Myers
Theorem; i.e. M is complete and the Ricci curvature of M is bounded from below
by a positive constant, then not only M is compact, but also that any cover of M,

M is compact.

Proof. Let 7 : M — M denote a covering space of M, with the metric § = 7*g.
M is complete by Proposition 1,

and g and g have sectional curvature bounded below by the same constant,

so M is compact by the argument above. [

Bonnet’s Theorem 2. Let M be a complete, connected Riemannian manifold
all of whose sectional curvatures are bounded below by a positive constant 1/ R
Then M is compact, with a finite fundamental group, and with diameter less than
or equal to wh.

Proof. Claim: m;(M) is finite.

— Let 7 : M — M denote the universal covering space of M, with the metric
g=m"g.

— M is complete by Proposition 1, and § also has sectional curvature bounded
below by 1/ R?, so M is compact by the argument above.

— There is one-to-one correspondence between 71 (M) and the inverse image 7~ (p)
of any point p € M.

— If m; (M) were infinite, therefore, 7! (p) would be an infinite discrete set in M,

contradicting the compactness of M. O

Meyer Theorem. Suppose M is a complete, connected Riemannian n-manifold
whose Ricci tensor satisfies the following inequality for all V € T M:

n

—-1_
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ic(V,V) >
Rie(V,V) > —

Then M is compact with diameter less than or equal to mR and with a finite
fundamental group,.

Morse-Schonberg comparison theorem

Rauch comparision theorem
Let (M, g) and (ﬂ , @) be Riemannian manifolds of dimension m. Let

v:[0,a] = M and #5:[0,a] — M

be normal geodesics with

7(0) = p.5(0) = p.

For each t € [0,a], we denote
K7(t) = min{ K (L)) | 7(t) € 0},
K*(t) = max{K (ILs)) | 7(t) € W5}



Theorem 1.1 (Rauch comparison theorem). Let X, X be Jacobi fields along .~
respectively, such that

DX (0)=0,X(0) =0, @IVs0X|=VsXl, ®H0), Vi X) = ((0), V30 X).
Assume further that
@~ has no conjugate points on [0.a), @K*(t) < K~(t) holds for all t € [0, a).
Then % has no conjugate points on [0,al], and for all t € [0, al,
X(0)] < 1K)

Theorem 1.3 (Rauch comparison theorem, Second form}_. Suppose ® and @ holds.
Denote p = ~(0) and p = 4(0), and suppose X,, € T,M, X; € T;M satisfies

(X5, 7(0)) = (X5, 7(0),  |X] = |X;l.
Then |(d expy)es(0)Xp| < [(dexpy) 50Xl

— LLJE F e

DEFINITION 1.30. We define a function sny as follows:

) r it B=0;
RIS VIEsinh(\/Er) if k>0.

The function sng(r) is the solution to the equation

(p” o k(p — ()’
¢(0) =0,
¢'(0) = 1.

We define ct(r) = sn}(r)/Vksng(r).

THEOREM 1.31. (Sectional Curvature Comparison) Fiz k > 0. Let
(M,g) be a Riemannian manifold with the property that —k < K(P) for
every 2-plane P in TM. Fir a minimizing geodesic y: [0,70) — M param-
eterized at unit speed with v(0) = p. Impose Gaussian polar coordinates
(r,0%,....0"1) on a neighborhood of v so that g = dr? + g;;6" ® 67. Then
for all 0 < r < ry we have

(gij(r,0))1<ij<n—1 < snp(r),

and the shape operator associated to the distance function from p, f, satisfies

(Sij(r,0))1<ij<n—1 < VEety(r).



There is also an analogous result for a positive upper bound to the
sectional curvature, but in fact all we shall need is the local diffeomorphism
property of the exponential mapping.

LEMMA 1.32. Fiz K > 0. If [Rm(z)| < K for all z € B(p,7/VK), then
exp,, s a local diffeomorphism from the ball B(0,7 /v K) in T, M to the ball

B(p,7/VK) in M.

There is a crucial comparison result for volume which involves the Ricci
curvature.

THEOREM 1.33. (Ricci curvature comparison) Fiz k > 0. Assume
that (M, g) satisfies Ric > —(n — 1)k. Let v: [0,79) — M be a minimal
geodesic of unit speed. Then for any r < rqg at y(r) we have

Vdetg(r,0) < snz_l(r)

s11;,(7)
s (1)’

and

Tr(S)(r,0) < (n—1)

THEOREM 1.34. (Relative Volume Comparison, Bishop-Gromov 1964-
1980) Suppose (M, g) is a Riemannian manifold. Fir a point p € M, and
suppose that B(p, R) has compact closure in M. Suppose that for some k > 0
we have Ric > —(n—1)k on B(p, R). Recall that H}} is the simply connected,
complete manifold of constant curvature —k and q; € H]! is a point. Then

Vol B(p, )
Vol By B(qy, )
is a non-increasing function of r for r < R, whose limit as r — 0 is 1.

In particular, if the Ricci curvature of (M,g) is > 0 on B(p,R), then
Vol B(p,r)/r™ is a non-increasing function of v for r < R.




