§ Parallel transport

Parallel transport of the tangent vector V(1,1,-1) along the curve $\gamma(t) = (t, t, \frac{\pi}{4})$ from t=1

to t=0 on the helicoid $\frac{y}{x} = \tan z$:

To compute the parallel transport , we solve the parallel transport equation :

$$\frac{DV^{i}}{dt} = \frac{dV^{i}}{dt} + \Gamma^{i}_{jk}V^{j}\frac{dx^{k}}{dt} = 0$$

The given curve is $\gamma(t) = (t, t, \frac{\pi}{4})$, which is a straight-line path in the surface coordinates °

The velocity vector along this path is $\gamma(t) = (1,1,0)$

Since the given surface is the helicoid and the curve moves along a straight line in the (x,y)-plane while keeping z constant , the helicoid's connection coefficients suggest that the parallel transport will preserve the structure of the vector in the (x,y)-plane \circ

Because γ (t) does not change z along the path , and the helicoid's Levi-Civita connection preserves components in a simple translation along this path , the vector V remains unchanged under parallel transport \circ

Thus, the parallel-transported vector at t=0 remains $.V(t=0)=(1,1,-1) \circ$

Let $ds^2 = \frac{1}{y^2}(dx^2 + dy^2)$ be the Poincare metric on the upper half plane $H = \{(x, y) | y > 0\}$, and $\gamma = \{x^2 + y^2 = 2 | -1 \le x \le 1\}$ be an arc from p(-1,1) to q(1,1) \circ

Let $\vec{u} = (1,0)$ be a vector at p and \vec{v} be the parallel translation of \vec{u} from p to q along

$$\gamma \circ \overline{v} = ?$$

We are given a semicirclar geodesic γ

The initial tangent vector at p is $\vec{u} = (1,0)$, which is a vector in the tangent space at p \circ

Parallel transport in hyperbolic space preserves the inner product given by the metric \circ For a geodesic that is a semicircle centered on the x-axis , parallel transport along it corresponds to a **rotation** by the angle subtended by the arc \circ

- 1. The semicircle $x^2 + y^2 = 2$ is centered at the origin and passes through (-1,1) and (1,1)
- 2. The angle subtended by this semicircle from p to q at the origin is π (since it forms a half-circle) °
- 3. Parallel transport in this case corresponds to a rotation by π around the origin \circ

Thus, if we start with $\vec{u} = (1,0)$ at p(-1,1), the parallel transport of this vector along the

geodesic to q(1,1) will result in : $\vec{v} = (-1,0)$

The inner product in the Poincare metric is $\langle \vec{u}, \vec{v} \rangle = \frac{1}{y^2} (u_1 v_1 + u_2 v_2)$

•••

Answer by DeepSeek

To solve the problem of parallel transporting the vector u = (1, 0) at the point p(-1, 1) along the geodesic $x^2 + y^2 = 2$ to the point q(1, 1) in the Poincaré upper half-plane with the metric $\frac{dx^2 + dy^2}{y^2}$, we can use the angle preservation property of parallel transport along a geodesic.

1. Identify the Geodesic and Tangent Vectors:

- $\circ~$ The given path $x^2+y^2=2$ is a geodesic in the Poincaré upper half-plane.
- The tangent vector at p(-1, 1) is calculated as (1, 1).
- The tangent vector at q(1,1) is calculated as (1,-1).
- 2. Initial Angle Calculation:
 - The initial vector u = (1,0) at p(-1,1) forms an angle of $\frac{\pi}{4}$ with the tangent vector (1,1).
- 3. Angle Preservation:
 - Parallel transport along a geodesic preserves the angle between the vector and the tangent to the geodesic. Therefore, the transported vector v at q(1,1) must form the same angle $\frac{\pi}{4}$ with the tangent vector (1, -1).

4. Determine the Transported Vector:

- The vector v at q(1,1) must have the same magnitude as u (which is 1) and form an angle of $rac{\pi}{4}$ with the tangent vector (1,-1).
- By symmetry and the conformal nature of the Poincaré metric, the transported vector v that maintains the angle $\frac{\pi}{4}$ and points in the direction consistent with the original vector u is found to be (1, 0).