Given the fact that every vector field on S^2 must vanish somewhere(the Hairy Ball theorem), show that S^2 has no Lie group structure \circ - 1. Parallelizability: Lie groups are parallelizable, meaning their tangent bundles are trivial. This is achieved by left-translating a basis of the tangent space at the identity to all points. However, S^2 is not parallelizable due to the Hairy Ball. Theorem, which prevents the existence of a global non-vanishing vector field. Hence, S^2 cannot be a Lie group. - 2. Euler Characteristic: The Euler characteristic $\chi(S^2)=2$ ° For compact Lie groups , the Euler characteristic must be zero (as they admit non-vanishing vector fields , leading to a zero index sum via the Poincaré-Hopf theorem) $\circ~$ The non-zero Euler characteristic of $\,S^2$ directly contradicts this requirement $\circ~$ Conclusion : Since S^2 is neither parallelizable nor has Euler characteristic zero , it cannot admit a Lie group structure \circ 若S²是一個 Lie group,那麼它同時是一個流形與群,並且滿足: - 1. 它的單位元 e 處的切空間 T_eS^2 形成一個李代數 \mathfrak{g} 。 - 2. 透過左平移(left translation),李代數中的每個向量都可以擴展成整個S²上的左不變向量場。 - 3. 關鍵事實:在 Lie 群上,左不變向量場不可能在任何點上消失,因為它們來自李代數中的基底。 矛盾。因此S²不可能成為一個 Lie 群。