Consider (R^2, g) to be the Riemannian manifold, with metric given by

$$g = (e^{-x} + y^2 e^x) dx^2 + xy e^{-\frac{x}{2}} dx dy + 10(x^4 + y^4 + 5) dy^2$$

- (a) Argue that this is a Riemannian metric
- (b) Is this a complete manifold ? Prove or give a reason why it would not be \circ
- 1. Smoothness
 - 1. Smoothness: All components of the metric tensor $g_{11} = e^{-x} + y^2 e^x$, $g_{12} = g_{21} = \frac{1}{2}xye^{-x/2}$, and $g_{22} = 10(x^4 + y^4 + 5)$ are smooth (infinitely differentiable) functions of x and y. Hence, gvaries smoothly over \mathbb{R}^2 .
- 2. Symmetry
 - 2. Symmetry: The metric matrix is symmetric by construction, as $g_{12} = g_{21}$.
- 3. Positive-definiteness
 - 3. Positive-Definiteness: For a 2×2 matrix, this requires $g_{11} > 0$ and $\det(g) = g_{11}g_{22} g_{12}^2 > 0$ everywhere.
 - $g_{11}>0$: $e^{-x}+y^2e^x$ is always positive since $e^{-x}>0$, $y^2e^x\geq 0$, and their sum cannot be zero.
 - $\circ \ g_{22} > 0$: $10(x^4 + y^4 + 5) \geq 50$, which is strictly positive.
 - Determinant: Compute $det(g) = 10(x^4 + y^4 + 5)(e^{-x} + y^2e^x) \frac{1}{4}x^2y^2e^{-x}$. Testing critical points (e.g., x = 0, y = 0, large x/y, negative x) shows det(g) > 0. For instance:
 - At (0,0), det $(g) = 1 \cdot 50 0 = 50$.
 - = For large |x| or |y|, the dominant terms in det(g) grow faster than the subtracted term, ensuring positivity.

The given g is a Riemannian metric because it is smooth , symmetric and positive-definite everywhere on R^2 o

To determine if the Riemannian manifold $(R_{2,g})$ is complete, we use the fact that a manifold is complete if every divergent curve has infinite length. A critical example is the curve $\gamma(t)=(t,0)$ for $t\in[0,\infty)$, which diverges as $t\to\infty$.

Analysis of the curve:

- The metric components along the x-axis (y = 0) reduce to $g_{11} = e^{-x}$, $g_{12} = 0$, and $g_{22} = 10(x^4 + 5)$.
- The length of $\gamma(t)$ is computed as:

$$ext{Length}(\gamma) = \int_0^\infty \sqrt{g_{11} \left(rac{dx}{dt}
ight)^2} \, dt = \int_0^\infty e^{-t/2} \, dt = 2 < \infty.$$

This finite length for a divergent curve implies the manifold is metrically incomplete.