
3. Introducing Riemannian Geometry

We have yet to meet the star of the show. There is one object that we can place on a

manifold whose importance dwarfs all others, at least when it comes to understanding

gravity. This is the metric.

The existence of a metric brings a whole host of new concepts to the table which,

collectively, are called Riemannian geometry. In fact, strictly speaking we will need a

slightly di↵erent kind of metric for our study of gravity, one which, like the Minkowski

metric, has some strange minus signs. This is referred to as Lorentzian Geometry

and a slightly better name for this section would be “Introducing Riemannian and

Lorentzian Geometry”. However, for our immediate purposes the di↵erences are minor.

The novelties of Lorentzian geometry will become more pronounced later in the course

when we explore some of the physical consequences such as horizons.

3.1 The Metric

In Section 1, we informally introduced the metric as a way to measure distances between

points. It does, indeed, provide this service but it is not its initial purpose. Instead,

the metric is an inner product on each vector space Tp(M).

Definition: A metric g is a (0, 2) tensor field that is:

• Symmetric: g(X, Y ) = g(Y,X).

• Non-Degenerate: If, for any p 2 M , g(X, Y )
��
p
= 0 for all Y 2 Tp(M) thenXp = 0.

With a choice of coordinates, we can write the metric as

g = gµ⌫(x) dx
µ ⌦ dx⌫

The object g is often written as a line element ds2 and this expression is abbreviated

as

ds2 = gµ⌫(x) dx
µdx⌫

This is the form that we saw previously in (1.4). The metric components can extracted

by evaluating the metric on a pair of basis elements,

gµ⌫(x) = g

✓
@

@xµ
,

@

@x⌫

◆

The metric gµ⌫ is a symmetric matrix. We can always pick a basis eµ of each Tp(M) so

that this matrix is diagonal. The non-degeneracy condition above ensures that none of
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these diagonal elements vanish. Some are positive, some are negative. Sylvester’s law

of inertia is a theorem in algebra which states that the number of positive and negative

entries is independent of the choice of basis. (This theorem has nothing to do with

inertia. But Sylvester thought that if Newton could have a law of inertia, there should

be no reason he couldn’t.) The number of negative entries is called the signature of the

metric.

3.1.1 Riemannian Manifolds

For most applications of di↵erential geometry, we are interested in manifolds in which

all diagonal entries of the metric are positive. A manifold equipped with such a metric

is called a Riemannian manifold. The simplest example is Euclidean space Rn which,

in Cartesian coordinates, is equipped with the metric

g = dx1 ⌦ dx1 + . . .+ dxn ⌦ dxn

The components of this metric are simply gµ⌫ = �µ⌫ .

A general Riemannian metric gives us a way to measure the length of a vector X at

each point,

|X| =
p

g(X,X)

It also allows us to measure the angle between any two vectors X and Y at each point,

using

g(X, Y ) = |X||Y | cos ✓

The metric also gives us a way to measure the distance between two points p and q

along a curve in M . The curve is parameterised by � : [a, b] ! M , with �(a) = p and

�(b) = q. The distance is then

distance =

Z
b

a

dt
q
g(X,X)

��
�(t)

where X is a vector field that is tangent to the curve. If the curve has coordinates

xµ(t), the tangent vector is Xµ = dxµ/dt, and the distance is

distance =

Z
b

a

dt

r
gµ⌫(x)

dxµ

dt

dx⌫

dt

Importantly, this distance does not depend on the choice of parameterisation of the

curve; this is essentially the same calculation that we did in Section 1.2 when showing

the reparameterisation invariance of the action for a particle.
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3.1.2 Lorentzian Manifolds

For the purposes of general relativity, we will be working with a manifold in which

one of the diagonal entries of the metric is negative. A manifold equipped with such a

metric is called Lorentzian.

The simplest example of a Lorentzian metric isMinkowski space. This isRn equipped

with the metric

⌘ = �dx0 ⌦ dx0 + dx1 ⌦ dx1 + . . .+ dxn�1 ⌦ dxn�1

The components of the Minkowski metric are ⌘µ⌫ = diag(�1,+1, . . . ,+1). As this

example shows, on a Lorentzian manifold we usually take the coordinate index xµ to

run from 0, 1, . . . , n� 1.

At any point p on a general Lorentzian manifold, it is always possible to find an

orthonormal basis {eµ} of Tp(M) such that, locally, the metric looks like the Minkowski

metric

gµ⌫
��
p
= ⌘µ⌫ (3.1)

This fact is closely related to the equivalence principle; we’ll describe the coordinates

that allow us to do this in Section 3.3.2.

In fact, if we find one set of coordinates in which the metric looks like Minkowski

space at p, it is simple to exhibit other coordinates. Consider a di↵erent basis of vector

fields related by

ẽµ = ⇤⌫

µ
e⌫

Then, in this basis the components of the metric are

g̃µ⌫ = ⇤⇢

µ
⇤�

⌫
g⇢�

This leaves the metric in Minkowski form at p if

⌘µ⌫ = ⇤⇢

µ
(p)⇤�

⌫
(p)⌘⇢� (3.2)

This is the defining equation for a Lorentz transformation that we saw previously in

(1.14). We see that viewed locally – which here means at a point p – we recover some

basic features of special relativity. Note, however, that if we choose coordinates so that

the metric takes the form (3.1) at some point p, it will likely di↵er from the Minkowski

metric as we move away from p.
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Figure 21: The lightcone at a point p, with three di↵erent types of tangent vectors.

The fact that, locally, the metric looks like the Minkowski metric means that we can

import some ideas from special relativity. At any point p, a vector Xp 2 Tp(M) is said

to be timelike if g(Xp, Xp) < 0, null if g(Xp, Xp) = 0, and spacelike if g(Xp, Xp) > 0.

At each point on M , we can then draw lightcones, which are the null tangent vectors

at that point. There are both past-directed and future-directed lightcones at each

point, as shown in Figure 21. The novelty is that the directions of these lightcones can

vary smoothly as we move around the manifold. This specifies the causal structure of

spacetime, which determines who can be friends with whom. We’ll see more of this

later in the lectures.

We can again use the metric to determine the length of curves. The nature of a

curve at a point is inherited from the nature of its tangent vector. A curve is called

timelike if its tangent vector is everywhere timelike. In this case, we can again use the

metric to measure the distance along the curve between two points p and q. Given a

parametrisation xµ(t), this distance is,

⌧ =

Z
b

a

dt

r
�gµ⌫

dxµ

dt

dx⌫

dt

This is called the proper time. It is, in fact, something we’ve met before: it is precisely

the action (1.27) for a point particle moving in the spacetime with metric gµ⌫ .

3.1.3 The Joys of a Metric

Whether we’re on a Riemannian or Lorentzian manifold, there are a number of bounties

that the metric brings.
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The Metric as an Isomophism

First, the metric gives us a natural isomorphism between vectors and covectors, g :

Tp(M) ! T ⇤

p
(M) for each p, with the one-form constructed from the contraction of g

and a vector field X.

In a coordinate basis, we write X = Xµ@µ. This is mapped to a one-form which,

because this is a natural isomorphism, we also call X. This notation is less annoying

than you might think; in components the one-form is written is as X = Xµdxµ. The

components are then related by

Xµ = gµ⌫X
⌫

Physicists usually say that we use the metric to lower the index from Xµ to Xµ. But

in their heart, they mean “the metric provides a natural isomorphism between a vector

space and its dual”.

Because g is non-degenerate, the matrix gµ⌫ is invertible. We denote the inverse as

gµ⌫ , with gµ⌫g⌫⇢ = �µ
⇢
. Here gµ⌫ can be thought of as the components of a symmetric

(2, 0) tensor ĝ = gµ⌫@µ ⌦ @⌫ . More importantly, the inverse metric allows us to raise

the index on a one-form to give us back the original tangent vector,

Xµ = gµ⌫X⌫

In Euclidean space, with Cartesian coordinates, the metric is simply gµ⌫ = �µ⌫ which

is so simple it hides the distinction between vectors and one-forms. This is the reason

we didn’t notice the di↵erence between these spaces when we were five.

The Volume Form

The metric also gives us a natural volume form on the manifold M . On a Riemannian

manifold, this is defined as

v =
p

detgµ⌫ dx
1 ^ . . . ^ dxn

The determinant is usually simply written as
p
g =

p
det gµ⌫ . On a Lorentzian mani-

fold, the determinant is negative and we instead have

v =
p
�g dx0 ^ . . . ^ dxn�1 (3.3)

As defined, the volume form looks coordinate dependent. Importantly, it is not. To

see this, introduce some rival coordinates x̃µ, with

dxµ = Aµ

⌫
dx̃⌫ where Aµ

⌫
=

@xµ

@x̃⌫
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In the new coordinates, the wedgey part of the volume form becomes

dx1 ^ . . . ^ dxn = A1

µ1
. . . An

µn
dx̃µ1 ^ . . . ^ dx̃µn

We can rearrange the one-forms into the order dx̃1 ^ . . . ^ dx̃n. We pay a price of +

or �1 depending on whether {µ1, . . . , µn} is an even or odd permutation of {1, . . . , n}.
Since we’re summing over all indices, this is the same as summing over all permutations

⇡ of {1, . . . , n}, and we have

dx1 ^ . . . ^ dxn =
X

perms ⇡
sign(⇡)A1

⇡(1)
. . . An

⇡(n)
dx̃1 ^ . . . ^ dx̃n

= det(A) dx̃1 ^ . . . ^ dx̃n

where det(A) > 0 if the change of coordinates preserves the orientation. This factor

of det(A) is the usual Jacobian factor that one finds when changing the measure in an

integral.

Meanwhile, the metric components transform as

gµ⌫ =
@x̃⇢

@xµ

@x̃�

@x⌫
g̃⇢� = (A�1)⇢

µ
(A�1)�

⌫
g̃⇢�

and so the determinant becomes

det gµ⌫ = (det A�1)2 det g̃µ⌫ =
det g̃µ⌫
(detA)2

We see that the factors of detA cancel, and we can equally write the volume form as

v =
p
|g̃| dx̃1 ^ . . . ^ dx̃n

The volume form (3.3) may look more familiar if we write it as

v =
1

n!
vµ1...µn

dxµ1 ^ . . . ^ dxµn

Here the components vµ1...µn
are given in terms of the totally anti-symmetric object

✏µ1...µn
with ✏1...n = +1 and other components determined by the sign of the permuta-

tion,

vµ1...µn
=
p
|g| ✏µ1...µn

(3.4)

Note that vµ1...µn
is a tensor, which means that ✏µ1...µn

can’t quite be a tensor: instead,

it is a tensor divided by
p

|g|. It is sometimes said to be a tensor density. The anti-

symmetric tensor density arises in many places in physics. In all cases, it should be

viewed as a volume form on the manifold. (In nearly all cases, this volume form arises

from a metric as here.)
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As with other tensors, we can use the metric to raise the indices and construct the

volume form with all indices up

vµ1...µn = gµ1⌫1 . . . gµn⌫nv⌫1...⌫n = ± 1p
|g|

✏µ1...µn

where we get a + sign for a Riemannian manifold, and a � sign for a Lorentzian

manifold. Here ✏µ1...µn is again a totally anti-symmetric tensor density with ✏1...n = +1.

Note, however, that while we raise the indices on vµ1...µn
using the metric, this statement

doesn’t quite hold for ✏µ1...µn
which takes values 1 or 0 regardless of whether the indices

are all down or all up. This reflects the fact that it is a tensor density, rather than a

genuine tensor.

The existence of a natural volume form means that, given a metric, we can integrate

any function f over the manifold. We will sometimes write this as

Z

M

fv =

Z

M

dnx
p
±gf

The metric
p
±g provides a measure on the manifold that tells us what regions of the

manifold are weighted more strongly than the others in the integral.

The Hodge Dual

On an oriented manifold M , we can use the totally anti-symmetric tensor ✏µ1,...,µn
to

define a map which takes a p-form ! 2 ⇤p(M) to an (n � p)-form, denoted (? !) 2
⇤n�p(M), defined by

(? !)µ1...µn�p
=

1

p!

p
|g| ✏µ1...µn�p⌫1...⌫p!

⌫1...⌫p (3.5)

This map is called the Hodge dual. It is independent of the choice of coordinates.

It’s not hard to check that,

? (? !) = ±(�1)p(n�p)! (3.6)

where the + sign holds for Riemannian manifolds and the � sign for Lorentzian

manifolds. (To prove this, it’s useful to first show that vµ1...µp⇢1...⇢n�pv⌫1...⌫p⇢1...⇢n�p
=

±p!(n� p)!�µ1

[⌫1
. . . �µp

⌫p]
, again with the ± sign for Riemannian/Lorentzian manifolds.)
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It’s worth returning to some high school physics and viewing it through the lens of

our new tools. We are very used to taking two vectors in R3, say a and b, and taking

the cross-product to find a third vector

a⇥ b = c

In fact, we really have objects that live in three di↵erent spaces here, related by the

Euclidean metric �µ⌫ . First we use this metric to relate the vectors to one-forms. The

cross-product is then really a wedge product which gives us back a 2-form. We then

use the metric twice more, once to turn the two-form back into a one-form using the

Hodge dual, and again to turn the one-form into a vector. Of course, none of these

subtleties bothered us when we were 15. But when we start thinking about curved

manifolds, with a non-trivial metric, these distinctions become important.

The Hodge dual allows us to define an inner product on each ⇤p(M). If !, ⌘ 2 ⇤p(M),

we define

h⌘,!i =
Z

M

⌘ ^ ? !

which makes sense because ? ! 2 ⇤n�p(M) and so ⌘ ^ ? ! is a top form that can be

integrated over the manifold.

With such an inner product in place, we can also start to play the kind of games

that are familiar from quantum mechanics and look at operators on ⇤p(M) and their

adjoints. The one operator that we have introduced on the space of forms is the exterior

derivative, defined in Section 2.4.1. Its adjoint is defined by the following result:

Claim: For ! 2 ⇤p(M) and ↵ 2 ⇤p�1(M),

hd↵,!i = h↵, d†!i (3.7)

where the adjoint operator d† : ⇤p(M) ! ⇤p�1(M) is given by

d† = ±(�1)np+n�1 ? d ?

with, again, the ± sign for Riemannian/Lorentzian manifolds respectively.

Proof: This is simply the statement of integration-by-parts for forms. On a closed

manifold M , Stokes’ theorem tells us that

0 =

Z

M

d(↵ ^ ? !) =

Z

M

d↵ ^ ? ! + (�1)p�1↵ ^ d ? !
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The first term is simply hd↵,!i. The second term also takes the form of an inner

product which, up to a sign, is proportional to h↵, ? d ? !i. To determine the sign, note

that d ? ! 2 ⇤n�p+1(M) so, using (3.6), we have ? ? d ? ! = ±(�1)(n�p+1)(p�1)d ? !.

Putting this together gives

hd↵,!i = ±(�1)np+n�1h↵, ? d ? !i

as promised. ⇤

3.1.4 A Sni↵ of Hodge Theory

We can combine d and d† to construct the Laplacian, 4 : ⇤p(M) ! ⇤p(M), defined as

4 = (d+ d†)2 = dd† + d†d

where the second equality follows because d2 = d† 2 = 0. The Laplacian can be defined

on both Riemannian manifolds, where it is positive definite, and Lorentzian manifolds.

Here we restrict our discussion to Riemannian manifolds.

Acting on functions f , we have d†f = 0 (because ? f is a top form so d ? f = 0).

That leaves us with,

4(f) = � ? d ? (@µf dxµ)

= � 1

(n� 1)!
? d

⇣
(@µf)g

µ⌫
p
|g| ✏⌫⇢1...⇢n�1dx

⇢1 ^ . . . ^ dx⇢n�1

⌘

= � 1

(n� 1)!
? @�

⇣p
|g|gµ⌫@µf

⌘
✏⌫⇢1...⇢n�1dx

� ^ dx⇢1 ^ . . . ^ dx⇢n�1

= � ? @⌫
⇣p

|g|gµ⌫@µf
⌘
dx1 ^ . . . ^ dxn

= � 1p
|g|

@⌫
⇣p

|g|gµ⌫@µf
⌘

This form of the Laplacian, acting on functions, appears fairly often in applications of

di↵erential geometry.

There is a particularly nice story involving p-forms � that obey

4� = 0

Such forms are said to be harmonic. An harmonic form is necessarily closed, meaning

d� = 0, and co-closed, meaning d†� = 0. This follows by writing

h�,4�i = hd�, d�i+ hd†�, d†�i = 0

and noting that the inner product is positive-definite.
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There are some rather pretty facts that relate the existence of harmonic forms to

de Rham cohomology. The space of harmonic p-forms on a manifold M is denoted

Harmp(M). First, the Hodge decomposition theorem, which we state without proof:

any p-form ! on a compact, Riemannian manifold can be uniquely decomposed as

! = d↵ + d†� + �

where ↵ 2 ⇤p�1(M) and � 2 ⇤p+1(M) and � 2 Harmp(M). This result can then be

used to prove:

Hodge’s Theorem: There is an isomorphism

Harmp(M) ⇠= Hp(M)

whereHp(M) is the de Rham cohomology group introduced in Section 2.4.3. In particu-

lar, the Betti numbers can be computed by counting the number of linearly independent

harmonic forms,

Bp = dim Harmp(M)

Proof: First, let’s show that any harmonic form � provides a representative of Hp(M).

As we saw above, any harmonic p-form is closed, d� = 0, so � 2 Zp(M). But the

unique nature of the Hodge decomposition tells us that � 6= d� for some �.

Next, we need to show that any equivalence class [!] 2 Hp(M) can be represented

by a harmonic form. We decompose ! = d↵ + d†� + �. By definition [!] 2 Hp(M)

means that d! = 0 so we have

0 = hd!, �i = h!, d†�i = hd↵ + d†� + �, d†�i = hd†�, d†�i

where, in the final step, we “integrated by parts” and used the fact that dd↵ = d� = 0.

Because the inner product is positive definite, we must have d†� = 0 and, hence,

! = �+ d↵. Any other representative !̃ ⇠ ! of [!] 2 Hp(M) di↵ers by !̃ = !+ d⌘ and

so, by the Hodge decomposition, is associated to the same harmonic form �. ⇤

3.2 Connections and Curvature

We’ve already met one version of di↵erentiation in these lectures. A vector field X is,

at heart, a di↵erential operator and provides a way to di↵erentiate a function f . We

write this simply as X(f).
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As we saw previously, di↵erentiating higher tensor fields is a little more tricky because

it requires us to subtract tensor fields at di↵erent points. Yet tensors evaluated at

di↵erent points live in di↵erent vector spaces, and it only makes sense to subtract these

objects if we can first find a way to map one vector space into the other. In Section

2.2.4, we used the flow generated by X as a way to perform this mapping, resulting in

the idea of the Lie derivative LX .

There is, however, a di↵erent way to take derivatives, one which ultimately will prove

more useful. The derivative is again associated to a vector field X. However, this time

we introduce a di↵erent object, known as a connection to map the vector spaces at one

point to the vector spaces at another. The result is an object, distinct from the Lie

derivative, called the covariant derivative.

3.2.1 The Covariant Derivative

A connection is a mapr : X(M)⇥X(M) ! X(M). We usually write this asr(X, Y ) =

rXY and the object rX is called the covariant derivative. It satisfies the following

properties for all vector fields X, Y and Z,

• rX(Y + Z) = rXY +rXZ

• r(fX+gY )Z = frXZ + grYZ for all functions f, g.

• rX(fY ) = frXY + (rXf)Y where we define rXf = X(f)

The covariant derivative endows the manifold with more structure. To elucidate this,

we can evaluate the connection in a basis {eµ} of X(M). We can always express this as

re⇢
e⌫ = �µ

⇢⌫
eµ (3.8)

with �µ

⇢⌫
the components of the connection. It is no coincidence that these are denoted

by the same greek letter that we used for the Christo↵el symbols in Section 1. However,

for now, you should not conflate the two; we’ll see the relationship between them in

Section 3.2.3.

The name “connection” suggests that r, or its components �µ

⌫⇢
, connect things.

Indeed they do. We will show in Section 3.3 that the connection provides a map from

the tangent space Tp(M) to the tangent space at any other point Tq(M). This is what

allows the connection to act as a derivative.
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We will use the notation

rµ = reµ

This makes the covariant derivative rµ look similar to a partial derivative. Using the

properties of the connection, we can write a general covariant derivative of a vector

field as

rXY = rX(Y
µeµ)

= X(Y µ)eµ + Y µrXeµ

= X⌫e⌫(Y
µ)eµ +X⌫Y µr⌫eµ

= X⌫
�
e⌫(Y

µ) + �µ

⌫⇢
Y ⇢
�
eµ

The fact that we can strip o↵ the overall factor of X⌫ means that it makes sense to

write the components of the covariant derivative as

r⌫Y = (e⌫(Y
µ) + �µ

⌫⇢
Y ⇢)eµ

Or, in components,

(r⌫Y )µ = e⌫(Y
µ) + �µ

⌫⇢
Y ⇢ (3.9)

Note that the covariant derivative coincides with the Lie derivative on functions,rXf =

LXf = X(f). It also coincides with the old-fashioned partial derivative: rµf = @µf .

However, its action on vector fields di↵ers. In particular, the Lie derivative LXY =

[X, Y ] depends on both X and the first derivative of X while, as we have seen above,

the covariant derivative depends only on X. This is the property that allows us to

write rX = X⌫r⌫ and think of rµ as an operator in its own right. In contrast, there

is no way to write “LX = XµLµ”. While the Lie derivative has its uses, the ability to

define rµ means that this is best viewed as the natural generalisation of the partial

derivative to curved space.

Di↵erentiation as Punctuation

In a coordinate basis, in which eµ = @µ, the covariant derivative (3.9) becomes

(r⌫Y )µ = @⌫Y
µ + �µ

⌫⇢
Y ⇢ (3.10)

We will di↵erentiate often. To save ink, we use the sloppy, and sometimes confusing,

notation

(r⌫Y )µ = r⌫Y
µ
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This means, in particular, that r⌫Y µ is the µth component of r⌫Y , rather than the

di↵erentiation of the function Y µ. Furthermore, we will sometimes denote covariant

di↵erentiation using a semi-colon

r⌫Y
µ = Y µ

;⌫

Meanwhile, the partial derivative is denoted using a mere comma, @µY ⌫ = Y ⌫
,µ. The

expression (3.10) then reads

Y µ
;⌫ = Y µ

,⌫ + �µ

⌫⇢
Y ⇢

Note that the Y µ

;⌫
are components of a bona fide tensor. In contrast, the Y µ

,⌫
are not

components of a tensor. And, as we now show, neither are the �µ

⇢⌫
.

The Connection is Not a Tensor

The connection is not a tensor. We can see this immediately from the definition

r(X, fY ) = rX(fY ) = frXY + (X(f))Y . This is not linear in the second argu-

ment, which is one of the requirements of a tensor.

To illustrate this, we can ask what the connection looks like in a di↵erent basis,

ẽ⌫ = Aµ

⌫
eµ (3.11)

for some invertible matrix A. If eµ and ẽµ are both coordinate bases, then

Aµ

⌫
=

@xµ

@x̃⌫

We know from (2.23) that the components of a (1, 2) tensor transform as

T̃ µ

⌫⇢
= (A�1)µ

⌧
A�

⌫
A�

⇢
T ⌧

�� (3.12)

We can now compare this to the transformation of the connection components �µ

⇢⌫
. In

the basis ẽµ, we have

rẽ⇢
ẽ⌫ = �̃µ

⇢⌫
ẽµ

Substituting in the transformation (3.11), we have

�̃µ

⇢⌫
ẽµ = r(A�

⇢e�)
(A�

⌫
e�) = A�

⇢
re�

(A�

⌫
e�) = A�

⇢
A�

⌫
�⌧

��
e⌧ + A�

⇢
e�@�A

�

⌫

We can write this as

�̃µ

⇢⌫
ẽµ =

�
A�

⇢
A�

⌫
�⌧

��
+ A�

⇢
@�A

⌧

⌫

�
e⌧

=
�
A�

⇢
A�

⌫
�⌧

��
+ A�

⇢
@�A

⌧

⌫

�
(A�1)µ

⌧
ẽµ
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Stripping o↵ the basis vectors ẽµ, we see that the components of the connection trans-

form as

�̃µ

⇢⌫
= (A�1)µ

⌧
A�

⇢
A�

⌫
�⌧

��
+ (A�1)µ

⌧
A�

⇢
@�A

⌧

⌫
(3.13)

The first term coincides with the transformation of a tensor (3.12). But the second

term, which is independent of �, but instead depends on @A, is novel. This is the

characteristic transformation property of a connection.

Di↵erentiating Other Tensors

We can use the Leibnizarity of the covariant derivative to extend its action to any

tensor field. It’s best to illustrate this with an example.

Consider a one-form !. If we di↵erentiate !, we will get another one-form rX!

which, like any one-form, is defined by its action on vector fields Y 2 X(M). To

construct this, we will insist that the connection obeys the Leibnizarity in the modified

sense that

rX(!(Y )) = (rX!)(Y ) + !(rXY )

But !(Y ) is simply a function, which means that we can also write this as

rX(!(Y )) = X(!(Y ))

Putting these together gives

(rX!)(Y ) = X(!(Y ))� !(rXY )

In coordinates, we have

Xµ(rµ!)⌫Y
⌫ = Xµ@µ(!⌫Y

⌫)� !⌫X
µ(@µY

⌫ + �⌫

µ⇢
Y ⇢)

= Xµ(@µ!⇢ � �⌫

µ⇢
!⌫)Y

⇢

where, crucially, the @Y terms cancel in going from the first to the second line. This

means that the overall result is linear in Y and we may define rX! without reference

to the vector field Y on which is acts. In components, we have

(rµ!)⇢ = @µ!⇢ � �⌫

µ⇢
!⌫

As for vector fields, we also write this as

(rµ!)⇢ ⌘ rµ!⇢ ⌘ !⇢;µ = !⇢,µ � �⌫

µ⇢
!⌫
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This kind of argument can be extended to a general tensor field of rank (p, q), where

the covariant derivative is defined by,

T µ1...µp

⌫1...⌫q ;⇢ = T µ1...µp

⌫1...⌫q ,⇢ + �µ1
⇢�
T �µ2...µp

⌫1...⌫q + . . .+ �µp

⇢�
T µ1...µp�1�

⌫1...⌫q

���

⇢⌫1
T µ1...µp

�⌫2...⌫q � . . .� ��

⇢⌫q
T µ1...µp

⌫1...⌫q�1�

The pattern is clear: for every upper index µ we get a +�T term, while for every lower

index we get a ��T term.

Now that we can di↵erentiate tensors, we will also need to extend our punctuation

notation slightly. If more than two subscripts follow a semi-colon (or, indeed, a comma)

then we di↵erentiate respect to both, doing the one on the left first. So, for example,

Xµ
;⌫⇢ = r⇢r⌫Xµ.

3.2.2 Torsion and Curvature

Even though the connection is not a tensor, we can use it to construct two tensors. The

first is a rank (1, 2) tensor T known as torsion. It is defined to act on X, Y 2 X(M)

and ! 2 ⇤1(M) by

T (!;X, Y ) = !(rXY �rYX � [X, Y ])

The other is a rank (1, 3) tensor R, known as curvature. It acts on X, Y, Z 2 X(M)

and ! 2 ⇤1(M) by

R(!;X, Y, Z) = !(rXrYZ �rYrXZ �r[X,Y ]Z)

The curvature tensor is also called the Riemann tensor.

Alternatively, we could think of torsion as a map T : X(M)⇥X(M) ! X(M), defined

by

T (X, Y ) = rXY �rYX � [X, Y ]

Similarly, the curvature R can be viewed as a map from X(M)⇥X(M) to a di↵erential

operator acting on X(M),

R(X, Y ) = rXrY �rYrX �r[X,Y ] (3.14)
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Checking Linearity

To demonstrate that T and R are indeed tensors, we need to show that they are linear

in all arguments. Linearity in ! is straightforward. For the others, there are some small

calculations to do. For example, we must show that T (!; fX, Y ) = fT (!;X, Y ). To

see this, we just run through the definitions of the various objects,

T (!; fX, Y ) = !(rfXY �rY (fX)� [fX, Y ])

We then userfXY = frXY andrY (fX) = frYX+Y (f)X and [fX, Y ] = f [X, Y ]�
Y (f)X. The two Y (f)X terms cancel, leaving us with

T (!; fX, Y ) = f!(rXY �rYX � [X, Y ])

= fT (!;X, Y )

Similarly, for the curvature tensor we have

R(!; fX, Y, Z) = !(rfXrYZ �rYrfXZ �r[fX,Y ]Z

= !(frXrYZ �rY (frXZ)�r(f [X,Y ]�Y (f)X)Z)

= !(frXrYZ � frYrXZ � Y (f)rXZ �rf [X,Y ]Z +rY (f)XZ)

= !(frXrYZ � frYrXZ � Y (f)rXZ � fr[X,Y ]Z + Y (f)rXZ)

= f!(rXrYZ �rYrXZ �r[X,Y ]Z)

= fR(!;X, Y, Z)

Linearity in Y follows from linearity in X. But we still need to check linearity in Z,

R(!;X, Y, fZ) = !(rXrY (fZ)�rYrX(fZ)�r[X,Y ](fZ))

= !(rX(frYZ + Y (f)Z)�rY (frXZ +X(f)Z)

�fr[X,Y ]Z � [X, Y ](f)Z)

= !(frXrY +X(f)rYZ + Y (f)rXZ +X(Y (f))Z

�frYrXZ � Y (f)rXZ �X(f)rYZ � Y (X(f))Z

�fr[X,Y ]Z � [X, Y ](f)Z)

= fR(!;X, Y, Z)

Thus, both torsion and curvature define new tensors on our manifold.
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Components

We can evaluate these tensors in a coordinate basis {eµ} = {@µ}, with the dual basis

{fµ} = {dxµ}. The components of the torsion are

T ⇢
µ⌫ = T (f⇢; eµ, e⌫)

= f⇢(rµe⌫ �r⌫eµ � [eµ, e⌫ ])

= f⇢(��

µ⌫
e� � ��

⌫µ
e�)

= �⇢

µ⌫
� �⇢

⌫µ

where we’ve used the fact that, in a coordinate basis, [eµ, e⌫ ] = [@µ, @⌫ ] = 0. We learn

that, even though �⇢

µ⌫
is not a tensor, the anti-symmetric part �⇢

[µ⌫]
does form a tensor.

Clearly the torsion tensor is anti-symmetric in the lower two indices

T ⇢
µ⌫ = �T ⇢

⌫µ

Connections which are symmetric in the lower indices, so �⇢

µ⌫
= �⇢

⌫µ
have T ⇢

µ⌫ = 0.

Such connections are said to be torsion-free.

The components of the curvature tensor are given by

R�
⇢µ⌫ = R(f�; eµ, e⌫ , e⇢)

Note the slightly counterintuitive, but standard ordering of the indices; the indices µ

and ⌫ that are associated to covariant derivatives rµ and r⌫ go at the end. We have

R�
⇢µ⌫ = f�(rµr⌫e⇢ �r⌫rµe⇢ �r[eµ,e⌫ ]

e⇢)

= f�(rµr⌫e⇢ �r⌫rµe⇢)

= f�(rµ(�
�

⌫⇢
e�)�r⌫(�

�

µ⇢
e�))

= f�((@µ�
�

⌫⇢
)e� + ��

⌫⇢
�⌧

µ�
e⌧ � (@⌫�

�

µ⇢
)e� � ��

µ⇢
�⌧

⌫�
e⌧ )

= @µ�
�

⌫⇢
� @⌫�

�

µ⇢
+ ��

⌫⇢
��

µ�
� ��

µ⇢
��

⌫�
(3.15)

Clearly the Riemann tensor is anti-symmetric in its last two indices

R�
⇢µ⌫ = �R�

⇢⌫µ

Equivalently, R�
⇢µ⌫ = R�

⇢[µ⌫]. There are a number of further identities of the Riemann

tensor of this kind. We postpone this discussion to Section 3.4.
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The Ricci Identity

There is a closely related calculation in which both the torsion and Riemann tensors

appears. We look at the commutator of covariant derivatives acting on vector fields.

Written in an orgy of anti-symmetrised notation, this calculation gives

r[µr⌫]Z
� = @[µ(r⌫]Z

�) + ��

[µ|�|
r⌫]Z

� � �⇢

[µ⌫]
r⇢Z

�

= @[µ@⌫]Z
� + (@[µ�

�

⌫]⇢
)Z⇢ + (@[µZ

⇢)��

⌫]⇢
+ ��

[µ|�|
@⌫]Z

�

+��

[µ|�|
��

⌫]⇢
Z⇢ � �⇢

[µ⌫]
r⇢Z

�

The first term vanishes, while the third and fourth terms cancel against each other.

We’re left with

2r[µr⌫]Z
� = R�

⇢µ⌫Z
⇢ � T ⇢

µ⌫r⇢Z
� (3.16)

where the torsion tensor is T ⇢
µ⌫ = 2�⇢

[µ⌫]
and the Riemann tensor appears as

R�
⇢µ⌫ = 2@[µ�

�

⌫]⇢
+ 2��

[µ|�|
��

⌫]⇢

which coincides with (3.15). The expression (3.16) is known as the Ricci identity.

3.2.3 The Levi-Civita Connection

So far, our discussion of the connection r has been entirely independent of the metric.

However, something nice happens if we have both a connection and a metric. This

something nice is called the fundamental theorem of Riemannian geometry. (Happily,

it’s also true for Lorentzian geometries.)

Theorem: There exists a unique, torsion free, connection that is compatible with a

metric g, in the sense that

rXg = 0

for all vector fields X.

Proof: We start by showing uniqueness. Suppose that such a connection exists. Then,

by Leibniz

X(g(Y, Z)) = rX(g(Y, Z)) = (rXg)(Y, Z) + g(rXY, Z) + g(Y,rXZ)

Since rXg = 0, this becomes

X(g(Y, Z)) = g(rXY, Z) + g(rXZ, Y )
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By cyclic permutation of X, Y and Z, we also have

Y (g(Z,X)) = g(rYZ,X) + g(rYX,Z)

Z(g(X, Y )) = g(rZX, Y ) + g(rZY,X)

Since the torsion vanishes, we have

rXY �rYX = [X, Y ]

We can use this to write the cyclically permuted equations as

X(g(Y, Z)) = g(rYX,Z) + g(rXZ, Y ) + g([X, Y ], Z)

Y (g(Z,X)) = g(rZY,X) + g(rYX,Z) + g([Y, Z], X)

Z(g(X, Y )) = g(rXZ, Y ) + g(rZY,X) + g([Z,X], Y )

Add the first two of these equations, and subtract the third. We find

g(rYX,Z) =
1

2

h
X(g(Y, Z)) + Y (g(Z,X))� Z(g(X, Y ))

� g([X, Y ], Z)� g([Y, Z], X) + g([Z,X], Y )
i

(3.17)

But with a non-degenerate metric, this specifies the connection uniquely. We’ll give an

expression in terms of components in (3.18) below.

It remains to show that the object r defined this way does indeed satisfy the prop-

erties expected of a connection. The tricky one turns out to be the requirement that

rfXY = frXY . We can see that this is indeed the case as follows:

g(rfYX,Z) =
1

2

h
X(g(fY, Z)) + fY (g(Z,X))� Z(g(X, fY ))

� g([X, fY ], Z)� g([fY, Z], X) + g([Z,X], fY )
i

=
1

2

h
fX(g(Y, Z)) +X(f)g(Y, Z) + fY (g(Z,X))� fZ(g(X, Y ))

� Z(f)g(X, Y )� fg([X, Y ], Z)�X(f)g(Y, Z)� fg([Y, Z], X)

+ Z(f)g(Y,X) + fg([Z,X], Y )
i

= g(frYX,Z)

The other properties of the connection follow similarly. ⇤
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The connection (3.17), compatible with the metric, is called the Levi-Civita connec-

tion. We can compute its components in a coordinate basis {eµ} = {@µ}. This is

particularly simple because [@µ, @⌫ ] = 0, leaving us with

g(r⌫eµ, e⇢) = ��

⌫µ
g�⇢ =

1

2
(@µg⌫⇢ + @⌫gµ⇢ � @⇢gµ⌫)

Multiplying by the inverse metric gives

��

µ⌫
=

1

2
g�⇢(@µg⌫⇢ + @⌫gµ⇢ � @⇢gµ⌫) (3.18)

The components of the Levi-Civita connection are called the Christo↵el symbols. They

are the objects (1.31) we met already in Section 1 when discussing geodesics in space-

time. For the rest of these lectures, when discussing a connection we will always mean

the Levi-Civita connection.

An Example: Flat Space

In flat space Rd, endowed with either Euclidean or Minkowski metric, we can always

pick Cartesian coordinates, in which case the Christo↵el symbols vanish. However, in

other coordinates this need not be the case. For example, in Section 1.1.1, we computed

the flat space Christo↵el symbols in polar coordinates (1.10). They don’t vanish. But

because the Riemann tensor is a genuine tensor, if it vanishes in one coordinate system

then it must vanishes in all of them. Given some horrible coordinate system, with

�⇢

µ⌫
6= 0, we can always compute the corresponding Riemann tensor to see if the space

is actually flat after all.

Another Example: The Sphere S2

Consider S2 with radius r and the round metric

ds2 = r2(d✓2 + sin2 ✓ d�2)

We can extract the Christo↵el symbols from those of flat space in polar coordinates

(1.10). The non-zero components are

�✓

��
= � sin ✓ cos ✓ , ��

✓�
= ��

�✓
=

cos ✓

sin ✓
(3.19)

From these, it is straightforward to compute the components of the Riemann tensor.

They are most simply expressed as R�⇢µ⌫ = g��R�
⇢µ⌫ and are given by

R✓�✓� = R�✓�✓ = �R✓��✓ = �R�✓✓� = r2 sin2 ✓ (3.20)

with the other components vanishing.
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3.2.4 The Divergence Theorem

Gauss’ Theorem, also known as the divergence theorem, states that if you integrate a

total derivative, you get a boundary term. There is a particular version of this theorem

in curved space that we will need for later applications.

As a warm-up, we have the following result:

Lemma: The contraction of the Christo↵el symbols can be written as

�µ

µ⌫
=

1
p
g
@⌫
p
g (3.21)

On Lorentzian manifolds, we should replace
p
g with

p
|g|.

Proof: From (3.18), we have

�µ

µ⌫
=

1

2
gµ⇢@⌫gµ⇢ =

1

2
tr(g�1@⌫g) =

1

2
tr(@⌫ log g)

However, there’s a useful identity for the log of any diagonalisable matrix: they obey

tr logA = log detA

This is clearly true for a diagonal matrix, since the determinant is the product of

eigenvalues while the trace is the sum. But both trace and determinant are invariant

under conjugation, so this is also true for diagonalisable matrices. Applying it to our

metric formula above, we have

�µ

µ⌫
=

1

2
tr(@⌫ log g) =

1

2
@⌫ log det g =

1

2

1

det g
@⌫ det g =

1p
det g

@⌫
p

det g

which is the claimed result. ⇤

With this in hand, we can now prove the following:

Divergence Theorem: Consider a region of a manifold M with boundary @M . Let

nµ be an outward-pointing, unit vector orthogonal to @M . Then, for any vector field

Xµ on M , we have
Z

M

dnx
p
grµX

µ =

Z

@M

dn�1x
p
� nµX

µ

where �ij is the pull-back of the metric to @M , and � = det �ij. On a Lorentzian man-

ifold, a version of this formula holds only if @M is purely timelike or purely spacelike,

which ensures that � 6= 0 at any point.
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Proof: Using the lemma above, the integrand is

p
grµX

µ =
p
g
�
@µX

µ + �µ

µ⌫
X⌫
�
=

p
g

✓
@µX

µ +X⌫
1
p
g
@⌫
p
g

◆
= @µ (

p
gXµ)

The integral is then
Z

M

dnx
p
grµX

µ =

Z

M

dnx @µ (
p
gXµ)

which now is an integral of an ordinary partial derivative, so we can apply the usual

divergence theorem that we are familiar with. It remains only to evaluate what’s

happening at the boundary @M . For this, it is useful to pick coordinates so that the

boundary @M is a surface of constant xn. Furthermore, we will restrict to metrics of

the form

gµ⌫ =

 
�ij 0

0 N2

!

Then by our usual rules of integration, we have
Z

M

dnx @µ (
p
gXµ) =

Z

@M

dn�1x
p

�N2Xn

The unit normal vector nµ is given by nµ = (0, 0, . . . , 1/N), which satisfies gµ⌫nµn⌫ = 1

as it should. We then have nµ = gµ⌫n⌫ = (0, 0, . . . , N), so we can write

Z

M

dnx
p
grµX

µ =

Z

@M

dn�1x
p
� nµX

µ

which is the result we need. As the final expression is a covariant quantity, it is true

in general. ⇤

In Section 2.4.5, we advertised Stokes’ theorem as the mother of all integral theorems.

It’s perhaps not surprising to hear that the divergence theorem is a special case of

Stokes’ theorem. To see this, here’s an alternative proof that uses the language of

forms.

Another Proof: Given the volume form v on M , and a vector field X, we can contract

the two to define an n�1 form ! = ◆Xv. (This is the interior product that we previously

met in (2.30).) It has components

!µ1...µn�1 =
p
g ✏µ1...µn

Xµn
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If we now take the exterior derivative, d!, we have a top-form. Since the top form is

unique up to multiplication, d! must be proportional to the volume form. Indeed, it’s

not hard to show that

(d!)µ1...µn
=

p
g ✏µ1...µn

r⌫X
⌫

This means that, in form language, the integral over M that we wish to consider can

be written as
Z

M

dnx
p
grµX

µ =

Z

M

d!

Now we invoke Stokes’ theorem, to write
Z

M

d! =

Z

@M

!

We now need to massage ! into the form needed. First, we introduce a volume form v̂

on @M , with components

v̂µ1...µn�1 =
p
�✏µ1...µn�1

This is related to the volume form on M by

1

n
vµ1...µn�1⌫ = v̂[µ1...µn�1n⌫]

where nµ is the orthonormal vector that we introduced previously. We then have

!µ1...µn�1 =
p
� (n⌫X

⌫)✏̃µ1...µn�1

The divergence theorem then follows from Stokes’ theorem. ⇤

3.2.5 The Maxwell Action

Let’s briefly turn to some physics. We take the manifoldM to be spacetime. In classical

field theory, the dynamical degrees of freedom are objects that take values at each point

in M . We call these objects fields. The simplest such object is just a function which,

in physics, we call a scalar field.

As we described in Section 2.4.2, the theory of electromagnetism is described by a

one-form field A. In fact, there is a little more structure because we ask that the theory

is invariant under gauge transformations

A ! A+ d↵

To achieve this, we construct a field strength F = dA which is indeed invariant under

gauge transformations. The next question to ask is: what are the dynamics of these

fields?
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The most elegant and powerful way to describe the dynamics of classical fields is

provided by the action principle. The action is a functional of the fields, constructed by

integrating over the manifold. The di↵erential geometric language that we’ve developed

in these lectures tells us that there are, in fact, very few actions one can write down.

To see this, suppose that our manifold has only the 2-form F but is not equipped

with a metric. If spacetime has dimension dim(M) = 4 (it does!) then we need to

construct a 4-form to integrate over M . There is only one of these at our disposal,

suggesting the action

Stop = �1

2

Z
F ^ F

If we expand this out in the electric and magnetic fields using (2.32), we find

Stop =

Z
dx0dx1dx2dx3 E ·B

Actions of this kind, which are independent of the metric, are called topological. They

are typically unimportant in classical physics. Indeed, we can locally write F ^ F =

d(A ^ F ), so the action is a total derivative and does not a↵ect the classical equations

of motion. Nonetheless, topological actions often play subtle and interesting roles in

quantum physics. For example, the action Stop underlies the theory of topological

insulators. You can read more about this in Section 1 of the lectures on Gauge Theory.

To construct an action that gives rise to interesting classical dynamics, we need to

introduce a metric. The existence of a metric allows us to introduce a second two-form,

?F , and construct the action

SMaxwell = �1

2

Z
F ^ ?F = �1

4

Z
d4x

p
�ggµ⌫g⇢�Fµ⇢F⌫� = �1

4

Z
d4x

p
�g F µ⌫Fµ⌫

This is the Maxwell action, now generalised to a curved spacetime. If we restrict to flat

Minkowski space, the components are F µ⌫Fµ⌫ = 2(B2�E2). As we saw in our lectures

on Electromagnetism, varying this action gives the remaining two Maxwell equations.

In the elegant language of di↵erential geometry, these take the simple form

d ? F = 0

We can also couple the gauge field to an electric current. This is described by a one-form

J , and we write the action

S =

Z
�1

2
F ^ ?F + A ^ ?J
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We require that this action is invariant under gauge transformations A ! A+d↵. The

action transforms as

S ! S +

Z
d↵ ^ ?J

After an integration by parts, the second term vanishes provided that

d ? J = 0

which is the requirement of current conservation expressed in the language of forms.

The Maxwell equations now have a source term, and read

d ? F = ?J (3.22)

We see that the rigid structure of di↵erential geometry leads us by the hand to the

theories that govern our world. We’ll see this again in Section 4 when we discuss

gravity.

Electric and Magnetic Charges

To define electric and magnetic charges, we integrate over submanifolds. For example,

consider a three-dimensional spatial submanifold ⌃. The electric charge in ⌃ is defined

to be

Qe =

Z

⌃

?J

It’s simple to check that this agrees with our usual definition Qe =
R
d3x J0 in flat

Minkowski space. Using the equation of motion (3.22), we can translate this into an

integral of the field strength

Qe =

Z

⌃

d ? F =

Z

@⌃

?F (3.23)

where we have used Stokes’ theorem to write this as an integral over the boundary @⌃.

The result is the general form of Gauss’ law, relating the electric charge in a region

to the electric field piercing the boundary of the region. Similarly, we can define the

magnetic charge

Qm =

Z

@⌃

F

When we first meet Maxwell theory, we learn that magnetic charges do not exist,

courtesy of the identity dF = 0. However, this can be evaded in topologically more

interesting spaces. We’ll see a simple example in Section 6.2.1 when we discuss charged

black holes.
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The statement of current conservation d ? J = 0

B

Σ2

Σ1

V

Figure 22:

means that the electric chargeQe in a region cannot change

unless current flows in or out of that region. This fact,

familiar from Electromagnetism, also has a nice expres-

sion in terms of forms. Consider a cylindrical region of

spacetime V , ending on two spatial hypersurfaces ⌃1 and

⌃2 as shown in the figure. The boundary of V is then

@V = ⌃1 [ ⌃2 [B

where B is the cylindrical timelike hypersurface.

We require that J = 0 on B, which is the statement that no current flows in or out

of the region. Then we have

Qe(⌃1)�Qe(⌃2) =

Z

⌃1

?J �
Z

⌃2

?J =

Z

@V

?J =

Z

V

d ? J = 0

which tells us that the electric charge remains constant in time.

Maxwell Equations Using Connections

The form of the Maxwell equations given above makes no reference to a connection. It

does, however, use the metric, buried in the definition of the Hodge ?.

There is an equivalent formulation of the Maxwell equation using the covariant deriva-

tive. This will also serve to highlight the relationship between the covariant and exte-

rior derivatives. First note that, given a one-form A 2 ⇤1(M), we can define the field

strength as

Fµ⌫ = rµA⌫ �r⌫Aµ = @µA⌫ � @⌫Aµ

where the Christo↵el symbols have cancelled out by virtue of the anti-symmetry. This

is what allowed us to define the exterior derivative without the need for a connection.

Next, consider the current one-form J . We can recast the statement of current

conservation as follows:

Claim:

d ? J = 0 , rµJ
µ = 0
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Proof: We have

rµJ
µ = @µJ

µ + �µ

µ⇢
J⇢ =

1p
�g

@µ
�p

�gJµ
�

where, in the second equality, we have used our previous result (3.21): �µ

µ⌫
= @⌫ log

p
|g|.

But this final form is proportional to d ? J , with the Hodge dual defined in (3.5). ⇤

As an aside, in Riemannian signature the formula

rµJ
µ =

1
p
g
@µ(

p
gJµ)

provides a quick way of computing the divergence in di↵erent coordinate systems (if

you don’t have the inside cover of Jackson to hand). For example, in spherical polar

coordinates on R3, we have g = r4 sin2 ✓. Plug this into the expression above to

immediately find

r · J =
1

r2
@r(r

2Jr) +
1

sin ✓
@✓(sin ✓ J

✓) + @�J
�

The Maxwell equation (3.22) can also be written in terms of the covariant derivative

Claim:

d ? F = ?J , rµF
µ⌫ = J⌫ (3.24)

Proof: We have

rµF
µ⌫ = @µF

µ⌫ + �µ

µ⇢
F ⇢⌫ + �⌫

µ⇢
F µ⇢

=
1p
�g

@µ
�p

�gF µ⌫
�
+ �⌫

µ⇢
F µ⇢ =

1p
�g

@µ
�p

�gF µ⌫
�

where, in the second equality, we’ve again used (3.21) and in the final equality we’ve

used the fact that �⌫

µ⇢
is symmetric while F ⌫⇢ is anti-symmetric. To complete the

proof, you need to chase down the definitions of the Hodge dual (3.5) and the exterior

derivative (2.26). (If you’re struggling to match factors of
p
�g, then remember that

the volume form v =
p
�g✏ is a tensor, while the epsilon symbol ✏µ1...µ4 is a tensor

density.) ⇤
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3.3 Parallel Transport

Although we have now met a number of properties of the connection, we have not yet

explained its name. What does it connect?

The answer is that the connection connects tangent spaces, or more generally any

tensor vector space, at di↵erent points of the manifold. This map is called parallel

transport. As we stressed earlier, such a map is necessary to define di↵erentiation.

Take a vector fieldX and consider some associated integral curve C, with coordinates

xµ(⌧), such that

Xµ

���
C

=
dxµ(⌧)

d⌧
(3.25)

We say that a tensor field T is parallely transported along C if

rXT = 0 (3.26)

Suppose that the curve C connects two points, p 2 M and q 2 M . The requirement

(3.26) provides a map from the vector space defined at p to the vector space defined at

q.

To illustrate this, consider the parallel transport of a second vector field Y . In

components, the condition (3.26) reads

X⌫
�
@⌫Y

µ + �µ

⌫⇢
Y ⇢
�
= 0

If we now evaluate this on the curve C, we can think of Y µ = Y µ(x(⌧)), which obeys

dY µ

d⌧
+X⌫�µ

⌫⇢
Y ⇢ = 0 (3.27)

These are a set of coupled, ordinary di↵erential equations. Given an initial condition

at, say ⌧ = 0, corresponding to point p, these equations can be solved to find a unique

vector at each point along the curve.

Parallel transport is path dependent. It depends on both the connection, and the

underlying path which, in this case, is characterised by the vector field X.

This is the second time we’ve used a vector field X to construct maps between

tensors at di↵erent points in the manifold. In Section 2.2.2, we used X to generate a

flow �t : M ! M , which we could then use to pull-back or push-forward tensors from

one point to another. This was the basis of the Lie derivative. This is not the same as

the present map. Here, we’re using X only to define the curve, while the connection

does the work of relating vector spaces along the curve.
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3.3.1 Geodesics Revisited

A geodesic is a curve tangent to a vector field X that obeys

rXX = 0 (3.28)

Along the curve C, we can substitute the expression (3.25) into (3.27) to find

d2xµ

d⌧ 2
+ �µ

⇢⌫

dx⇢

d⌧

dx⌫

d⌧
= 0 (3.29)

This is precisely the geodesic equation (1.30) that we derived in Section 1 by considering

the action for a particle moving in spacetime. In fact, we find that the condition (3.28)

results in geodesics with a�ne parameterisation.

For the Levi-Civita connection, we have rXg = 0. This ensures that for any vector

field Y parallely transported along a geodesic X, so rXY = rXX = 0, we have

d

d⌧
g(X, Y ) = 0

This tells us that the vector field Y makes the same angle with the tangent vector along

each point of the geodesic.

3.3.2 Normal Coordinates

Geodesics lend themselves to the construction of a particularly useful coordinate sys-

tem. On a Riemannian manifold, in the neighbourhood of a point p 2 M , we can

always find coordinates such that

gµ⌫(p) = �µ⌫ and gµ⌫,⇢(p) = 0 (3.30)

The same holds for Lorentzian manifolds, now with gµ⌫(p) = ⌘µ⌫ . These are referred

to as normal coordinates. Because the first derivative of the metric vanishes, normal

coordinates have the property that, at the point p, the Christo↵el symbols vanish:

�µ

⌫⇢
(p) = 0. Generally, away from p we will have �µ

⌫⇢
6= 0. Note, however, that it is

not generally possible to ensure that the second derivatives of the metric also vanish.

This, in turn, means that it’s not possible to pick coordinates such that the Riemann

tensor vanishes at a given point.

There are a number of ways to demonstrate the existence of coordinates (3.30). The

brute force way is to start with some metric g̃µ⌫ in coordinates x̃µ and try to find a

change of coordinates to xµ(x̃) which does the trick. In the new coordinates,

@x̃⇢

@xµ

@x̃�

@x⌫
g̃⇢� = gµ⌫ (3.31)
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We’ll take the point p to be the origin in both sets of coordinates. Then we can Taylor

expand

x̃⇢ =
@x̃⇢

@xµ

����
x=0

xµ +
1

2

@2x̃⇢

@xµ@x⌫

����
x=0

xµx⌫ + . . .

We insert this into (3.31), together with a Taylor expansion of g̃⇢�, and try to solve the

resulting partial di↵erential equations to find the coe�cients @x̃/@x and @2x̃/@x2 that

do the job. For example, the first requirement is

@x̃⇢

@xµ

����
x=0

@x̃�

@x⌫

����
x=0

g̃⇢�(p) = �µ⌫

Given any g̃⇢�(p), it’s always possible to find @x̃/@x so that this is satisfied. In fact, a

little counting shows that there are many such choices. If dimM = n, then there are

n2 independent coe�cients in the matrix @x̃/@x. The equation above puts 1

2
n(n + 1)

conditions on these. That still leaves 1

2
n(n� 1) parameters unaccounted for. But this

is to be expected: this is precisely the dimension of the rotational group SO(n) (or the

Lorentz group SO(1, n� 1)) that leaves the flat metric unchanged.

We can do a similar counting at the next order. There are 1

2
n2(n + 1) independent

elements in the coe�cients @2x̃⇢/@xµ@x⌫ . This is exactly the same number of conditions

in the requirement gµ⌫,⇢(p) = 0.

We can also see why we shouldn’t expect to set the second derivative of the metric

to zero. Requiring gµ⌫,⇢� = 0 is 1

4
n2(n + 1)2 constraints. Meanwhile, the next term

in the Taylor expansion is @3x̃⇢/@xµ@x⌫@x� which has 1

6
n2(n + 1)(n + 2) independent

coe�cients. We see that the numbers no longer match. This time we fall short, leaving

1

4
n2(n+ 1)2 � 1

6
n2(n+ 1)(n+ 2) =

1

12
n2(n2 � 1)

unaccounted for. This, therefore, is the number of ways to characterise the second

derivative of the metric in a manner that cannot be undone by coordinate transforma-

tions. Indeed, it is not hard to show that this is precisely the number of independent

coe�cients in the Riemann tensor. (For n = 4, there are 20 coe�cients of the Riemann

tensor.)

The Exponential Map

There is a rather pretty, direct way to construct the coordinates (3.30). This uses

geodesics. The rough idea is that, given a tangent vector Xp 2 Tp(M), there is a

unique a�nely parameterised geodesic through p with tangent vector Xp at p. We then

– 120 –



p

q

Figure 23: Start with a tangent vector, and follow the resulting geodesic to get the expo-

nential map.

label any point q in the neighbourhood of p by the coordinates of the geodesic that take

us to q in some fixed amount of time. It’s like throwing a ball in all possible directions,

and labelling points by the initial velocity needed for the ball to reach that point in,

say, 1 second.

Let’s put some flesh on this. We introduce any coordinate system (not necessarily

normal coordinates) x̃µ in the neighbourhood of p. Then the geodesic we want solves

the equation (3.29) subject to the requirements

dx̃µ

d⌧

����
⌧=0

= X̃µ

p
with x̃µ(⌧ = 0) = 0

There is a unique solution.

This observation means that we can define a map,

Exp : Tp(M) ! M

Given Xp 2 Tp(M), construct the appropriate geodesic and the follow it for some a�ne

distance which we take to be ⌧ = 1. This gives a point q 2 M . This is known as the

exponential map and is illustrated in the Figure 23.

There is no reason that the exponential map covers all of the manifold M . It could

well be that there are points which cannot be reached from p by geodesics. Moreover, it

may be that there are tangent vectors Xp for which the exponential map is ill-defined.

In general relativity, this occurs if the spacetime has singularities. Neither of these

issues are relevant for our current purpose.

Now pick a basis {eµ} of Tp(M). The exponential map means that tangent vector

Xp = Xµeµ defines a point q in the neighbourhood of p. We simply assign this point

coordinates

xµ(q) = Xµ

These are the normal coordinates.
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If we pick the initial basis {eµ} to be orthonormal, then the geodesics will point in

orthogonal directions which ensures that the metric takes the form gµ⌫(p) = �µ⌫ .

To see that the first derivative of the metric also vanishes, we first fix a point q

associated to a given tangent vector X 2 Tp(M). This tells us that the point q sits a

distance ⌧ = 1 along the geodesic. We can now ask: what tangent vector will take us

a di↵erent distance along this same geodesic? Because the geodesic equation (3.29) is

homogeneous in ⌧ , if we halve the length of X then we will travel only half the distance

along the geodesic, i.e. to ⌧ = 1/2. In general, the tangent vector ⌧X will take us a

distance ⌧ along the geodesic

Exp : ⌧Xp ! xµ(⌧) = ⌧Xµ

This means that the geodesics in these coordinates take the particularly simply form

xµ(⌧) = ⌧Xµ

Since these are geodesics, they must solve the geodesic equation (3.29). But, for tra-

jectories that vary linearly in time, this is just

�µ

⇢⌫
(x(⌧))X⇢X⌫ = 0

This holds at any point along the geodesic. At most points x(⌧), this equation only

holds for those choices of X⇢ which take us along the geodesic in the first place. How-

ever, at x(⌧) = 0, corresponding to the point p of interest, this equation must hold

for any tangent vector Xµ. This means that �µ

(⇢⌫)
(p) = 0 which, for a torsion free

connection, ensures that �µ

⇢⌫
(p) = 0.

Vanishing Christo↵el symbols means that the derivative of the metric vanishes. This

follows for the Levi-Civita connection by writing 2gµ���

⇢⌫
= gµ⇢,⌫ + gµ⌫,⇢ � g⇢⌫,µ. Sym-

metrising over (µ⇢) means that the last two terms cancel, leaving us with gµ⇢,⌫ = 0

when evaluated at p.

The Equivalence Principle

Normal coordinates play an important conceptual role in general relativity. Any ob-

server at point p who parameterises her immediate surroundings using coordinates

constructed by geodesics will experience a locally flat metric, in the sense of (3.30).
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This is the mathematics underlying the Einstein equivalence principle. This principle

states that any freely falling observer, performing local experiments, will not experience

a gravitational field. Here “freely falling” means the observer follows geodesics, as

we saw in Section 1 and will naturally use normal coordinates. In this context, the

coordinates are called a local inertial frame. The lack of gravitational field is the

statement that gµ⌫(p) = ⌘µ⌫ .

Key to understanding the meaning and limitations of the equivalence principle is

the word “local”. There is a way to distinguish whether there is a gravitational field

at p: we compute the Riemann tensor. This depends on the second derivative of the

metric and, in general, will be non-vanishing. However, to measure the e↵ects of the

Riemann tensor, one typically has to compare the result of an experiment at p with an

experiment at a nearby point q: this is considered a “non-local” observation as far as

the equivalence principle goes. In the next two subsections, we give examples of physics

that depends on the Riemann tensor.

3.3.3 Path Dependence: Curvature and Torsion

Take a tangent vector Zp 2 Tp(M), and parallel transport it along a curve C to some

point r 2 M . Now parallel transport it along a di↵erent curve C 0 to the same point r.

How do the resulting vectors di↵er?

To answer this, we construct each of our curves C and C 0 from two segments, gener-

ated by linearly independent vector fields, X and Y satisfying [X, Y ] = 0 as shown in

Figure 24. To make life easy, we’ll take the point r to be close to the original point p.

We pick normal coordinates xµ = (⌧, �, 0, . . .) so that the starting point is at xµ(p) = 0

while the tangent vectors are aligned along the coordinates, X = @/@⌧ and Y = @/@�.

The other corner points are then xµ(q) = (�⌧, 0, 0, . . .), xµ(r) = (�⌧, ��, 0, . . .) and

xµ(s) = (0, ��, 0, . . .) where �⌧ and �� are taken to be small. This set-up is shown in

Figure 24.

First we parallel transport Zp along X to Zq. Along the curve, Zµ solves (3.27)

dZµ

d⌧
+X⌫�µ

⇢⌫
Z⇢ = 0 (3.32)

We Taylor expand the solution as

Zµ

q
= Zµ

p
+

dZµ

d⌧

����
⌧=0

�⌧ +
1

2

d2Zµ

d⌧ 2

����
⌧=0

�⌧ 2 +O(�⌧ 3)
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r: (δτ,δσ)

Z p Z q

Z r
Z r

Z s

s: (0,δσ)

p: (0,0)
q: (δτ,0)

X

X

Y Y

Figure 24: Parallel transporting a vector Zp along two di↵erent paths does not give the

same answer.

From (3.32), we have dZµ/d⌧
��
0
= 0 because, in normal coordinates, �µ

⇢⌫
(p) = 0. We

can calculate the second derivative by di↵erentiating (3.32) to find

d2Zµ

d⌧ 2

����
⌧=0

= �
✓
X⌫Z⇢

d�µ

⇢⌫

d⌧
+

dX⌫

d⌧
Z⇢�µ

⇢⌫
+X⌫

dZ⇢

d⌧
�µ

⇢⌫

◆����
p

(3.33)

= � X⌫Z⇢
d�µ

⇢⌫

d⌧

����
p

= �(X⌫X�Z⇢�µ

⇢⌫,�
)p

Here the second line follows because we’re working in normal coordinates at p, and the

final line because ⌧ is the parameter along the integral curve of X, so d/d⌧ = X�@�.

We therefore have

Zµ

q
= Zµ

p
� 1

2
(X⌫X�Z⇢�µ

⇢⌫,�
)p �⌧

2 + . . . (3.34)

Now we parallel transport once more, this time along Y to Zµ

r
. The Taylor expansion

now takes the form

Zµ

r
= Zµ

q
+

dZµ

d�

����
q

�� +
1

2

d2Zµ

d�2

����
q

��2 +O(��3) (3.35)

We can again evaluate the first derivative dZµ/d�|q using the analog of the parallel

transport equation (3.32),

dZµ

d�

����
q

= �(Y ⌫Z⇢�µ

⇢⌫
)q
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Since we’re working in normal coordinates about p and not q, we no longer get to argue

that this term vanishes. Instead we Taylor expand about p to get

(Y ⌫Z⇢�µ

⇢⌫
)q = (Y ⌫Z⇢X��µ

⇢⌫,�
)p �⌧ + . . .

Note that in principle we should also Taylor expand Y ⌫ and Z⇢ but, at leading order,

these will multiply �µ

⇢⌫
(p) = 0, so they only contribute at next order. The second order

term in the Taylor expansion (3.35) involves d2Zµ/d�2|q and there is an expression

similar to (3.33). To leading order the dX⌫/d� and dZ⇢/d� terms are again absent

because they are multiplied by �µ

⇢⌫
(q) = d�µ

⇢⌫
/d⌧ |p �⌧ . We therefore have

d2Zµ

d�2

����
q

= �(Y ⌫Y �Z⇢�µ

⇢⌫,�
)q + . . .

= �(Y ⌫Y �Z⇢�µ

⇢⌫,�
)p + . . .

where we replaced the point q with point p because they di↵er only subleading terms

proportional to �⌧ . The upshot is that this time the di↵erence between Zµ

r
and Zµ

q

involves two terms,

Zµ

r
= Zµ

q
� (Y ⌫Z⇢X��µ

⇢⌫,�
)p �⌧�� � 1

2
(Y ⌫Y �Z⇢�µ

⇢⌫,�
)p ��

2 + . . .

Finally, we can relate Zµ

q
to Zµ

p
using the expression (3.34) that we derived previously.

We end up with

Zµ

r
= Zµ

p
� 1

2
(�µ

⇢⌫,�
)p
⇥
X⌫X�Z⇢ �⌧ 2 + 2Y ⌫Z⇢X� ���⌧ + Y ⌫Y �Z⇢ ��2

⇤
p
+ . . .

where . . . denotes any terms cubic or higher in small quantities.

Now suppose we go along the path C 0, first visiting point s and then making our way

to r. We can read the answer o↵ directly from the result above, simply by swapping X

and Y and � and ⌧ ; only the middle term changes,

Z 0µ

r
= Zµ

p
� 1

2
(�µ

⇢⌫,�
)p
⇥
X⌫X�Z⇢ �⌧ 2 + 2X⌫Z⇢Y � ���⌧ + Y ⌫Y �Z⇢ ��2

⇤
p
+ . . .

We find that

�Zµ

r
= Zµ

r
� Z 0µ

r
= �(�µ

⇢⌫,�
� �µ

⇢�,⌫
)p(Y

⌫Z⇢X�)p ���⌧ + . . .

= (Rµ
⇢�⌫Y

⌫Z⇢X�)p ���⌧ + . . .

where, in the final equality, we’ve used the expression for the Riemann tensor in com-

ponents (3.15), which simplifies in normal coordinates as �µ

⇢�
(p) = 0. Note that, to the

order we’re working, we could equally as well evaluate Rµ
⇢�⌫X⌫Z⇢Y � at the point r;

the two di↵er only by higher order terms.
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Although our calculation was performed with a particular choice of coordinates,

the end result is written as an equality between tensors and must, therefore, hold in

any coordinate system. This is a trick that we will use frequently throughout these

lectures: calculations are considerably easier in normal coordinates. But if the resulting

expression relate tensors then the final result must be true in any coordinate system.

We have discovered a rather nice interpretation of the Riemann tensor: it tells us

the path dependence of parallel transport. The calculation above is closely related

to the idea of holonomy. Here, one transports a vector around a closed curve C and

asks how the resulting vector compares to the original. This too is captured by the

Riemann tensor. A particularly simple example of non-trivial holonomy comes from

parallel transport of a vector on a sphere: the direction that you end up pointing in

depends on the path you take.

The Meaning of Torsion

We discarded torsion almost as soon as we met it, choosing to work with the Levi-

Civita connection which has vanishing torsion, �⇢

µ⌫
= �⇢

⌫µ
. Moreover, as we will see

in Section 4, torsion plays no role in the theory of general relativity which makes use

of the Levi-Civita connection. Nonetheless, it is natural to ask: what is the geometric

meaning of torsion? There is an answer to this that makes use of the kind of parallel

transport arguments we used above.

This time, we start with two vectors X, Y 2 Tp(M). We

Y

X
x

s

r

q

t

X

Y

/

/

Figure 25:

pick coordinates xµ and write these vectors as X = Xµ@µ
and Y = Y µ@µ. Starting from p 2 M , we can use these two

vectors to construct two points infinitesimally close to p. We

call these points r and s respectively: they have coordinates

r : xµ +Xµ✏ and s : xµ + Y µ✏

where ✏ is some infinitesimal parameter.

We now parallel transport the vector X 2 Tp(M) along the direction of Y to give a

new vector X 0 2 Ts(M). Similarly, we parallel transport Y along the direction of X to

get a new vector Y 0 2 Tr(M). These new vectors have components

X 0 = (Xµ � ✏�µ

⌫⇢
Y ⌫X⇢)@µ and Y 0 = (Y µ � ✏�µ

⌫⇢
X⌫Y ⇢)@µ

Each of these tangent vectors now defines a new point. Starting from point s, and

moving in the direction of X 0, we see that we get a new point q with coordinates

q : xµ + (Xµ + Y µ)✏� ✏2�µ

⌫⇢
Y ⌫X⇢
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Meanwhile, if we sit at point r and move in the direction of Y 0, we get to a typically

di↵erent point, t, with coordinates

t : xµ + (Xµ + Y µ)✏� ✏2�µ

⌫⇢
X⌫Y ⇢

We see that if the connection has torsion, so �µ

⌫⇢
6= �µ

⇢⌫
, then the two points q and t do

not coincide. In other words, torsion measures the failure of the parallelogram shown

in figure to close.

3.3.4 Geodesic Deviation

Consider now a one-parameter family of geodesics, with coordinates xµ(⌧ ; s). Here ⌧

is the a�ne parameter along the geodesics, all of which are tangent to the vector field

X so that, along the surface spanned by xµ(⌧, s), we have

Xµ =
@xµ

@⌧

����
s

Meanwhile, s labels the di↵erent geodesics, as shown in Figure 26. We take the tangent

vector in the s direction to be generated by a second vector field S so that,

Sµ =
@xµ

@s

����
⌧

The tangent vector Sµ is sometimes called the deviation vector; it takes us from one

geodesic to a nearby geodesic with the same a�ne parameter ⌧ .

The family of geodesics sweeps out a surface embedded in the manifold. This gives

us some freedom in the way we assign coordinates s and ⌧ . In fact, we can always pick

coordinates s and t on the surface such that S = @/@s and X = @/@t, ensuring that

[S,X] = 0

Roughly speaking, we can do this if we use ⌧ and s as coordinates on some submanifold

of M . Then the vector fields can be written simply as X = @/@⌧ and S = @/@s and

[X,S] = 0.

We can ask how neighbouring geodesics behave. Do they converge? Or do they

move further apart? Now consider a connection � with vanishing torsion, so that

rXS �rSX = [X,S]. Since [X,S] = 0, we have

rXrXS = rXrSX = rSrXX +R(X,S)X
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Figure 26: The black lines are geodesics generated by X. The red lines label constant ⌧ and

are generated by S, with [X,S] = 0.

where, in the second equality, we’ve used the expression (3.14) for the Riemann tensor

as a di↵erential operator. But rXX = 0 because X is tangent to geodesics, and we

have

rXrXS = R(X,S)X

In index notation, this is

X⌫r⌫(X
⇢r⇢S

µ) = Rµ
⌫⇢�X

⌫X⇢S�

If we further restrict to an integral curve C associated to the vector field X, as in

(3.25), this equation is sometimes written as

D2Sµ

D⌧ 2
= Rµ

⌫⇢�X
⌫X⇢S� (3.36)

where D/D⌧ is the covariant derivative along the curve C, defined by D/D⌧ = @x
µ

@⌧
rµ.

The left-hand-side tells us how the deviation vector Sµ changes as we move along the

geodesic. In other words, it is the relative acceleration of neighbouring geodesics. We

learn that this relative acceleration is controlled by the Riemann tensor.

Experimentally, such geodesic deviations are called tidal forces. We met a simple

example in Section 1.2.4.

An Example: the Sphere S2 Again

It is simple to determine the geodesics on the sphere S2 of radius r. Using the Christo↵el

symbols (3.19), the geodesic equations are

d2✓

d⌧ 2
= sin ✓ cos ✓

✓
d�

d⌧

◆2

and
d2�

d⌧ 2
= �2

cos ✓

sin ✓

d�

d⌧

d✓

d⌧
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The solutions are great circles. The general solution is a little awkward in these coor-

dinates, but there are two simple solutions.

• We can set ✓ = ⇡/2 with ✓̇ = 0 and �̇ = constant. This is a solution in which

the particle moves around the equator. Note that this solution doesn’t work for

other values of ✓.

• We can set �̇ = 0 and ✓̇ = constant. These are paths of constant longitude and

are geodesics for any constant value of �. Note, however, that our coordinates go

a little screwy at the poles ✓ = 0 and ✓ = ⇡.

To illustrate geodesic deviation, we’ll look at the second class of solutions; the particle

moves along ✓ = v⌧ , with the angle � specifying the geodesic. This set-up is simple

enough that we don’t need to use any fancy Riemann tensor techniques: we can just

understand the geodesic deviation using simple geometry. The distance between the

geodesic at � = 0 and the geodesic at some other longitude � is

s(⌧) = r� sin ✓ = r� sin(v⌧) (3.37)

Now let’s re-derive this result using our fancy technology. The geodesics are generated

by the vector field X✓ = v. Meanwhile, the separation between geodesics at a fixed ⌧

is S� = s(⌧). The geodesic deviation equation in the form (3.36) is

d2s

d⌧ 2
= v2R�

✓✓� s(⌧)

We computed the Riemann tensor for S2 in (3.20); the relevant component is

R�✓✓� = �r2 sin2 ✓ ) R�
✓✓� = g��R�✓✓� = �1 (3.38)

and the geodesic deviation equation becomes simply

d2s

d⌧ 2
= �v2s

which is indeed solved by (3.37).

3.4 More on the Riemann Tensor and its Friends

Recall that the components of the Riemann tensor are given by (3.15),

R�
⇢µ⌫ = @µ�

�

⌫⇢
� @⌫�

�

µ⇢
+ ��

⌫⇢
��

µ�
� ��

µ⇢
��

⌫�
(3.39)
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We can immediately see that the Riemann tensor is anti-symmetric in the final two

indices

R�
⇢µ⌫ = �R�

⇢⌫µ

However, there are also a number of more subtle symmetric properties satisfied by the

Riemann tensor when we use the Levi-Civita connection. Logically, we could have

discussed this back in Section 3.2. However, it turns out that a number of statements

are substantially simpler to prove using normal coordinates introduced in Section 3.3.2.

Claim: If we lower an index on the Riemann tensor, and write R�⇢µ⌫ = g��R�
⇢µ⌫ then

the resulting object also obeys the following identities

• R�⇢µ⌫ = �R�⇢⌫µ.

• R�⇢µ⌫ = �R⇢�µ⌫ .

• R�⇢µ⌫ = Rµ⌫�⇢.

• R�[⇢µ⌫] = 0.

Proof: We work in normal coordinates, with ��
µ⌫ = 0 at a point. The Riemann tensor

can then be written as

R�⇢µ⌫ = g��
�
@µ�

�
⌫⇢ � @⌫�

�
µ⇢

�

=
1

2
(@µ(@⌫g�⇢ + @⇢g⌫� � @�g⌫⇢)� @⌫(@µg�⇢ + @⇢gµ� � @�gµ⇢))

=
1

2
(@µ@⇢g⌫� � @µ@�g⌫⇢ � @⌫@⇢gµ� + @⌫@�gµ⇢)

where, in going to the second line, we used the fact that @µg�� = 0 in normal coor-

dinates. The first three symmetries are manifest; the final one follows from a little

playing. (It is perhaps quicker to see the final symmetry if we return to the Christo↵el

symbols where, in normal coordinates, we have R�
⇢µ⌫ = @µ��

⇢⌫ � @⌫��
⇢µ.) But since

the symmetry equations are tensor equations, they must hold in all coordinate systems.

⇤

Claim: The Riemann tensor also obeys the Bianchi identity

r[�R�⇢]µ⌫ = 0 (3.40)

Alternatively, we can anti-symmetrise on the final two indices, in which case this can

be written as R�
⇢[µ⌫;�] = 0.
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Proof: We again use normal coordinates, where r�R�⇢µ⌫ = @�R�⇢µ⌫ at the point p.

Schematically, we have R = @� + ��, so @R = @2� + �@� and the final �@� term is

absent in normal coordinates. This means that we just have @R = @2� which, in its

full coordinated glory, is

@�R�⇢µ⌫ =
1

2
@� (@µ@⇢g⌫� � @µ@�g⌫⇢ � @⌫@⇢gµ� + @⌫@�gµ⇢)

Now anti-symmetrise on the three appropriate indices to get the result. ⇤

For completeness, we should mention that the identities R�[⇢µ⌫] = 0 and r[�R�⇢]µ⌫ =

0 (sometimes called the first and second Bianchi identities respectively) are more gen-

eral, in the sense that they hold for an arbitrary torsion free connection. In contrast, the

other two identities, R�⇢µ⌫ = �R⇢�µ⌫ and R�⇢µ⌫ = Rµ⌫�⇢ hold only for the Levi-Civita

connection.

3.4.1 The Ricci and Einstein Tensors

There are a number of further tensors that we can build from the Riemann tensor.

First, given a rank (1, 3) tensor, we can always construct a rank (0, 2) tensor by

contraction. If we start with the Riemann tensor, the resulting object is called the

Ricci tensor. It is defined by

Rµ⌫ = R⇢
µ⇢⌫

The Ricci tensor inherits its symmetry from the Riemann tensor. We write Rµ⌫ =

g�⇢R�µ⇢⌫ = g⇢�R⇢⌫�µ, giving us

Rµ⌫ = R⌫µ

We can go one step further and create a function R over the manifold. This is the Ricci

scalar,

R = gµ⌫Rµ⌫

The Bianchi identity (3.40) has a nice implication for the Ricci tensor. If we write the

Bianchi identity out in full, we have

r�R�⇢µ⌫ +r�R⇢�µ⌫ +r⇢R��µ⌫ = 0

⇥ gµ�g⇢⌫ ) rµRµ� �r�R +r⌫R⌫� = 0

which means that

rµRµ⌫ =
1

2
r⌫R
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This motivates us to introduce the Einstein tensor,

Gµ⌫ = Rµ⌫ �
1

2
Rgµ⌫

which has the property that it is covariantly constant, meaning

rµGµ⌫ = 0 (3.41)

We’ll be seeing much more of the Ricci and Einstein tensors in the next section.

3.4.2 Connection 1-forms and Curvature 2-forms

Calculating the components of the Riemann tensor is straightforward but extremely

tedious. It turns out that there is a slightly di↵erent way of repackaging the connection

and the torsion and curvature tensors using the language of forms. This not only

provides a simple way to actually compute the Riemann tensor, but also o↵ers some

useful conceptual insight.

Vielbeins

Until now, we have typically worked with a coordinate basis {eµ} = {@µ}. However, we
could always pick a basis of vector fields that has no such interpretation. For example,

a linear combination of a coordinate basis, say

êa = ea
µ @µ

will not, in general, be a coordinate basis itself.

Given a metric, there is a non-coordinate basis that will prove particularly useful for

computing the curvature tensor. This is the basis such that, on a Riemannian manifold,

g(êa, êb) = gµ⌫ea
µeb

⌫ = �ab

Alternatively, on a Lorentzian manifold we take

g(êa, êb) = gµ⌫ea
µeb

⌫ = ⌘ab (3.42)

The components eaµ are called vielbeins or tetrads. (On an n-dimensional mani-

fold, these objects are usually called “German word for n”-beins. For example, one-

dimensional manifolds have einbeins; four-dimensional manifolds have vierbeins.)
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The is reminiscent of our discussion in Section 3.1.2 where we mentioned that we can

always find coordinates so that any metric will look flat at a point. In (3.42), we’ve

succeeded in making the manifold look flat everywhere (at least in a patch covered by

a chart). There are no coordinates that do this, but there’s nothing to stop us picking

a basis of vector fields that does the job. In what follows, µ⌫ indices are raised/lowered

with the metric gµ⌫ while a, b indices are raised/lowered with the flat metric �ab or ⌘ab.

We will phrase our discussion in the context of Lorentzian manifolds, with an eye to

later applications to general relativity.

The vielbeins aren’t unique. Given a set of vielbeins, we can always find another set

related by

ẽa
µ = eb

µ(⇤�1)b
a

with ⇤ c

a
⇤ d

b
⌘cd = ⌘ab (3.43)

These are Lorentz transformations. However now they are local Lorentz transformation,

because ⇤ can vary over the manifold. These local Lorentz transformations are a

redundancy in the definition of the vielbeins in (3.42).

The dual basis of one-forms {✓̂a} is defined by ✓̂a(êb) = �a
b
. They are related to the

coordinate basis by

✓̂a = eaµdx
µ

Note the di↵erent placement of indices: eaµ is the inverse of eaµ, meaning it satisfies

eaµebµ = �a
b
and eaµea⌫ = �⌫

µ
. In the non-coordinate basis, the metric on a Lorentzian

manifold takes the form

g = gµ⌫dx
µ ⌦ dx⌫ = ⌘ab✓̂

a ⌦ ✓̂b ) gµ⌫ = eaµe
b
⌫⌘ab

For Riemannian manifolds, we replace ⌘ab with �ab.

The Connection One-Form

Given a non-coordinate basis {êa}, we can define the components of a connection in

the usual way (3.8)

rêc
êb = �a

cb
êa

Note that, annoyingly, these are not the same functions as �µ

⇢⌫
, which are the compo-

nents of the connection computed in the coordinate basis! You need to pay attention to

whether the components are Greek µ, ⌫ etc which tells you that we’re in the coordinate

basis, or Roman a, b etc which tells you we’re in the vielbein basis.
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We then define the matrix-valued connection one-form as

!a
b = �a

cb
✓̂c (3.44)

This is sometimes referred to as the spin connection because of the role it plays in

defining spinors on curved spacetime. We’ll describe this in Section 4.5.6.

The connection one-forms don’t transform covariantly under local Lorentz transfor-

mations (3.43). Instead, in the new basis, the components of the connection one-form

are defined as r ˆ̃eb

ˆ̃ec = �̃a

bc
ˆ̃ea. You can check that the connection one-form transforms

as

!̃a

b
= ⇤a

c
!c

d
(⇤�1)d

b
+ ⇤a

c
(d⇤�1)c

b
(3.45)

The second term reflects the fact that the original connection components �µ

⌫⇢
do not

transform as a tensor, but with an extra term involving the derivative of the coordinate

transformation (3.13). This now shows up as an extra term involving the derivative of

the local Lorentz transformation.

There is a rather simple way to compute the connection one-forms, at least for a

torsion free connection. This follows from the first of two Cartan structure relations:

Claim: For a torsion free connection,

d✓̂a + !a
b ^ ✓̂b = 0 (3.46)

Proof: We first look at the second term,

!a
b ^ ✓̂b = �a

cb
(ec

µ
dxµ) ^ (eb

⌫
dx⌫)

The components �a

cb
are related to the coordinate basis components by

�a

cb
= ea⇢e

µ

c

�
@µe

⇢

b
+ e ⌫

b
�⇢

µ⌫

�
= ea⇢ec

µrµeb
⇢ (3.47)

So

!a
b ^ ✓̂b = ea⇢e

�

c
ec

µ
eb

⌫
(@�e

⇢

b
+ e �

b
�⇢

��
) dxµ ^ dx⌫

= ea⇢e
b

⌫
@µe

⇢

b
dxµ ^ dx⌫

where, in the second line we’ve used ec�ecµ = ��
µ
and the fact that the connection is

torsion free so �⇢

[µ⌫]
= 0. Now we use the fact that eb⌫eb⇢ = �⇢

⌫
, so eb⌫@µeb⇢ = �eb⇢@µeb⌫ .

We have

!a
b ^ ✓̂b = �ea⇢e

⇢

b
@µe

b

⌫
dxµ ^ dx⌫

= �@µe
a
⌫ dx

µ ^ dx⌫ = �d✓̂a

which completes the proof. ⇤

– 134 –



The discussion above was for a general connection. For the Levi-Civita connection,

we have a stronger result

Claim: For the Levi-Civita connection, the connection one-form is anti-symmetric

!ab = �!ba (3.48)

Proof: This follows from the explicit expression (3.47) for the components �a

bc
. Low-

ering an index, we have

�abc = ⌘ad e
d
⇢eb

µrµec
⇢ = �⌘ad ec

⇢eb
µrµe

d
⇢ = �⌘cfe

f
�eb

µrµ(⌘adg
⇢�ed⇢)

where, in the final equality, we’ve used the fact that the connection is compatible with

the metric to raise the indices of ed⇢ inside the covariant derivative. Finishing o↵ the

derivation, we then have

�abc = �⌘cf e
f
⇢eb

µrµea
⇢ = ��cba

The result then follows from the definition !ab = �acb✓̂c. ⇤

The Cartan structure equation (3.46), together with the anti-symmetry condition

(3.48), gives a quick way to compute the spin connection. It’s instructive to do some

counting to see how these two equations uniquely define !a
b. In particular, since !ab is

anti-symmetric, one might think that it has 1

2
n(n � 1) independent components, and

these can’t possibly be fixed by the n Cartan structure equations (3.46). But this is

missing the fact that !ab are not numbers, but are one-forms. So the true number of

components in !ab is n⇥ 1

2
n(n� 1). Furthermore, the Cartan structure equation is an

equation relating 2-forms, each of which has 1

2
n(n � 1) components. This means that

it’s really n ⇥ 1

2
n(n � 1) equations. We see that the counting does work, and the two

fix the spin connection uniquely.

The Curvature Two-Form

We can compute the components of the Riemann tensor in our non-coordinate basis,

Ra
bcd = R(✓̂a; êc, êd, êb)

The anti-symmetry of the last two indices, Ra
bcd = �Ra

bdc, makes this ripe for turning

into a matrix of two-forms,

Ra
b =

1

2
Ra

bcd ✓̂
c ^ ✓̂d (3.49)
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The second of the two Cartan structure relations states that this can be written in

terms of the curvature one-form as

Ra
b = d!a

b + !a
c ^ !c

b (3.50)

The proof of this is mechanical and somewhat tedious. It’s helpful to define the quan-

tities [êa, êb] = fabc êc along the way, since they appear on both left and right-hand

sides.

3.4.3 An Example: the Schwarzschild Metric

The connection one-form and curvature two-form provide a slick way to compute the

curvature tensor associated to a metric. The reason for this is that computing exterior

derivatives takes significantly less e↵ort than computing covariant derivatives. We will

illustrate this for metrics of the form,

ds2 = �f(r)2dt2 + f(r)�2dr2 + r2(d✓2 + sin2 ✓ d�2) (3.51)

For later applications, it will prove useful to compute the Riemann tensor for this metric

with general f(r). However, if we want to restrict to the Schwarzschild metric we can

take

f(r) =

r
1� 2GM

r
(3.52)

The basis of non-coordinate one-forms is

✓̂0 = f dt , ✓̂1 = f�1 dr , ✓̂2 = r d✓ , ✓̂3 = r sin ✓ d� (3.53)

Note that the one-forms ✓̂ should not be confused with the angular coordinate ✓! In

this basis, the metric takes the simple form

ds2 = ⌘ab✓̂
a ⌦ ✓̂b

We now compute d✓̂a. Calculationally, this is straightforward. In particular, it’s sub-

stantially easier than computing the covariant derivative because there’s no messy

connection to worry about. The exterior derivatives are simply

d✓̂0 = f 0 dr ^ dt , d✓̂1 = 0 , d✓̂2 = dr ^ d✓ , d✓̂3 = sin ✓ dr ^ d�+ r cos ✓ d✓ ^ d�

The first Cartan structure relation, d✓̂a = �!a
b ^ ✓̂b, can then be used to read o↵ the

connection one-form. The first equation tells us that !0
1 = f 0fdt = f 0 ✓̂0. We then

use the anti-symmetry (3.48), together with raising and lowering by the Minkowski

metric ⌘ = diag(�1,+1,+1,+1) to get !1
0 = !10 = �!01 = !0

1. The Cartan structure

equation then gives d✓̂1 = �!1
0^ ✓̂0+ . . . and the !1

0^ ✓̂0 contribution happily vanishes

because it is proportional to ✓̂0 ^ ✓̂0 = 0.

– 136 –



Next, we take !2
1 = fd✓ = (f/r)✓̂2 to solve the d✓̂2 structure equation. The anti-

symmetry (3.48) gives !1
2 = �!2

1 = �(f/r)✓̂2 and this again gives a vanishing contri-

bution to the d✓̂1 structure equation.

Finally, the d✓̂3 equation suggests that we take !3
1 = f sin ✓d� = (f/r)✓̂3 and !3

2 =

cos ✓d� = (1/r) cot ✓ ✓̂3. These anti-symmetric partners !1
3 = �!3

1 and !2
3 = �!3

2

do nothing to spoil the d✓̂1 and d✓̂2 structure equations, so we’re home dry. The final

result is

!0
1 = !1

0 = f 0 ✓̂0 , !2
1 = �!1

2 =
f

r
✓̂2

!3
1 = �!1

3 =
f

r
✓̂3 , !3

2 = �!2
3 =

cot ✓

r
✓̂3

Now we can use this to compute the curvature two-form. We will focus on

R0
1 = d!0

1 + !0
c ^ !c

1

We have

d!0
1 = f 0d✓̂0 + f 00dr ^ ✓̂0 =

⇣
(f 0)2 + f 00f

⌘
dr ^ dt

The second term in the curvature 2-form is !0
c ^ !c

1 = !0
1 ^ !1

1 = 0. So we’re left

with

R0
1 =

⇣
(f 0)2 + f 00f

⌘
dr ^ dt =

⇣
(f 0)2 + f 00f

⌘
✓̂1 ^ ✓̂0

The other curvature 2-forms can be computed in a similar fashion. We can now read

o↵ the components of the Riemann tensor in the non-coordinate basis using (3.49).

(We should remember that we get a contribution from both R0

101
and R0

110
= �R0

101
,

which cancels the factor of 1/2 in (3.49).) After lowering an index, we find that the

non-vanishing components of the Riemann tensor are

R0101 = ff 00 + (f 0)2

R0202 =
ff 0

r

R0303 =
ff 0

r

R1212 = �ff 0

r

R1313 = �ff 0

r

R2323 =
1� f 2

r2
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We can also convert this back to the coordinates xµ = (t, r, ✓,�) using

Rµ⌫⇢� = ea
µ
eb

⌫
ec

⇢
ed

�
Rabcd

This is particularly easy in this case because the matrices e µ

a
defining the one-forms

(3.53) are diagonal. We then have

Rtrtr = ff 00 + (f 0)2

Rt✓t✓ = f 3f 0r

Rt�t� = f 3f 0r sin2 ✓

Rr✓r✓ = �f 0r

f
(3.54)

Rr�r� = �f 0r

f
sin2 ✓

R✓�✓� = (1� f 2)r2 sin2 ✓

Finally, if we want to specialise to the Schwarzschild metric with f(r) given by (3.52),

we have

Rtrtr = �2GM

r3

Rt✓t✓ =
GM(r � 2GM)

r2

Rt�t� =
GM(r � 2GM)

r2
sin2 ✓

Rr✓r✓ = � GM

r � 2GM

Rr�r� = �GM sin2 ✓

r � 2GM
R✓�✓� = 2GMr sin2 ✓

Although the calculation is a little lengthy, it turns out to be considerably quicker than

first computing the Levi-Civita connection and subsequently motoring through to get

the Riemann tensor components.

3.4.4 The Relation to Yang-Mills Theory

It is no secret that the force of gravity is geometrical. However, the other forces are

equally as geometrical. The underlying geometry is something called a fibre bundle,

rather than the geometry of spacetime.
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We won’t describe fibre bundles in this course, but we can exhibit a clear similarity

between the structures that arise in general relativity and the structures that arise

in the other forces, which are described by Maxwell theory and its generalisation to

Yang-Mills theory.

Yang-Mills theory is based on a Lie group G which, for this discussion, we will take

to be SU(N) or U(N). If we take G = U(1), then Yang-Mills theory reduces to

Maxwell theory. The theory is described in terms of an object that physicists call a

gauge potential. This is a spacetime “vector” Aµ which lives in the Lie algebra of G. In

more down to earth terms, each component is an anti-Hermitian N⇥N matrix, (Aµ)ab,

with a, b = 1, . . . , N . In fact, as we saw above, this “vector” is really a one-form. The

novelty is that it’s a Lie algebra-valued one-form.

Mathematicians don’t refer to Aµ as a gauge potential. Instead, they call it a con-

nection (on a fibre bundle). This relationship becomes clearer if we look at how Aµ

changes under a gauge transformation

Ãµ = ⌦Aµ⌦
�1 + ⌦@µ⌦

�1

where ⌦(x) 2 G. This is identical to the transformation property (3.45) of the one-form

connection under local Lorentz transformations.

In Yang-Mills, as in Maxwell theory, we construct a field strength. In components,

this is given by

(Fµ⌫)
a

b
= @µ(A⌫)

a

b
� @⌫(Aµ)

a

b
+ [Aµ, A⌫ ]

a

b

Alternatively, in the language of forms, the field strength becomes

F a

b
= dAa

b + Aa
c ^ Ac

b

Again, there is an obvious similarity with the curvature 2-form introduced in (3.50).

Mathematicians refer to the Yang-Mills field strength the “curvature”.

A particularly quick way to construct the Yang-Mills field strength is to take the

commutator of two covariant derivatives. It is simple to check that

[Dµ,D⌫ ] = Fµ⌫

where I’ve suppressed the a, b indices on both sides. This is the gauge theory version

of the Ricci identity (3.16): for a torsion free connection,

[rµ,r⌫ ]Z
� = R�

⇢µ⌫Z
⇢
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