§ Notes on Differential Geometry and Lie Groups By <u>Jean Gallier</u>
Machine perception 機械知覺 Catadioptric cameras 折反射相機
catadioptric fundamental matrices Lorentz group O(3,1)
The set of fundamental matrices turns out to form a manifold F。

Chris Geyer foud that the space F is isomorphic to $O(3,1) \times O(3,1) / H_F$

 $dimF=2\times6-3=9$

- 一個電腦資訊科學家的微分幾何與李群筆記。
- 第一章 Introduction to Manifolds and Lie Groups
- 第二章 Review of Groups and Group Actions
- 第三章 Manifolds
- 第四章 Construction of Manifolds from Gluing Data
- 第五章 Lie Group, Lie Algebra, Exponential Map
- 第六章 The Derivatuve of exp and Dynkin's Formula
- 第七章 Bundles, Riemannian Metrices, Homogeneous Spaces
- 第八章 Differential Forms
- 第九章 Integration on Manifolds
- 第十章 Distributions and the Frobenius Theorem
- 第十一章 Connections and Curvature in Vector Bundles
- 第十二章 Geodesics on Riemannian Manifolds
- 第十三章 Curvature in Riemannian Manifolds
- 第十四章 Curvatures and Geodesics on Polyhedral Surfaces
- 第十五章 The Laplace-Beltrami Operator and Harmonic Forms
- 第十六章 Spherical Harmonics
- 第十七章 Discrete Laplacians on Polyhedral Surfaces
- 第十八章 Metrics and Curvature on Lie Groups
- 第十九章 The Log-Euclidean Framework
- 第二十章 Statistics on Riemannian Manifolds
- 第二十一章 Clifford Algebras,Clifford Groups,Pin and Spin
- 第二十二章 Tensor Algebras