Geometric flow:

- 1. Mean curvature flow $\frac{\partial X}{\partial t} = -Hn$
- 2. Ricci flow $\frac{\partial g}{\partial t} = -2Ric(g)$
- 3. Yamabe flow $\frac{\partial g}{\partial t} = -Rg$
- 4. Harmonic map flow
- 5. Gauss curvature flow $\frac{\partial X}{\partial t} = -Kn$

§ 01 Ricci curvature

Ricci curvature provides a way to measure how the volume of a small geodesic ball in a curved space differs from that in Euclidean space \circ

The Ricci curvature is a tensor derived from the Riemann curvature tensor \circ Given a Riemannian manifold (M,g) with the Levi-Civita connection ∇ , the Riemann curvature tensor R(X,Y)Z measures how tangent vectors change under parallel transport around an infinitesimal loop \circ

The Ricci curvature tensor Ric is obtained by taking a trace(contraction) of the Riemann curvature tensor : $Ric(Y,Z) = \sum_{i=1}^{n} R(e_i, Y, Z, e_i)$

where $\{e_i\}$ is an orthonormal basis for the tangent space \circ

In local coordinates , the Ricci tensor is given by : $R_{ij} = R_{ikj}^k$

where R_{ikj}^{k} are the components of the Riemann curvature tensor \circ

§ 02 Ricci flow Richard Hamilton 1982

We have a Riemannian manifold M with the metric g_0 , the Ricci flow is a PDE that

evolves the metric tensor : $\frac{\partial}{\partial t}g(t) = -2Ric(g(t))$, $g(0) = g_0$

A solution to this equation (or a Ricci flow) is a one-parameter family of metrics g(t), $(\mathbf{M}, g(\mathbf{t}_0))$ is called the initial condition (or initial metric) \circ

We hope that the metric will evolve towards one of the Thurston eight fundamental geometric structure \circ

The space-time for a Ricci flow is $M \times I$, where $t \in I \circ$ Given (p, t) and r>0, B(p, t, r) is the ball of radius r centered at (p, t) in the t timeslice \circ

 S^{n} (n>1) of radius r(t) , the metric is given $g = r^{2}\tilde{g}$, where \tilde{g} is the metric on the unit sphere \circ

Since Ric(g)=(n-1)g, the Ricci flow becomes a ODE \circ

g

$$\frac{\partial}{\partial t}(r^2 \tilde{g}) = -2(n-1)$$
$$\frac{dr^2}{dt} = -2(n-1)$$
$$r^2 = R_0^2 - 2(n-1)t$$

 $r(t) = \sqrt{R_0^2 - 2(n-1)t}$, the sphere shrinks to a point as $t \to \frac{R_0^2}{2(n-1)}$.

§ 03 Ricci solton

A Ricci soliton is a special solution to the Ricci flow , a geometric flow that evolves a Riemannian metric on a manifold \circ

A Riemannian metric g on a manifold M is called a Ricci soliton if there exists a smooth vector field X on M and a constant $\lambda \in \mathbb{R}$ such that : $\operatorname{Ric}(g) + \frac{1}{2}L_Xg = \lambda g$

§ 04 Einstein equation
$$Ric(g) - \frac{1}{2}R_g = 8\pi T$$

EVE(Einstein Vacuum equation 愛因斯坦真空方程) Ric(g)=0 H(Σ)=0

Einstein manifolds : $Ric(g) = \lambda g$

§ 05 Black hole

- (1) Schwarzschild solution 1915
- (2) Kerr solution 1968
- (3) Penrose singularity theorem 1965
- (4) No-hair theorem Werner Israel 1965

發現重力波 2015 事件視界望遠鏡 2022

EMRI(Extreme Mass Ratio Inspirals):小黑洞繞這超大質量黑洞旋轉。