§ Flows

1. A flow of a vector field

$$\varphi: U \to M \quad \varphi_t(p) = \gamma(t), t \in (-\varepsilon, \varepsilon)$$

$$\frac{d(\varphi_t(p))}{dt} = \frac{d\gamma}{dt} = X$$
 ,則稱 φ_t 是向量場 X 的 flow

 $arphi_t$ 是 1-parameter group, $arphi_t \circ arphi_s(q) = arphi_{t+s}(q)$, $arphi_0 = id$ entity

一個向量場 X,其 local flow 定義一個 one-parameter group of diffeomorphism 則稱 X 為完備。

例
$$X = y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y}$$
 , $Y = z \frac{\partial}{\partial x} - x \frac{\partial}{\partial z}$ 求 X 的 flow φ_t

$$\frac{d\varphi_{t}(p)}{dt} = X_{\varphi_{t}(p)}, \varphi_{0(p)} = p$$

$$\begin{cases} \varphi_t^1(p) = X^1(\varphi_{t(p)}) = 0 \\ \varphi_t^2(p) = X^2(\varphi_{t(p)}) = -\varphi_t^3 \\ \varphi_t^3(p) = X^3(\varphi_{t(p)}) = \varphi_{t(p)}^2 \\ \Rightarrow \varphi_t^1 = c, \varphi_t^2 = -\varphi_t^3 = -\varphi_t^2 \end{cases}$$

Then $\varphi_t^1 = C$, $\varphi_t^2 = A\cos t + B\sin t$, $\varphi_t^3 = A\sin t - B\cos t$

 $A \cdot B \cdot C$ are function of p=(x y z)

And
$$\varphi_0(x, y, z) = (x, y, z)$$
, so C=x, A=y, B=-z

所以
$$\varphi_t(x, y, z) = (x, y\cos t - z\sin t, y\sin t + z\cos t)$$

X 是繞 x 軸旋轉的向量場,是 Killing vector field。

V.I.Arnold

M phase space: position velocity

曲線
$$x = \varphi(t)$$
, $\frac{d\varphi}{dt} = v(t, \varphi(t))$, $x = v(t, x)$ 或者簡寫成 $x = v(x)$

For $v(x) = \frac{d}{dt}\Big|_{t=0} (g^t x)$, the phase velocity vector field, the phase flow is the one-parameter diffeomorphism group.

 $\stackrel{\cdot}{\varphi}=k\varphi$ with $\varphi_0=id$ 解出 $\varphi=xe^{kt}$, So the phase flow is the group $\left\{xe^{kt}\right\}$

例1. Find the phase flow of (1)
$$\dot{x} = 1$$
 (2) $\dot{x} = x - 1$ (3) $\dot{x} = \sin x, o < x < \pi$

(2)
$$\varphi_t(x) = \varphi_t(x) - 1$$
, $\varphi_0(x) = x$

$$\varphi_t(x) = e^{t+c} + 1$$
, $\varphi_0(x) = e^c + 1 = x$, $e^c = x - 1$

所以
$$g^t x = \varphi_t(x) = (x-1)e^t + 1$$

(3) 查表得知
$$\int \csc x dx = -\ln|\csc x + \cot x| + c = -\ln|\cot \frac{x}{2}| + c$$

$$\dot{\varphi} = \sin \varphi$$
 , $\frac{d\varphi}{\sin \varphi} = dt$ 兩邊積分

$$-\ln\left|\cot\frac{\varphi}{2}\right| = t + c \quad \text{out} \quad \frac{\varphi}{2} = e^{-t} + c \quad \text{by} \quad \varphi_0(x) = x$$

$$\varphi_t(x) = 2 \operatorname{arccot}(e^{-t} \times \tan \frac{x}{2})$$

例2. Find the phase flows of the systems

$$(1)\begin{cases} \dot{x} = y \\ \dot{y} = 0 \end{cases} \qquad (2)\begin{cases} \dot{x} = y \\ \dot{y} = 1 \end{cases} \qquad (3)\begin{cases} \dot{x} = \sin y \\ \dot{y} = 0 \end{cases}$$

(2)
$$\dot{\varphi_t^2} = 1$$
, $\varphi_t^2 = y + t$ for $\varphi_0(x, y) = (x, y)$

$$\dot{\varphi}_{t}^{1} = \varphi_{t}^{2} = y + t$$
, $\dot{\varphi}_{t}^{1} = ty + \frac{1}{2}t^{2} + x$

所以
$$g^t(x, y) = (\varphi_t^1, \varphi_t^2) = (x + ty + \frac{1}{2}t^2, y + t)$$

(3)
$$g^{t}(x, y) = (x + t \sin y, y)$$

Q:是否每一個 smooth vector field 是一個 flow 的 phase velocity vector field?

例
$$v(x) = x^2$$

$$\dot{\varphi}_t = \varphi_t^2, \frac{d\varphi}{\varphi^2} = dt$$
 with $\varphi_0(x) = x$ 解出 $g^t x = \varphi_t(x) = \frac{x}{1 - xt}$

容易驗證
$$\varphi_t^x \circ \varphi_s^x = \dots = \varphi_{t+s}^x$$

當
$$t \neq 0$$
, $g^t x$ 在 $x = \frac{1}{t}$ 沒有定義

所以 v(x)沒有 phase flow

用向量場的說法是

$$X = x^2 \frac{d}{dx}$$
,求 $\dot{x} = x^2$ 的積分曲線 with initial condition $x(0) = x_0 \neq 0$

則
$$x(t) = \frac{x_0}{1 - tx_0}$$
 在 $t = \frac{1}{x_0}$ 沒有定義

$$\varphi_t(x) = \frac{x}{1-tx}$$
 所以 X 非完備。

所以 Arnold 問:

是否每一個 smooth vector field 是一個 flow 的 phase velocity vector field? 即 是否每一個量場皆完備,答案當然是否定的。

2. Euler-Lagrange flows

$$L:TM \to R$$
 Lagrangian $u:[0,1] \to M$

The action of L
$$\cdot$$
 $A(u) = \int_0^1 L(u(t), u(t)) dt$

考慮 A 的變分, u is a critical point ⇔

$$\frac{\partial L}{\partial u}(u, \dot{u}) - \frac{d}{dt}(\frac{\partial L}{\partial v}(u, \dot{u})) = 0$$
, $v = \dot{u}$ (Euler-Lagrange equation)

If M is compact, the extremals(critical point) of A give rise to a complete flow

 $\phi_i:TM\to TM$ called the Euler-Lagrange flow of the Lagrangian \circ

The Euler-Lagrange equations for a hyper-regular Lagrangian L define a flow on M \circ This flow is carried by the Legendre transformation to the flow defined on T^*M by the Hamilton equations

$$\begin{cases} \dot{x}^{i} = \frac{\partial H}{\partial p_{i}}....(1') \\ \dot{p}_{i} = -\frac{\partial H}{\partial x^{i}}...(2') \end{cases}$$

3. The flow of a Hamilton equations

The Hamilton equations are the equations for the flow of the vector field $X_{\scriptscriptstyle H}$ satisfying

$$i_{X_H}\omega = -dH$$

Hamiltonian flows preserve their generating functions \circ i.e. $X_FF = 0$

Hamiltonian flows preserve the canonical symplectic form •

If $\varphi_t: T^*M \to T^*M$ is a Hamiltonian flow then $\varphi^*\omega = \omega$

Liouville theorem

Hamiltonian flows preserve the integral with respect to the symplectic volume form $\,{}^{\circ}$

 $\varphi_i: T^*M \to T^*M$ is a Hamiltonian flow and $F \in C^{\infty}(T^*M)$ is a compactly

supported function then
$$\int\limits_{T^*M}F\circ arphi_t=\int\limits_{T^*M}F$$

Geodesic flow

M is a complete Riemannian manifold

$$\gamma_{(x,v)}(t)$$
 is the unique geodesic with
$$\begin{cases} \gamma_{(x,v)}(0) = x \\ \vdots \\ \gamma_{(x,v)}(0) = v \end{cases}$$

TM is the tangent bundle •

$$\phi_t:TM\to TM$$
 , $\phi_t(x,v):=(\gamma_{(x,v)}(t),\dot{\gamma}_{(x,v)}(t))$ is a diffeomorphism

Then
$$\phi_{t=0}(x,v) = (x,v) = identity$$

Then
$$\left\{\phi_{t}\right\}$$
 is a flow , with $\phi_{t+s}=\phi_{t}\circ\phi_{s}$

$$SM = \{v | v \in TM, |v| = 1\}$$

 \because geodesic travel with constant speed $, \ \phi_{\!_{t}}$ leaves SM invariant \circ

That is ', given $(x, v) \in SM$ for all then $\phi_t(x, v) \in SM$ °

The restriction of ϕ_t to SM is called the geodesic flow of g \circ

(質點沿 geodesic 走 不受力 加速度=0 速度是常數。)

5. Ricci flow

考慮在
$$M^n \times [0,T]$$
上的 Ricci flow $\frac{\partial g}{\partial t} = -2Ric(g)$

例

If
$$Ric(g_0) = \lambda g_0$$
, λ is a constant \circ Then a solution $g(t)$ of $\frac{\partial g}{\partial t} = -2Ric(g)$ with $g(0) = g_0$ is given by $g(t) = (1 - 2\lambda t)g_0$

In particularly ' for (S^n,g_0) ' we have $Ric(g_0)=(n-1)g_0$ ' so the evolution is $g(t)=(1-2(n-1)t)g_0 \quad \text{and the sphere collapses to a point at time} \quad T=\frac{1}{2(n-1)}$

6. A flow of a Killing vector field

c.f.

[RG1101vectorfield01] [DEflows]

§ Geometric flows

在微分幾何中,幾何流(geometric flow)也稱為幾何演化方程式,是一幾何對象,例如黎曼度量或者一個寢射(embedding)的偏微分方程。例如

Mean curvature flow

Ricci flow

Calabi flow

Yamabi flow