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In classical Differential Geometry ~ X; =T'; X, +;N
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And T7, —Eizg (axl? + axjk - 8XJI ),g" =(9;)

1. VywZ2=1V,Z+gVv,Z
2. V,(Y+2)=V,Y+V, Z

V, (fY)=(X-f)Y +fV,Y
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HE X-<Y,Z>=<V,Y,Z>+<Y,V,Z>

EfE VY -V, X =[X,Y](called torsion free)

When 'V compatible with metric and torsion free then Vis called Levi-Civita
connection(Riemannian connection)

BE (M, <,>) with an affine connection V
V Hi< >HH75 < C /& smooth curve » XY 21 c B TIRIEY HIJ<X,Y>=constant

A Levi-Civita connection preserves length and angles under parallel transport °

Proof
Let T=a'(t) betangenttocurve «ft)

X, Y be parallel transported along «o
V. X=V.Y=0

V<X, X>=<V X, X>+< X,V X>=0 > ||X|| is constant °

V< XY >=< V. X,Y>+< X, V.Y >=0 > -.<X,Y > isconstant °
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(M ,g) is a Riemann manifold » Then there exists a unique symmetric connection V on
TM compatible with the metricgi.e.T(V)=0,Vg=0 -
The connection V 1s usually called the Levi-Civita connection associated to the metric g ©

Proof. Uniqueness. We will achieve this by producing an explicit description of a connection with
the above two mproperties.
Let V be such a connection, i.e.,

Vg=0 and VxY —VyX =[X,Y], VX,V € Vect (M).
Forany X,Y, Z € Vect (M) we have
Zg(X)Y)=9g(VzX.Y)+¢g(X,VzY)
since Vg — 0. Using the symmetry of the connection we compute
Zy(X.Y) ~Yg(Z,X) + Xg(Y,Z) = g(VzX.Y) — g(VyZ.X) + (VY. Z)
+9(X,VzY) —g(Z. Vv X))+ 9(Y,Vx Z)

— g(1Z.Y].X) + g(IX.Y].Z) + g(1Z. X).Y) + 29(Vx Z.Y).

We conclude that

9(VxZ.Y) = H{Xg(Y.Z) =Y 9(Z,X) + Zg(X.Y)

—9([X,Y].Z) +¢([Y. Z]. X) — ¢([Z,X].Y)}. (4.1.3)
The above equality establishes the uniqueness of V. )
Using local coordinates (;131__ ..... ™) on M we deduce from (4.1.3), with X = @; = 8?:1’
s_ 5 _ 8 _ 9 __0
Y = Ok — m 7 = 0} - ﬂ)j that
‘ 1. . .
9(Vi0;. ) = gell; = 5 (0igjk — Okgij + Oj9ik) -
Above, the scalars Ffj denote the Christoffel symbols of V in these coordinates, i.e.,
Vo, 0; = l—‘fjag.
If (4**) denotes the inverse of (g;;) we deduce
1 i i
Iy = 5.@’“ (Digjk — Orgij + O;gik) - (4.1.4)

Existence. It boils down to showing that (4.1.3) indeed defines a connection with the required
properties. The routine details are left to the reader. O



Proposition 4.1.44. V xdVy =0, YX ¢ Vect (M).

Proof. We have to show that for any p € M

(VxdVy)(eq,...,en) =0, (4.1.13)
where €1, ...,ep is a basis of T,A. Choose normal coordinates (:c‘) near p. Set J; = %;,

gij = g(0;, ). and ¢; = J; |p. Since the expression in (4.1.13) is linear in X, we may as well
assume X = J, for some k& = 1,...., n. We compute

(VxdVg)(er. o en) = X (dVy (01, e 00)) |y
= " dvg(er. o (VX :) |prors D). (4.1.14)

We consider each term separately. Note first that dV, (1, ....d,) = (det(gij))l/Q, so that

X(det(gij))l/g lp= 8k(det(gij))1/2 lp

is a linear combination of products in which each product has a factor of the form L?kgz-j |p- Such
a factor is zero since we are working in normal coordinates. Thus, the first term in(4.1.14) is zero.
The other terms are zero as well since in normal coordinates at p we have the equality

Vx0; =Vg,d; = 0.

Proposition 4.1.44 is proved. O



