\S Affine connection $\nabla_X Y$

Covariant derivative of Y along X

$$X = \sum_{i} X^{i} \frac{\partial}{\partial x^{i}} \cdot Y = \sum_{i} Y^{i} \frac{\partial}{\partial x^{i}} \quad \text{then} \quad \nabla_{X} Y = \sum_{i} (XY^{i} + \sum_{j,k} \Gamma^{i}_{jk} X^{j} Y^{k}) \frac{\partial}{\partial x^{i}}$$

Covariant derivative of ω along X

$$\nabla_{\mathbf{X}}\omega = \sum_{i} (X\omega^{i} - \sum_{jk} \Gamma^{k}_{ji} X^{j} \omega_{k}) dx^{i}$$

In classical Differential Geometry $X_{ij} = \Gamma^k_{ij} X_k + b_{ij} N$

And
$$\Gamma^{i}_{jk} = \frac{1}{2} \sum_{i} g^{il} (\frac{\partial g_{kl}}{\partial x^{j}} + \frac{\partial g_{jl}}{\partial x^{k}} - \frac{\partial g_{jk}}{\partial x^{l}}), g^{ij} = (g_{ij})^{-1}$$

1.
$$\nabla_{fX+gY}Z = f\nabla_XZ + g\nabla_YZ$$

2.
$$\nabla_{Y}(Y+Z) = \nabla_{Y}Y + \nabla_{Y}Z$$

3.
$$\nabla_X (fY) = (X \cdot f)Y + f \nabla_X Y$$

ΕX

$$\frac{d}{dt} < V, W > = < \frac{DV}{dt}, W > + < V, \frac{DW}{dt} >$$

相容
$$X \cdot \langle Y, Z \rangle = \langle \nabla_x Y, Z \rangle + \langle Y, \nabla_x Z \rangle$$

對稱
$$\nabla_{\mathbf{y}} Y - \nabla_{\mathbf{y}} X = [X, Y]$$
 (called torsion free)

When ∇ compatible with metric and torsion free then ∇ is called Levi-Civita connection(Riemannian connection) \circ

黎曼流形(M,<,>) with an affine connection ∇

∇與<,>相容⇔ C 是 smooth curve, X,Y 是沿 c 的平行向量場 則<X,Y>=constant

A Levi-Civita connection preserves length and angles under parallel transport •

Proof

Let $T = \alpha'(t)$ be tangent to curve $\alpha(t)$

X , Y be parallel transported along α

$$\nabla_T X = \nabla_T Y = 0$$

$$\nabla_{_T} < X, X > = < \nabla_{_T} X, X > + < X, \nabla_{_T} X > = 0$$
 , .: $||X||$ is constant \circ

$$\nabla_T < X, Y > = <\nabla_T X, Y > + < X, \nabla_T Y > = 0$$
, $\therefore < X, Y >$ is constant \circ

$$\cos \theta = \frac{\langle X, Y \rangle}{\|X\| \|Y\|} = \text{constant } \circ$$

定理[DG06] p.135

(M ,g) is a Riemann manifold \cdot Then there exists a unique symmetric connection ∇ on TM compatible with the metric g i.e. $T(\nabla) = 0, \nabla g = 0$

The connection ∇ is usually called the Levi-Civita connection associated to the metric g \circ

Proof. Uniqueness. We will achieve this by producing an *explicit* description of a connection with the above two mproperties.

Let ∇ be such a connection, i.e.,

$$\nabla g = 0$$
 and $\nabla_X Y - \nabla_Y X = [X, Y], \forall X, Y \in \text{Vect}(M).$

For any $X, Y, Z \in \text{Vect}(M)$ we have

$$Zg(X,Y) = g(\nabla_Z X, Y) + g(X, \nabla_Z Y)$$

since $\nabla g = 0$. Using the symmetry of the connection we compute

$$Zg(X,Y) - Yg(Z,X) + Xg(Y,Z) = g(\nabla_Z X, Y) - g(\nabla_Y Z, X) + g(\nabla_X Y, Z)$$
$$+g(X, \nabla_Z Y) - g(Z, \nabla_Y X) + g(Y, \nabla_X Z)$$

$$= g([Z, Y], X) + g([X, Y], Z) + g([Z, X], Y) + 2g(\nabla_X Z, Y).$$

We conclude that

$$g(\nabla_X Z, Y) = \frac{1}{2} \{ Xg(Y, Z) - Yg(Z, X) + Zg(X, Y) \}$$

$$-g([X,Y],Z) + g([Y,Z],X) - g([Z,X],Y)\}. (4.1.3)$$

The above equality establishes the uniqueness of ∇ .

Using local coordinates (x^1, \ldots, x^n) on M we deduce from (4.1.3), with $X = \partial_i = \frac{\partial}{\partial x_i}$, $Y = \partial_k = \frac{\partial}{\partial x_k}$, $Z = \partial_j = \frac{\partial}{\partial x_j}$, that

$$g(\nabla_i \partial_j, \partial_k) = g_{k\ell} \Gamma_{ij}^{\ell} = \frac{1}{2} (\partial_i g_{jk} - \partial_k g_{ij} + \partial_j g_{ik}).$$

Above, the scalars Γ_{ij}^ℓ denote the *Christoffel symbols* of ∇ in these coordinates, i.e.,

$$\nabla_{\partial_i}\partial_j=\Gamma_{ij}^\ell\partial_\ell.$$

If $(g^{i\ell})$ denotes the inverse of $(g_{i\ell})$ we deduce

$$\Gamma_{ij}^{\ell} = \frac{1}{2} g^{k\ell} \left(\partial_i g_{jk} - \partial_k g_{ij} + \partial_j g_{ik} \right). \tag{4.1.4}$$

Existence. It boils down to showing that (4.1.3) indeed defines a connection with the required properties. The routine details are left to the reader.

Proposition 4.1.44. $\nabla_X dV_g = 0$, $\forall X \in \text{Vect}(M)$.

Proof. We have to show that for any $p \in M$

$$(\nabla_X dV_q)(e_1, ..., e_n) = 0, (4.1.13)$$

where $e_1,...,e_p$ is a basis of T_pM . Choose normal coordinates (x^i) near p. Set $\partial_i = \frac{\partial}{\partial x^i}$, $g_{ij} = g(\partial_i, \partial_k)$, and $e_i = \partial_i|_p$. Since the expression in (4.1.13) is linear in X, we may as well assume $X = \partial_k$, for some k = 1,...,n. We compute

$$(\nabla_X dV_g)(e_1, ..., e_n) = X(dV_g(\partial_1, ..., \partial_n))|_p - \sum_i dv_g(e_1, ..., (\nabla_X \partial_i)|_p, ..., \partial_n).$$
(4.1.14)

We consider each term separately. Note first that $dV_g(\partial_1,...,\partial_n) = (\det(g_{ij}))^{1/2}$, so that

$$X(\det(g_{ij}))^{1/2}|_{p} = \partial_{k}(\det(g_{ij}))^{1/2}|_{p}$$

is a linear combination of products in which each product has a factor of the form $\partial_k g_{ij}|_p$. Such a factor is zero since we are working in normal coordinates. Thus, the first term in(4.1.14) is zero. The other terms are zero as well since in normal coordinates at p we have the equality

$$\nabla_X \partial_i = \nabla_{\partial_k} \partial_i = 0.$$

Proposition 4.1.44 is proved.