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L.

The Frobenius theorem states that a system of partial differential equations 1s
integrable if and only if the associated distribution (a collection of vector fields)

is involutive > meaning that the Lie bracket of any two vector fields in the distribution
remains within the distribution °

In simpler terms > the system is integrable if the vector fields defining the system
"close" under commutation °

For a system of PDEs - this translates to the existence of afoliation(a decomposition
into submanifolds) such that the solutions to the system lie on these submanifolds °

The KdV equation is given by * utruxxx+6uux=0,where wu(x,7) is a function of
spacexxand timet # ¢ The KdV equation 1s known to beintegrable * meaning it



possesses an infinite number of conserved quantities and can be solved exactly using
techniques like theinverse scattering transform °

To connect this to the Frobenius theorem > we need to interpret the KdV equation as a
dynamical system on an infinite-dimensional manifold (the space of functionsuz(x)) and
analyze its associated vector fields °

The KdV equation can be viewed as an evolution equation on an infinite-dimensional
manifoldM, where each point onMrepresents a functionz(x) ! The time evolution
ofu(x,His governed by a vector field XonM ° defined by: X()=—uxxx—6uux °

The integrability of the KdV equation can be understood in terms of the existence of
ahierarchy of commuting vector fieldsonM ° These vector fields correspond to the
infinite sequence of conserved quantities (Hamiltonians) associated with the KdV
equation ©

The Frobenius theorem can be applied to the KdV equation by considering
theinvolutivityof the vector fields associated with 1ts hierarchy of conserved
quantities °

Each conserved quantity generates a flow (a vector field), and the KdV equation 1s
integrable because these flowscommutewith each other ©

This means that the Lie bracket of any two vector fields in the hierarchy vanishes:[ X7
,X7=0 » where X7 and.X7 are vector fields corresponding to different conserved
quantities ° This commutativity ensures that the system 1s integrable in the sense of
Frobenius °

Using the Frobenius theorem ° the integrability of the KdV equation can be interpreted
as the existence of an infinite-dimensional foliation of the manifoldMby submanifolds
(level sets of the conserved quantities) * such that the vector fields associated with the
KdV hierarchy are tangent to these submanifolds and commute with each other °

This geometric perspective provides a deep understanding of the structure and
solvability of the KdV equation ©



