§

Let (M, g) be a connected Riemannian manifold, with $\dim M \ge 3$

- (a) State the second Bianchi identity for the Riemann crvature
- (b) Suppose that its Ricci curvature is proportional to the metric tensor •

Namely , thre exists $f \in C^{\infty}(M; R)$ such that $\operatorname{Ric}(X, Y) = f(p)g(X, Y)$ for any $p \in M$,

and $X, Y \in T_p M$ • Prove that f must be a contstant function •

Hint : In terms of coordinate , the condition reads $R_{ilj}^l = fg_{ij}$ °

Taking covariant derivative in ∂_k gives $R_{ilj;k}^l = (\partial_k f)g_{ij}$