Let M , N be two smooth manifolds and $f: M \to N$ be an immersion \circ Suppose that $\dim(M) = \dim(N)$, prove that f is a local diffeomorphism \circ

Since f is an immersion , its differential $df_p: T_pM \to T_{f(p)}N$ is injective for every

 $p \in M$ ° Given $\dim(M) = \dim(N)$, the tangent spaces T_pM and $T_{f(p)}N$ have equal dimensions ° A linear injective map between vector spaces of same dimension is necessarily surjective , hence df_p is an isomorphism °

By the inverse function theorem for manifolds , if df_p is an isomorphism at p , there

exist neighborhoods $U \subset M$ of p and $V \subset N$ of f(p) such that $f|_U: U \to V$ is a diffeomorphism \circ Since this hold for every $p \in M$, f is a local diffeomorphism \circ