An introduction to Riemannian Geometry Jose Natario

Exercise 1.8
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Which of the following sets (with the subspace topology) are topological mani-
folds?

@ D?*={(x,y) eR*|x*+y? <1}
(b) $*\ {p}(p € $?);

© S\ {p.q}(p,q €S p#q)
) {(x,y.2) e R¥ | x?+y* =1};

@ {(x,y.2) eR3 | x2+y? =22}

Which of the manifolds above are homeomorphic?

Show that the Klein bottle K2 can be obtained by gluing two Mobius bands
together through a homeomorphism of the boundary.

Show that:

(a) M#S? = M for any 2-dimensional topological manifold M
(b) RP2#R P2 = K2,
(c) RP*#T? = RP2#K?.

A triangulation of a 2-dimensional topological manifold M is a decomposition
of M in a finite number of triangles (i.e. subsets homeomorphic to triangles in
[R?) such that the intersection of any two triangles is either a common edge, a
common vertex or empty (it is possible to prove that such a triangulation always
exists). The Euler characteristic of M is

x(M):=V —-—E+F,

where V., E and F are the number of vertices, edges and faces of a given trian-
gulation (it can be shown that this is well defined, i.e. does not depend on the
choice of triangulation). Show that:

(a) adding a vertex to a triangulation does not change x(M);
(b) x (%) =2:

(© x(T%)=0;

d x(K?) =0

© x(RP?)=1;

() X(M#N) = x(M) + x(N) — 2.



1.2 Differentiable Manifolds

Exercise 2.5

(1) Show that two atlases .4, and .A, for a smooth manifold are equivalent if and

2)

3)

4)

(5)

(6)

(7

only if 4; U A5 is an atlas.

Let M be a differentiable manifold. Show that a set V C M is open if and only
if 99;1 (V) is an open subset of R" for every parameterization (U,, ¢,) of a C™
atlas.

Show that the two atlases on R” from Example 2.3(1) are equivalent.

Consider the two atlases on R from Example2.3(2), {(R, ¢1)} and {(RR, ¢©7)},
where ¢ (x) = x and ¢ (x) = x>. Show that 992_1 o (1 1s not differentiable at
the origin. Conclude that the two atlases are not equivalent.

Recall from elementary vector calculus that a surface S c R3is a set such
that, for each p € §, there is a neighborhood V), of p in R? and a C™® map

fp : Up — R (where U, is an open subset of R?) such that S N V) is the graph
of z = fp(x,y),orx = fp(y,2),0ory = fp(x,z). Show that § is a smooth
manifold of dimension 2.

(Product manifold) Let {(U,, va)}, {(V3, ¥3)} be two atlases for two smooth
manifolds M and N. Show that the family {(Uy x Vj, o X 13)} is an atlas
for the product M x N. With the differentiable structure generated by this atlas,
M x N is called the product manifold of M and N.

(Stereographic projection) Consider the n-sphere §” with the subspace topology
andlet N = (0,...,0,1)and § = (0, ..., 0, —1) be the north and south poles.
The stereographic projection from N is the map 7wy : §”\{N} — R" which
takes a point p € S"\{N} to the intersection point of the line through N and
p with the hyperplane x"*! = 0 (cf. Fig. 1.10). Similarly, the stereographic
projection from § is the map 75 : §"\{S} — R" which takes a point p on
S"\{S} to the intersection point of the line through § and p with the same
hyperplane. Check that {(R”, 75'), (R, 75 ')} is an atlas for $”. Show that this
atlas is equivalent to the atlas on Example2.3(5). The maximal atlas obtained
from these is called the standard differentiable structure on S”.



(8) (Real projective space) The real projective space R P" is the set of lines through
the origin in R"*!. This space can be defined as the quotient space of S by the
equivalence relation x ~ —x that identifies a point to its antipodal point.

(a) Show that the quotient space RP" = §"/ ~ with the quotient topology
is a Hausdorff space and admits a countable basis of open sets. (Hint: Use
Proposition 10.2).

(b) Considering the atlas on §" defined in Example 2.3(5) and the canonical
projection 7 : §" — RP" given by m(x) = [x], define an atlas for RP".

(9) We can define an atlas on RP" in a different way by identifying it with the
quotient space of R"*1\ {0} by the equivalence relation x ~ Ax, with A € R\{0}.
For that, consider the sets V; = {[x Lo x”“] | x! # 0} (corresponding to the

set of lines through the origin in R"™" that are not contained on the hyperplane
x' = 0) and the maps ¢; : R" — V; defined by

©j (xl,...,x”) = [xl,...,xhl, l,x',...,x"].

Show that:

(a) the family {(R", ;)} is an atlas for RP";
(b) this atlas defines the same differentiable structure as the atlas on Exer-
cise 2.5(8).

(10) (A non-Hausdorff manifold) Let M be the disjoint union of R with a point p and
consider the maps f; : R — M (i = 1, 2) defined by f;(x) = x if x € R\ {0},
f1(0) =0 and f>(0) = p. Show that:

(a) the maps ffl o f; are differentiable on their domains;

(b) if we consider an atlas formed by {(R, f1), (R, f2)}, the corresponding
topology will not satisfy the Hausdorff axiom.



1.3 Differentiable maps
Exercise 3.2

(1) Prove that Definition 3.1 does not depend on the choice of parameterizations.

(2) Show that a differentiable map f : M — N between two smooth manifolds is
continuous.

(3) Show thatif f : M| — M, and g : My, — M35 are differentiable maps between
smooth manifolds M, M> and M3,then go f : M| — M3 is also differentiable.

(4) Show that the antipodal map f : " — §”, defined by f(x) = —ux, is differ-
entiable.

(5) Using the stereographic projection from the north pole 7y : s? \ {N} — R?
and identifying R? with the complex plane C, we can identify S with C U {oo},
where oc is the so-called point at infinity. A Mobius transformation is a map
f i CU{oo} - CU {oo} of the form

for any o € C \ {0}. Show that any Mobius transformation f, seen as a map
f . S2 —> SZ, isa diffeomorphism. (Hint: Start by showing that any Mébius transformation is a

composition of transformations of the form g(z) = L and h(z) =az+ b).

(6) Consider again the two atlases on R from Example 2.3(2) and Exercise2.5(4),
{(R, ¢1)} and {(R, 2)}, where p1(x) = x and 2 (x) = x3. Show that:

(a) theidentity mapi : (R, p1) — (IR, ¢7) is not a diffeomorphism;

(b) the map f : (R, ¢1) — (R, ¢y) defined by f(x) = x3 is a diffeomor-
phism (implying that although these two atlases define different differen-
tiable structures, they are diffeomorphic).

1.4 Tangent Space

Exercise 4.9

(1) Show that the operators (d%) are linearly independent.
TP



(2) Let M be a smooth manifold, p a pointin M and v a vector tangent to M at p.
Show that if v can be writtenas v = >"_, @' ( 6.) andv=>"_ b ( o )
p P

Oxt ay!
for two basis associated to different parameterizations around p, then
n )
. 7 .
bl = a—y.a' .
Ox!

i=l1

(3) Let M be an n-dimensional differentiable manifold and p € M. Show that the
following sets can be canonically identified with 7, M (and therefore constitute
alternative definitions of the tangent space):

(a) Cp/ ~, where C), is the set of differentiable curves ¢ : I C R — M such
that ¢(0) = p and ~ is the equivalence relation defined by

d d
ci~er e (e ea) =2 (¢ o) O

for some parameterization ¢ : U C R" — M of a neighborhood of p.
(b) {(a,va) | p € walUy)and v, € R"}/ ~, where A = {(U,, pa)} is the
differentiable structure and ~ is the equivalence relation defined by

(o, Vo) ~ (B, vg) & vg=d (9951 o cpa) 1 )(Ua-)-

Pa (P

(4) (Chainrule)lLet f : M — N and g : N — P be two differentiable maps. Then
go f : M — P is also differentiable [cf. Exercise 3.2(3)]. Show that for p € M,

(d(go f)p = (dg)f(p) o (df)p-

(5) Let ¢ : (0,400) x (0,7) x (0,27) — R3 be the parameterization of U =
R3 \ {(x,0,2) | x = 0and z € R} by spherical coordinates,

O(r, 8, p) = (rsinf cos p, r sinfsin p, r cos f).

: : a 0 d :
Determine the Cartesian components of 7=, 55 and 3, at each point of U.

(6) Compute the derivative (df)y of the antipodal map f : §” — S” at the north
pole N.



(7) Let W be a coordinate neighborhood on M, let x : W — RR” be a coordinate
chart and consider a smooth function f : M — R. Show that for p € W, the
derivative (df), is given by

af
oxn

of
Ox!

?

@f)p = G ) (dx') 4o 4 F2 o) ()

p

wheref:: fox L

(8) (Tangent bundle) Let {(U,, ©.)} be a differentiable structure on M and consider
the maps

b, U, xR" = TM
(x: U) = (d@&)x(l”) € T{,oa(_r)M-

Show that the family {(U, x R", &)} defines a differentiable structure for 7 M.
Conclude that, with this differentiable structure, 7 M is a smooth manifold of
dimension 2 x dim M.

(9) Let f : M — N be a differentiable map between smooth manifolds. Show that:

(@) df : TM — TN is also differentiable;

(b) if f : M — M 1s the identity map then df : TM — T M is also the
identity;

(c) if f is a diffeomorphism then df : TM — TN 1is also a diffeomorphism
and (df)~' =df L.

(10) Let My, M> be two differentiable manifolds and

?TliM[XMz—>M1
m My x My — M»>

the corresponding canonical projections.

(a) Show that dm x dm is a diffeomorphism between the tangent bundle
T (M, x M>) and the product manifold 7 M; x T M>.

(b) Show that if N is a smooth manifold and f; : N — M; (i = 1,2) are
differentiable maps, then d(f| x f3) =df; x df>.

1.5 Immersions and Embeddings

Exercise 5.9

(1) Show that any parameterization ¢ : U C R" — M is an embedding of U into
M.



2)

3)

(4)

)

(6)

Show that, locally, any immersion is an embedding, i.e. if f : M — N is an
immersion and p € M, then there is an open set W C M containing p such that
f|w is an embedding.

Let N be a manifold. Show that M C N is a submanifold of N of dimension m
if and only if, for each p € M, there is a coordinate system x : W — R" around
p on N, for which M N W is defined by the equations x"*! = ... = x" = (.

Consider the sphere
n n+1 1 2 n+1 2
s"=1lxeR |(x) +---+(x ) =1l
Show that $” is an n-dimensional submanifold of R”*! and that
T,8" = [v e R™ | (x,v) = 0] ,

where (-, -) is the usual inner product on R”.

Let f : M — N be adifferentiable map between smooth manifolds and consider
submanifolds V € M and W C N. Show thatif f(V) C Wthen f : V — W
is also a differentiable map.

Let f : M — N be an injective immersion. Show that if M is compact then
f (M) is a submanifold of N.

1.6 Vector Fields

Exercise 6.11

(D)

Let X : M — T M be a differentiable vector field on M and, for a smooth
function f : M — R, consider its directional derivative along X defined by
X-f:M—R
p= Xp- f.

Show that:

(@ (X - f)(p) =(df)pXp;

(b) the vector field X is smooth if and only if X - f is a differentiable function

for any smooth function f : M — R;



(c) the directional derivative satisfies the following properties: for f,g €
C®(M) and o € R,
O X-(f+9=X-f+X-g
(i) X -(af) =a(X- f);
(i) X -(fg)=fX-g+9X-f.

(2) Prove Proposition 6.3.

(3) Show that (R3, x) is a Lie algebra, where x is the cross product on R3.

(4) Compute the flows of the vector fields X, Y, Z € X(R?) defined by

0 0 0 0 0
8_x; Yoy =X5-+ Vo Zay =—yo- +x5-.

Xxy) =
(x.5) ox dy

@[RGllOlvectorfieldOl p.4]
(5) Let X;, X5, X3 € X(R?) be the vector fields defined by

0 7, 0] %) 7, 7,
X = V— — _— X = _— —_— X = —_— Yy —
! )8z Z@y’ 2 Z@x x@z’ 3 x(?y }Sx’

where (x, y, z) are the usual Cartesian coordinates.

(a) Compute the Lie brackets [X;, X ;] fori, j =1, 2, 3.

(b) Show that span{X, X2, X3} is a Lie subalgebra of I(R3 ), isomorphic to
(R3, x).

(¢) Compute the flows ¥y ;, ¥4, Y3, of X1, X, X3.

(d) Show thatd),-,% oq,bj,% # 1];]-,5_. owp,-,% fori # j.

@[RGllOlvectorfieldOl p.6]

(6) Give an example of a non-complete vector field.

@[RG1101Comp|eteVectorFieIds]

(7) Let N be a differentiable manifold, M C N a submanifold and X, Y € X(N)
vector fields tangent to M, i.e. such that X,, Y, € T,M for all p € M. Show
that [ X, Y] is also tangent to M, and that its restriction to M coincides with the
Lie bracket of the restrictions of X and Y to M.

(8) Let f : M — N be a smooth map between manifolds. Two vector fields
X eX(M)and Y € X(N) are said to be f-related (and we write ¥ = f, X) if,
foreachq € N and p € f~'(q) C M, we have (df)pXp =Y,. Show that:



(a) given f and X it1s possible that no vector field Y 1s f-related to X;

(b) the vector field X is f-related to Y if and only if, for any differentiable
function ¢ defined on some open subset W of N, (Y -g)o f =X -(go f)
on the inverse image f~!(W) of the domain of g;

(c) for differentiable maps f : M — N and g : N — P between smooth
manifolds and vector fields X € X(M),Y € X(N) and Z € X(P),if X is
f-related to Y and Y is g-related to Z, then X is (g o f)-related to Z.

(9) Let f : M — N be a diffeomorphism between smooth manifolds. Show that
LI X Y] = [ £ X, f.Y] forevery X, Y € X(M). Therefore, f. induces a Lie
algebra isomorphism between X(M) and X(N).

(10) Let f : M — N be a differentiable map between smooth manifolds and
consider two vector fields X € X(M) and ¥ € X(N). Show that:

(a) if the vector field Y is f-related to X then any integral curve of X is mapped
by f into an integral curve of ¥;

(b) the vector field Y is f-related to X if and only if the local flows Fx and Fy
satisfy f (Fx(p,t)) = Fy (f(p),t) for all (¢, p) for which both sides are
defined.

(11) (Lie derivative of a function) Given a vector field X € X(M), we define the
Lie derivative of a smooth function f : M — R in the direction of X as

d
Lxf(p):=—((f Ow:)(p))| :

=0

where 1); = F (-, t), for F the local flow of X at p. Show that Lx f = X - f,
meaning that the Lie derivative of f in the direction of X is just the directional
derivative of f along X.

(12) (Lie derivative of a vector field) For two vector fields X, Y € X(M) we define
the Lie derivative of Y in the direction of X as

d
LxY = (- ¥)

l=0

where {1 },<; is the local flow of X. Show that:

(@) LxY =[X,Y];
(b) Lx[Y,Z]=[LxY, Z]+[Y,LxZ],for X, Y, Z € X(M);
(C) LX OLY — LY o] LX = L[X,Y]-

@[GRllOZLieDerivative]
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(13) Let X, Y € X(M) be two complete vector fields with flows 1), ¢. Show that:

(a) given a diffeomorphism f : M — M, we have f,X = X if and only if
foty =10 fforallt € R;
(b) Yrops =¢s0;foralls,r € Rifand only if [X, Y] = 0.

1.7 Lie Groups

Exercise 7.17

(1) (a) Given two Lie groups G, G2, show that G| x G (the direct product of the
two groups) is a Lie group with the standard differentiable structure on the

product.

(b) The circle S! can be identified with the set of complex numbers of absolute
value 1. Show that S! is a Lie group and conclude that the n-torus 7" =
St x ... x §'is also a Lie group.

(2) (a) Show that (R", +) 1s a Lie group, determine its Lie algebra and write an
expression for the exponential map.

(b) Prove that, if G is an abelian Lie group, then [V, W] =0forall V., W € g.
(3) We can identify each point in
H={x.y ek |y>0|
with the invertible affine map & : R — R given by h(t) = yt + x. The set

of all such maps is a group under composition; consequently, our identification
induces a group structure on H.

(a) Show that the induced group operation is given by
(x,y) - (z, w) = (yz + x, yw),

and that H, with this group operation, is a Lie group.



(b) Show that the derivative of the left translation map L ,) : H — H ata
point (z, w) € H is represented in the above coordinates by the matrix

y0
(dL(,r,y))(z,w) - (0 )’) .

Conclude that the left-invariant vector field XV € ¥(H) determined by the

vector
V=££;H%;ehzﬂmﬂf €. nekR)
is given by
Xy = Ey;x + nyaay-
(c) Given V, W € b, compute [V, W].
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(d) Determine the flow of the vector field XV, and give an expression for the

exponential mapexp : h — H.

(e) Confirm your results by first showing that H is the subgroup of GL(2)

formed by the matrices

()

with y > 0.

@[RGMOlhyperbolicplane p.3]

SLQ):[(?S)lad—bc:l],

which we already know to be a 3-manifold. Making

(4) Consider the group

a=p+qg,d=p—q,b=r+s,c=r—s,

show that SL(2) is diffeomorphic to S! x R2.

(5) Give examples of matrices A,_ B € gl(2) such that e T8 £ ¢4eB,



(6) For A € gl(n), consider the differentiable map

h:R — R\[0)

t — det e’

and show that:

(a) this map is a group homomorphism between (R, +) and

(R\{0}, );
(b) K’ (0) = trA;
(c) det(e?) = ",

(7) (a) If A € sl(2), show that there isa A € R U iR such that

sinh A
A

ed =cosh\ I + A.
(b) Show thatexp : sl(2) — § L(2) 1S not surjective.

(8) Consider the vector field X € X(R?) defined by

/ 0
X = x2+y28—x.

(a) Show that the flow of X defines a free action of R on M = R? \ {0}

12

(b) Describe the topological quotient space M /R. Is the action above proper?

(9) Let M = S2 x §2 and consider the diagonal S'-action on M given by
AR (u,v) = (e"g cu, el v) ,

3

where, for u € $2 c R3 and €7 € S!, €7 - u denotes the rotation of u by an

angle (3 around the z-axis.

(a) Determine the fixed points for this action.
(b) What are the possible nontrivial stabilizers?

(10) Let G be a Lie group and H a closed Lie subgroup, i.e. a subgroup of G which
18 also a closed submanifold of G. Show that the action of H in G defined by

A(h, g) = h - g is free and proper.
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(11) (Grassmannian) Consider the set H C GL(n) of invertible matrices of the

form
A0
CB)’
where A € GL(k), B € GL(n —k) and C € M,,_j)xk-

(a) Show that H is a closed Lie subgroup of GL(n). Therefore H acts freely
and properly on GL(n) [cf. Exercise 7.17(10)].
(b) Show that the quotient manifold

Gr(n, k) := GL(n)/H

can be identified with the set of k-dimensional subspaces of IR" (in particular
Gr(n, 1) is just the projective space RP"~1).

(¢) The manifold Gr(n, k) is called the Grassmannian of k-planes in R"”. What
is its dimension?

(12) Let G and H be Lie groups and F' : G — H a Lie group homomorphism.
Show that:

(a) (dF).:g — bisalLie algebra homomorphism;
(b) if (dF), is an isomorphism then F' is a local diffeomorphism;
(c) if F is a surjective local diffeomorphism then F is a covering map.

(13) (a) Show thatR-SU(2)is afour-dimensional real linear subspace of M2 (C),
closed under matrix multiplication, with basis

Lo (1O (i 0
“\o1) " \o-i )’
. 01 0i
i=(50) #= (7o)

satisfying i? = j2 =k’ = ijk = —1. Therefore this space can be identi-
fied with the quaternions (cf. Sect. 1.10.1). Show that SU (2) can be iden-
tified with the quaternions of Euclidean norm equal to 1, and is therefore
diffeomorphic to §3.

(b) Show that if n € R? is a unit vector, which we identify with a quaternion
with zero real part, then

m9_1 9+_0
exp| o) =1cos| 3 nsin | >

is also a unit quaternion.
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(c) Again identifying R? with quaternions with zero real part, show that the
map

R3 > R?

(n@) ( n9)
v exp| o) -veexp| ==

is a rotation by an angle € about the axis defined by n.

(d) Show that there exists a surjective homomorphism F : SU(2) — SO(3),
and use this to conclude that SU(2) is the universal covering of SO(3).

(e) What is the fundamental group of SO(3)?

1.8 Orientability
i
1.9 Manifolds with Boundary

Exercise 9.5

(1) Show with an example that the product of two manifolds with boundary is not
always a manifold with boundary.

(2) Let M be a manifold without boundary and N a manifold with boundary. Show
that the product M x N is a manifold with boundary. What is d(M x N)?

(3) Show that a diffeomorphism between two manifolds with boundary M and N
maps the boundary 0M diffeomorphically onto ON.
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