Assume that M is a compact , Riemannian and oriented °

If ξ is a Killing field and there is a smooth function $f: M \to R$ such that $\xi = gradf$, then f is constant and $\xi = 0$, prove it \circ

1. Killing field property

For a Killing field ξ , $L_{\xi}g = 0$, this implies the Killing equation :

 $\nabla_i \xi_i + \nabla_i \xi_i = 0$, contracting indices gives $div\xi = 0$

- 2. Gradient field relationship Since $\xi = gradf$, the divergence becomes : $div(gradf) = \Delta f = 0$ Where Δ is the Laplacian, thus, f is harmonic \circ
- Harmonic function on compact manifolds
 On a compact , connected , oriented Riemannian manifold , the only harmonic functions are constants

 Hence , f is constant •
- 4. A constant function has vanishing gradient, so $\xi = gradf = 0$

也許以下比較嚴密

 ξ is a Killing vector field : $L_{\omega}g = 0 \Leftrightarrow \nabla_{X}\xi + \nabla_{\xi}X = 0$ for all vector fields X

 $\xi = \nabla f$ where $f: M \to R$ is a smooth function , this means for any vector field X $g(\xi, X) = df(X)$

Since $\xi = \nabla f$, we can write the Killing equation as $\nabla_X \nabla f + \nabla_{\nabla f} X = 0$

Notice that $\nabla_X \nabla f$ is the Hessian of f, $Hess(f)(X,Y) = g(\nabla_X \nabla f,Y)$

The Killing equation reduces to the condition that the Hessian of f is skew-symmetric in a certain sense. However, the Hessian of a function on a Riemannian manifold is always symmetric. The only way a symmetric tensor (the Hessian) can be skew-symmetric is if it vanishes:

$$\operatorname{Hess}(f) = 0.$$

If Hess(f)=0, then ∇f is a parallel vector field, in other words: $\nabla \nabla f = 0 \Rightarrow \nabla \xi = 0$ This mean that ξ is a parallel vector field on M. Now we apply a critial fact: on a compact Riemannian manifold, a nontrivial parallel gradient vector field cannot exist unless it is zero. Why that?

Consider the norm of ξ : $|\xi|^2 = g(\xi,\xi)$

Since ξ is parallel , its norm is constant : $\nabla |\xi|^2 = 0$

If $|\xi|$ were nonzero, ξ would define a non-vanishing vector field. However, **compactness** of M combined with orientability implies topological constraints that prevent the existence of non-vanishing gradient vector fields unless they are trivial. More specifically, because $\xi = \nabla f$, the integral curves of ξ would be gradient flow lines connecting critical points of f. But if $|\xi|$ is constant and nonzero, there would be no critical points—this contradiction forces $|\xi| = 0$, so:

$$\xi = 0$$

Since $\xi = \nabla f = 0$, it follows that f is constant (as its gradient vanishes everywhere) \circ