Consider the Killing vector fields on $M = S^2$ with metric \circ

$$K_1 = \partial_{\varphi}$$
, $K_2 = -\sin{\varphi}\partial_{\theta} - \cot{\theta}\cos{\varphi}\partial_{\varphi}$, $K_3 = \cos{\varphi}\partial_{\theta} - \cot{\theta}\sin{\varphi}\partial_{\varphi}$

Verify that they satisfy the Killing equations •

$$(L_X g)_{\mu\nu} = \nabla_\mu X_\nu + \nabla_\nu X_\mu$$
, where $\nabla_\mu X_\nu = \partial_\mu X_\nu - \Gamma^\rho_{\mu\nu} X_\rho$

$$(L_X g)_{\mu\nu} = X^{\rho} \partial_{\rho} g_{\mu\nu} + g_{\rho\nu} \partial_{\mu} X^{\rho} + g_{\rho\mu} \partial_{\nu} X^{\rho}$$

A vector field X is a Killing vector field if the Killing equation holds:

$$(L_X g)_{\mu\nu} = X^{\rho} \partial_{\rho} g_{\mu\nu} + g_{\rho\nu} \partial_{\mu} X^{\rho} + g_{\rho\mu} \partial_{\nu} X^{\rho} = 0$$

Means that the metric remains invariant under the flow of X •

$$\begin{cases} x = \sin \theta \cos \varphi \\ y = \sin \theta \sin \varphi \end{cases}, S^2 : ds^2 = d\theta^2 + \sin^2 \theta d\varphi^2 \\ z = \cos \theta \end{cases}$$

$$g_{\theta\theta} = 1, g_{\varphi\varphi} = \sin^2 \theta, g_{\theta\varphi} = g_{\varphi\theta} = 0$$

Since
$$X = \frac{\partial}{\partial \varphi}$$
, we compute : $L_X g_{\theta\theta} = X(g_{\theta\theta}) + g_{\theta k} \partial_{\theta} X^k + g_{\theta k} \partial_{\theta} X^k$

Since $g_{\theta\theta}=1$ is independent of φ , we get $L_{\rm X}g_{\theta\theta}=0$

similarly , for $g_{\varphi\varphi}=\sin^2\theta$, since $X=\frac{\partial}{\partial\varphi}$ does not affect θ , we get

$$L_X g_{\varphi\varphi} = X(g_{\varphi\varphi}) = \frac{\partial}{\partial \varphi} (\sin^2 \theta) = 0$$

Thus , all components of the Lie derivative vanish , confirming that \boldsymbol{X} is a Killing vector field \circ

Transforming back to Cartesian coordinates

$$\frac{\partial}{\partial \varphi} = \frac{\partial x}{\partial \varphi} \frac{\partial}{\partial x} + \frac{\partial y}{\partial \varphi} \frac{\partial}{\partial y} + \frac{\partial z}{\partial \varphi} \frac{\partial}{\partial z} = -\sin \theta \sin \varphi \frac{\partial}{\partial x} + \sin \theta \cos \varphi \frac{\partial}{\partial y} + 0 = -y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y}$$

$$z \frac{\partial}{\partial x} - x \frac{\partial}{\partial z} + z \frac{\partial}{\partial z} + y \frac{\partial}{\partial z} \text{ are Killing vector fields } \circ$$

$$K_2 = -\sin\varphi\partial_{\theta} - \cot\theta\cos\varphi\partial_{\varphi}$$
, $K_3 = \cos\varphi\partial_{\theta} - \cot\theta\sin\varphi\partial_{\varphi}$

By chain ruler:

$$\partial_{\theta} = \cos \theta \cos \varphi \partial_{x} + \cos \theta \sin \varphi \partial_{y} - \sin \theta \partial_{z}$$

$$\partial_{\varphi} = -\sin\theta\sin\varphi\partial_{x} + \sin\theta\cos\varphi\partial_{y}$$
 代入化簡

$$K_2 = -z\partial_y + y\partial_z$$