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Frobenius' (integrability) theorem provides an integrability condition for a system of 1-
forms to vanish on an (integral) submanifold simultaneously

That a system of 1-forms vanish simultaneously form a system of partial differential
equations °

An (integral) submanifold is a solution to this system of equations ©

If such a submanifold (or a solution) exists * then some integrability condition must be
satisfied °

The theorem tells how to obtain such integrability condition ©

This 1s an important and useful theorem 1n differential geometry °

For instance > the fundamental theorem in each known geometry (such as Riemannian or
CR geometry) 1s proved by using this theorem (and in fact "curvature"=0 plays the role of
Integrability condition in this situation) °

§ Sl ITIERIE
A 1-form o » FFIERAB - o (573 0 = fdg PIREMER A ?
AR > B o= 0WAHET -

FHo="fdg Hldo=df ndg=df A f e

do=0rw » Hf1o=1f"df =d(In|f)) Alldorw=0r0r0=0


https://web.math.sinica.edu.tw/media/pdf/d183/18306.pdf
https://jmath2020.neocities.org/GeometricMechanics/604CompleteIntegrableSystems.pdf
https://web.math.sinica.edu.tw/media/pdf/d264/26401.pdf
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hypersurface g=constant °

B 1.

w = dx+zdy +dz
do=dzady > ~.dorw=dzAady Adx=—-dxAdyAdz=0

FTLL o BT AT -

B 2.

® = yzdx + xzdy + z%dz

do=d(yz) Adx+d(xz) Ady+d(z°) Adz
= (zdy + ydz) A dx + (zdx + xdz) A dy
= ydz Adx+ xdz A dy

do A w=xyzdz Adx Ady + xyzdz Ady Adx =0

iAo = 0 F & 73 it -

® = yzdx + xzdy + z°dz = z(ydx + xdy + zdz)
1,
Hif=z- ¢ :xy+Ez Hlw = fdg

& HHEE Xy+%z2 =constant -

{1 3.
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@ = yzdx + xzdy + dz
dw = zdy A dx+ ydz Adx + zdx Ady + Xdz Ady = ydz Adx + xdz A dy

dorw=0

12 a9 g a9
Frow=fdg=f(=dx+—=dy+—=dz) HI
% @ g (6x Y y pe ) Hij

a9
f—==yz

OX y
f % =xz FH(1)(2) XZ—?(— y(%g =0 - has a general solution g(z,u) > u=xy
194

0z

g=h(z)e” > Then dg = yh(z)e”dx+xh(z)e” +h'(z)e”dz

f=e",h(2)=z FrLAfESHEZ ze” =constant

ol
dz dz
dw=dz A (ydx+ xdy) = — A (yzdx+xzdy +dz) = (—) A @
z z

. . dz . .
Which is not so useful since — is singular along z-axis °
z

A better choiceis @ =—-ydx—xdy > then dw=0Aw
To determine the function g > we use the face that each integral surface g=constant

will be cut by the plane {x=at, y=bt} in a curve which intersects the z-axis in the
solution z of g(0,0,z)=constant - The equation @ =0 on the plane x=at, y=bt
becomes dz+2abztdt=0

x=at
E :{ ot dx = adt,dy =bdt {{, A @ =0= dz +2abztdt =0

y =

% =-2abz » z=cexp(-abt®)=ce™

dz =-yce ¥dx—xce ?dy+e¥dc
=e Ydc—z(ydx + xdy)

yzdx + xzdy + dz =e™¥dc = w = fdg
FRll f =e™,g=2e" FfE5rplmE A ze” =constant

We have dz =e®dc+c(-be *da—ae *db) =e *dc—ce * (adb +bda)
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=e *dc - z(adb +bda)
e dc=dz+z(xdy + ydx) =

w=e"d(ze”)(note that c=1ze") > and the integral surfaces are ze™ =constant

% 4
@ = 2Xzdx + 2yzdy + dz

dw=2xdz Adx+2zdz A dy

do A @w=4xyzdz Adx Ady +4xyzdz Ady Adx =0
FRLFAE 0 g (15 0= fdg (f, ¢ F2HE—HY)
fi#

og o9 a9
f—==2xz..(), f ==2yz...(2), f ==1...(3
ox @ . yz...(2) e (©)

1o 1ag g g
__:_—:—:—
2x Ox 2y oy  ox* oy’
log_,0_, 9 4 _9a
2yoy oz olnz oy* éu

Hence g=G(Inz+u) * and since 1t 1s possible to pick an arbitrary function G we can set

has a general solution g(z, u) > U=X"+Y°

FH(D(2)

FH2)(3)

g=2e"" > From (3) it follows that f =e ™" > and it easy to chek that
w=e""Yd(ze""") = 2xzdx + 2yzdy + dz

T4 B 22 = constant ©

{1 5.
w=dz—ydx—dy
On the plane x=at, y=bt > the equation @ =0 becomes dz=(abt+b)dt

z :%abt2 +bt+c and we arrive at the surface z :%Xer y+cC
But on the parabolic cylinder x=at > y=bt? we have dz = (abt® + 2bt)dt

1 1
z==abt’ +bt*+c > z =30 ty+e a different family of surfaces °

The reason for this failure to obtain integral surfaces is seen from
do=-dyArdx,dorw=—-dyArdxAdz=0
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Frobenius t[f&4r EHA MEE L (1)m= (2)differential forms

§$1 [HESPA

§ MM FAEN—ERESE X £0 > #@Vp, eM FHEFIET ()

76)= po, L = X ()

aEEs — M _ERIER R ESE M _EF—E p AV T,M _EREE T —(E

—HETZER]
X i P BEERHIETE M B —4E TR ©

U > £ M _EE—RE p HUV)ZERI T M LA —(E k 422

L, (1<k<n)
AT - M BRI BRI P HY KT NeM - lEN BE—Eiq
P22 BRLA Y k 41228 Ly (TN = L) )RR ERE 2

Frobenius & FH [0 &35 (& 55 -

1. ¢:M — N E—{EA[HH H de, . T M =T NJE 1-1(injective) for Vpe M
HIlTE @ & —(E)Z%f (immersion)

2. ¥vpeM » D, ZUIFHET,M iy k-dim ERE+22 [ -
#=Vp, eM > FFFEC” —immersion ¢:U > M >

15 p e@U) » HT,(@U))=D,,, for VxeU - Allff§ D Kyrlf&y

3R SRR
BM =R - R hig—Bh5e Tt — T » G518 2 4 PES D -

sl AR po A —EfE a(V) > BESE o) LE—EEY U EEE RS
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TERSFIE > FRIEE BefFIwLAE D F ATfsH I (integrable) °

3. MIZ—(8 n-dim BSOS - K2/ n IVIERERL - DS M A9 k-dim P,
(distribution 7t JF)
#VX,YeD=[X,Y]eD - Hif# D f¥f&HI(involutive) o
FH—EE AR
£ U f717£ local basis Xy, X,,...X, € DFEE[X;, X ;1= ci X,
k

[X,Y]:Z(XYi—YX‘)%

Frobenius EH :
D & M I k 4E~F [ (distribution) » HI| D /2 AJF&AY SRR (F By D B ¥ &Y

SE B LRERT M I—({EF%E U LAY k 40857 - B —HipeU

H1E p BB EAE S W W) - WU el |, =0

L“ # & Frobenius {5 ¢E(HN L B-&HY) -

%}E@?ﬁ%ﬂ%ﬁ%

0 0 0
B X, _xa—y&, X, =
D & R X, X, ArsRAYF i (distribution)

X1=X%—y§,xz=a—i X, X,1=0 » FibL D B &t (invOlutive)

X1 1Y flow £ ¢, (X, y,z) =(-ysint+xcost, ycost + xsint, z) &L z il Byt dlHY
o

Xa 1) flow By (X, Y,2) = (X, y,t+2) @ AT z AT ERR -

Fit A1 35 D HY integral manifold J2 P z i A o HY[ENfE (cylinder) -

R By SN2 EaE ) 5 — € A & # B (Hairy ball theorem) FTLL SM2 FI4FH 1-
dim SFHE S
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[A Course in Modern Mathematical Physics Peter Szekeres p.441]

Theorem 15.4 A smooth k-dimensional distribution D* on a manifold M is involutive if
and only if every point p € M lies in a coordinate chart (U:x") such that the coordinate
vector fields 3 /dx® foraw =1, ..., k span D¥ at each point of U.

Theorem 15.5 A4 set of vector fields { X, X, ..., X} is equal to the first k basis fields of

a local coordinate system, X\ = 8,1, ..., X3 = 0.+ if and only if they commute with each
other, [X,. Xg] = 0.
(Fh A=)
4l
0 0 0 0 0 0
ERS-{OIOIO} X = __Z_,X :Z__X_,X =X——V—
(0.00) Y% o Tox e P ayyax

KB XX, + yX, +2X, =0 [ =1 E55EH —{# 2-dim SEE S D(distribution)
o 8 0
E+%#T[X11 Xz] = y&_ X@ = _X3 ’ [XZ’ X3] = _X11[x31 X1] = _Xz
Rt D %41 > £ Frobenius EHE 17£1F—{ local transformation JEE
SO
y11y27y3 {115 D Eﬂy,yﬁ‘ﬁgg °
0 0 0
X=xZL vy L1729 L aIx, x,]1=0
HY Xax+yay+zaz AIEX, Xi]
Rkt H{X, X }AT5REY distribution E2 2 ¥ &HY
D=span{X,, X,, X,} is a Lie subalgebra with [ ] of x(R®)  isomorphic to {Rs,x}

F:D—R® F(aX,+bX,+cX,)=(a,-b,c)

Let us consider spherical polar coordinates, Eq. (15.2), having inverse transformations

r=yx24 2 +22, 6 = cos™! (;:) ¢ = tan™' (%)
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Express the basis vector fields in terms of these coordinates

3 ara +800 +¢')¢a AT +cosOcos¢a sin¢a
= — — —0dp =sInfcospd, + ————— 0y — — ’
N ax = dx - ax ¢ r g rsieé 4
3 ara +808 " a¢a in6sind +c0595in¢0 g COS¢8
= — — —3Jy = sInf sin ¢, 9 - ]
=@ ey 9T r *7 rsing "’
ar a0 o sind
Z): = EO, + a—za() + a—:{),;, = COSOB, — - ay,
and a simple calculation gives
X = y0d. — 20, = —sin¢dy — cotf cos Py,
X2 =238, — x9. = —cos¢pdy — cot @ sin pdy,

X3y =x0, — yd, = 9,
X =x0; + ydy +20. =rd, = 3 wherer' =Inr.

The distribution D? is spanned by the basis vector fields 3, and d,, while the distribution
E? is spanned by the vector fields 3, and 3, in spherical polars.

§2 differential forms 2=
TEH

let o= z f.dx' be a one-form which does not vanish at O -

1
Suppose there is a one-form & satisfying dw=6 A® > Then there are function f
and g in a sufficiently small neighborhood of O which satisfy @ = fdg

Example @ = xdy—ydx. Certainly @ A dw) = 0 since @ A dw) is a three-form.
However, the form @ vanishes at 0 so one does not expect that the integral curves
of @ = o will span out evenly a neighborhood of 0; in fact these curves are just the
lines ax + by = 0 through 0. We note, however, that dw = § A @ is impossible in
any neighborhood of 0. For dw = 2 dx dy so that if § = A dx + B dy, then 2= Ax +

By which fails atx=y =o0.

[A Course in Modern Mathematical Physics Peter Szekeres p.455]

EH
Let @'(i=12,...,r)be aset of 1-forms on an open set U > linaerly independent at
every point peU - The following statements are all equivalent :

1. There exist Ical coordinates (U;x')at every point peU suchthat o' = A}dxj
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2. Thereexist 1-forms @) suchthat de'= ZQ}a)j
i

do' AQ=0 where Q=o' A@*A... 0"
4, dQArw' =0
5. There exists 1-form @ suchthat dQ=0AQ

w

EHEEH
A system of linerly independent 1-forms @',...,@" on an open set U > satisfying any
of the condition (1)-(5) of this theorem is said to be completely integrable °

The equations defining the distribution D*(k =n—r) that annihilates these @' is
given by equations < @', X >=0 - often written as a Pfaffian system of equations
@ =0(i=1..,r) -

Condition (1) says that locally there exist r functions gi (Xl,..., Xx") on U such that

o' = fjidgj > Where the functions fji form a non-singular rxr matrix at every

point of U » The functions gi are known as a first integral of the system -
The r-dimensional submanifolds (N_,y,) defined by g'(x,..., x")=c' =const

have the property t//;a)i = fji Ol//Cde =0 and are known as integral submanifolds of

the system

Problem 16.8 Given an r x r matrix of 1-forms Q, show that the equation
dA = QA - AQ
is soluble for an r x r matrix of functions A only if
OA = AO

where ® =dQ — Q A Q.
If the equation has a solution for arbitrary initial values A = A, at any point p € M, show that
there exists a 2-form « such that © = ¢l and da = 0.

§ FESITEL
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o =0 2R HELH > HdoAo=0HEZE) 1] L4 EL R AOTE > % 240
F BV SEREEI R IEN T 245 -
#95 (constraint) * H]FEHY(holonomic)

[An introduction to Riemannian Geometry p.198 | %&f{n] j7E2

Theorem 4.8

A ditribution X isintegrableifand onlyif X,Y € y(£)=[X,Y]e y(%)

Bl

Wheel rolling without slipping

(slipping 175 : slipper FifiE)

0\ Consider a vertical wheel of radius R rolling without

v slipping on a plane ° Assuming that the motion takes

place along a straight line » we can parameterize any
z position of the wheel by the position x of contact point
and the angle @ between a fixed radius of the wheel and the radius containing the

contact point > hence the configuratin space is RxS' ¢

Then X=R@ > this is equvalent to requiring that the motion be compatible with the

o . . o 0 .
distribution defined on RxS" by the vector field X =R o + 29 or equivalently ° by

the kernel of the 1-form @=dx—Rdé@ -
Since dw=0 - we see that is a semi-holonomic constraint > corresponding to an

integrable distribution °

The leaves of the distribution are the submanifolds with equatuin X=X, + R0

{5l K (ice skate)

y

— (IR VKA R B A 2 AR B (VKT )RS Ele L Lo e - JKT WAL E v PAFHIKT)
ULV RE AT (x,y) B K T T B x BN AICFE O 2R F » 40 BIE - (Rt HCAHREZEfH
(configuration space) & R?x S

KT SR HIl (X, y) B (Cos 0,sin 6) BRELGT - R xS K EfiS
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(distribution) X ={X,Y} » Hr X :coseg+sin HE,Y :i
OX oy 00
5 E Z =ker(w) » @=-sin@dx+ cosddy
dw A w=—c0s” 8dO A dx A dy +sin® dO A dy A dx
=—dOAdyAdx=0
H one-form @ Y kernel 45 VLI & A 0] fE4YPE (non-holonomic constraint) e
2%EH
1. forsfss A8 p29 p.8o
RIS 5 =R p.128
oy 8 fo] S AT FRER AU ER] T8l A =({§ Frobenius FEFAYEM] p.219
VIR iy %00 a7t 3BT p.60
Differential forms with Application to the Physical Science Harley Flander Ch7
Geometric Mechanics Darryl D Holm
Mathematical Physics : Classical Mechanics Andreas Knauf p.325
A Course in Modern Mathematical Physics Peter Szekeres p.440 ~ p.455
An introduction to Riemannian Geometry  p.198 #&{0] JJ22
e SR GOE DA E NS i)
. What is a completely integrable nonholonomic dynamical system ?
https://www.sciencedirect.com/science/article/abs/pii/S0034487799801426

© 00 N UL kWD

=
o

=
=

=fE

Let a=dz+xdy—ydxeQ'(R%) -

Consider the distribution EcTM defined by
E, ={Vp eTpRe"ap(Vp) =O} » peR®

Determine whether or not E is integrable - Prove your answer °

da=-dxAdy—dyAdx=0

N oy og o9
o =fdg=f(=dx+—=dy+—dz) > th
o= Tdg = TG dxv s dy+o, 02) - then
og
f 9 _
OX y
y
fa—g:—x:>xa—g+ya—g:O:>g:h(z)eX
ox "oy
$ 99 _q
0z



https://web.math.sinica.edu.tw/media/pdf/d273/27308.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0034487799801426
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Yooy y 1 y
dg =h(z)e* x(—)dx+h(z)e* x=dy +h'(z)e*dz
X X

2y
Ay f :X7e “ h(z)=z » FrbL E ZA[FEAY » H integral surface(a = 0 {Yf%) &

y
hypersurface ze* =constant



