Martin Kruskal 與 Norman Zabusky 在 1960 年代發現孤子(soliton)在解 kdV 方程時所扮演的角色,之後___提出 KdV 方程是完全可積的(completely integrable system)解釋。 [Kolmogorov-Arnold-Moser theorem] [Peter Lax 1926-] 陀螺旋轉的運動方程式 Sonja Kovalevsky

sine-Gordon 方程 $\omega_{tt} + \sin \omega = \omega_{xx}$

KdV 方程 $u_t + uu_x + u_{xxx} = 0$

黎曼猜想 Freeman Dyson:隨機 unitary 矩陣特徵根的配對。

§ Frobenius 可積分定理

- 1. 微分方程的積分因子
- 2. 向量場的形式
- 3. Differential form 的形式
- 4. 物理學家怎麼說
- 5. 釋例
- 6. 應用

關於 Frobenius 可積分定理,先看看日新兄的說明:

Frobenius' (integrability) theorem provides an integrability condition for a system of 1-forms to vanish on an (integral) submanifold simultaneously °

That a system of 1-forms vanish simultaneously form a system of partial differential equations \circ

An (integral) submanifold is a solution to this system of equations •

If such a submanifold (or a solution) exists $\, \cdot \,$ then some integrability condition must be satisfied $\, \circ \,$

The theorem tells how to obtain such integrability condition •

This is an important and useful theorem in differential geometry •

For instance \cdot the fundamental theorem in each known geometry (such as Riemannian or CR geometry) is proved by using this theorem (and in fact "curvature"=0 plays the role of integrability condition in this situation) \circ

§ 先從微分方程說起

對於一個 1-form ω ,存在函數 f、g 使得 ω = fdg 的條件是什麼? 換句話說,要找 ω = 0 的積分因子。

若
$$\omega = fdg$$
 則 $d\omega = df \wedge dg = df \wedge f^{-1}\omega$

$$d\omega = \theta \wedge \omega$$
,其中 $\theta = f^{-1}df = d(\ln|f|)$ 則 $d\omega \wedge \omega = \theta \wedge \omega \wedge \omega = 0$

所以 $d\omega \wedge \omega = 0$ 是 $\omega = 0$ 有積分因子的充要條件。

若
$$\omega = Adx + Bdy + Cdz$$

$$d\omega = \begin{vmatrix} dy \wedge dz & dz \wedge dx & dx \wedge dy \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A & B & C \end{vmatrix}$$

$$d\omega \wedge \omega = \left(A\left(\frac{\partial C}{\partial y} - \frac{\partial B}{\partial z}\right) + B\left(\frac{\partial A}{\partial z} - \frac{\partial C}{\partial x}\right) + C\left(\frac{\partial B}{\partial x} - \frac{\partial A}{\partial y}\right)\right)dx \wedge dy \wedge dz$$

所以Adx + Bdy + Cdz = 0有積分因子的條件是

$$A(\frac{\partial C}{\partial y} - \frac{\partial B}{\partial z}) + B(\frac{\partial A}{\partial z} - \frac{\partial C}{\partial x}) + C(\frac{\partial B}{\partial x} - \frac{\partial A}{\partial y}) = 0$$

 $ilde{\Xi}\omega=fdg$ 則微分方程 $\omega=0$ 與dg=0是相同的,因此 $\omega=0$ 的解(積分曲面)即 hypersurface g=constant。

例 1.

$$\omega = dx + zdy + dz$$

$$d\omega = dz \wedge dy$$
 , $\therefore d\omega \wedge \omega = dz \wedge dy \wedge dx = -dx \wedge dy \wedge dz \neq 0$
所以 ω 沒有積分因子。

例 2.

$$\omega = yzdx + xzdy + z^2dz$$

$$d\omega = d(yz) \wedge dx + d(xz) \wedge dy + d(z^{2}) \wedge dz$$
$$= (zdy + ydz) \wedge dx + (zdx + xdz) \wedge dy$$
$$= ydz \wedge dx + xdz \wedge dy$$

$$d\omega \wedge \omega = xyzdz \wedge dx \wedge dy + xyzdz \wedge dy \wedge dx = 0$$

所以 $\omega = 0$ 有積分曲面。

$$\omega = yzdx + xzdy + z^2dz = z(ydx + xdy + zdz)$$

取 f=z,
$$g = xy + \frac{1}{2}z^2$$
 則 $\omega = fdg$

積分曲面是
$$xy + \frac{1}{2}z^2 = cons \tan t$$
。

例 3.

$$\omega = yzdx + xzdy + dz$$

$$d\omega = zdy \wedge dx + ydz \wedge dx + zdx \wedge dy + xdz \wedge dy = ydz \wedge dx + xdz \wedge dy$$

$$d\omega \wedge \omega = 0$$

假設
$$\omega = f dg = f(\frac{\partial g}{\partial x} dx + \frac{\partial g}{\partial y} dy + \frac{\partial g}{\partial z} dz)$$
 則

$$\begin{cases} f \frac{\partial g}{\partial x} = yz \\ f \frac{\partial g}{\partial y} = xz \quad \text{id}(1)(2) x \frac{\partial g}{\partial x} - y \frac{\partial g}{\partial y} = 0 \end{cases}$$
, has a general solution g(z,u), u=xy
$$f \frac{\partial g}{\partial z} = 1$$

$$g = h(z)e^{xy}$$
, Then $dg = yh(z)e^{xy}dx + xh(z)e^{xy} + h'(z)e^{xy}dz$

$$f = e^{-xy}$$
, $h(z) = z$ 所以積分曲面是 $ze^{xy} = cons \tan t$

另解

$$d\omega = dz \wedge (ydx + xdy) = \frac{dz}{z} \wedge (yzdx + xzdy + dz) = (\frac{dz}{z}) \wedge \omega$$

Which is not so useful since $\frac{dz}{z}$ is singular along z-axis \circ

A better choice is $\theta = -ydx - xdy$, then $d\omega = \theta \wedge \omega$

To determine the function g , we use the face that each integral surface g=constant will be cut by the plane {x=at, y=bt} in a curve which intersects the z-axis in the solution z of g(0,0,z)=constant \circ The equation $\omega=0$ on the plane x=at, y=bt becomes dz+2abztdt=0

$$E: \begin{cases} x = at \\ y = bt \end{cases}, dx = adt, dy = bdt \not (\uparrow), \omega = 0 \Rightarrow dz + 2abztdt = 0$$

$$\frac{dz}{dt} = -2abz \quad , \quad z = c \exp(-abt^2) = ce^{-xy}$$

$$dz = -yce^{-xy}dx - xce^{-xy}dy + e^{-xy}dc$$
$$= e^{-xy}dc - z(ydx + xdy)$$

$$yzdx + xzdy + dz = e^{-xy}dc = \omega = fdg$$

所以
$$f = e^{-xy}$$
, $g = ze^{xy}$ 積分曲面為 $ze^{xy} = cons \tan t$

We have
$$dz = e^{-ab}dc + c(-be^{-ab}da - ae^{-ab}db) = e^{-ab}dc - ce^{-ab}(adb + bda)$$

$$=e^{-ab}dc-z(adb+bda)$$

得
$$e^{-ab}dc = dz + z(xdy + ydx) = \omega$$

 $\omega = e^{-xy} d(ze^{xy})$ (note that $c = ze^{xy}$), and the integral surfaces are $ze^{xy} = constant$

例 4

$$\omega = 2xzdx + 2yzdy + dz$$

$$d\omega = 2xdz \wedge dx + 2zdz \wedge dy$$

$$d\omega \wedge \omega = 4xyzdz \wedge dx \wedge dy + 4xyzdz \wedge dy \wedge dx = 0$$

所以存在 f, g 使得
$$\omega = fdg$$
 (f, g 不是唯一的)

解

$$f\frac{\partial g}{\partial x} = 2xz...(1), f\frac{\partial g}{\partial y} = 2yz...(2), f\frac{\partial g}{\partial z} = 1...(3)$$

$$\pm (1)(2)$$
 $\frac{1}{2x} \frac{\partial g}{\partial x} = \frac{1}{2y} \frac{\partial g}{\partial y} \Rightarrow \frac{\partial g}{\partial x^2} = \frac{\partial g}{\partial y^2}$ has a general solution g(z, u), $u = x^2 + y^2$

Hence g=G(lnz+u), and since it is possible to pick an arbitrary function G we can set

$$g = ze^{x^2+y^2}$$
, From (3) it follows that $f = e^{-x^2-y^2}$, and it easy to chek that

$$\omega = e^{-x^2 - y^2} d(ze^{x^2 + y^2}) = 2xzdx + 2yzdy + dz$$

積分曲面為 $ze^{x^2+y^2}$ = constant。

例 5.

$$\omega = dz - ydx - dy$$

On the plane x=at, y=bt, the equation $\omega = 0$ becomes dz=(abt+b)dt

$$z = \frac{1}{2}abt^2 + bt + c$$
 and we arrive at the surface $z = \frac{1}{2}xy + y + c$

But on the parabolic cylinder x=at , y=bt² we have $dz = (abt^2 + 2bt)dt$

$$z = \frac{1}{3}abt^3 + bt^2 + c$$
, $z = \frac{1}{3}xy + y + c$ a different family of surfaces \circ

The reason for this failure to obtain integral surfaces is seen from $d\omega = -dy \wedge dx, d\omega \wedge \omega = -dy \wedge dx \wedge dz \neq 0$

Frobenius 可積分定理有兩種形式 (1)向量場 (2)differential forms

§1 向量場形式

§ 流形 M 上給定的一個向量場 $X \neq 0$,過 $\forall p_0 \in M$ 存在一條軌跡 $\gamma(t)$,

$$\gamma(t_0) = p_0, \frac{d\gamma}{dt} = X(\gamma(t))$$

換句話說 一個 M 上的非零向量場在 M 上每一點 \mathbf{p} 的切空間 $T_p M$ 上確定了一個一維子空間。

X 過 P 點的軌跡是 M 的一維子流形。

進一步推廣,在M上每一點p的切空間 $T_{p}M$ 上都給一個k維子空間

 $L_p^k (1 \le k \le n)$

那麼,對 M 上的每一點都存在過 P 的 k 維子流形 N \subset M ,使得 N 上每一點 q 的切空間與給定的 k 維子空間 L_p^k 重合 $(T_qN=L_p^k)$ 的條件是甚麼 ? Frobenius 定理回答這個問題。

定義

- 1. $\varphi: M \to N$ 是一個可微映射且 $d\varphi_p: T_pM \to T_{\varphi(p)}N$ 是 1-1(injective) for $\forall p \in M$ 則稱 φ 是一個浸射(immersion)。
- 2. 對 $\forall p \in M$, D_p 是切平面 $T_p M$ 中的 k-dim 線性子空間。

 $若 \forall p_0 \in M$,存在 C^{∞} -immersion $\varphi: U \to M$,

使得 $p_0 \in \varphi(U)$,且 $T_{\varphi(x)}(\varphi(U)) = D_{\varphi(x)}$ for $\forall x \in U$,則稱 D 為可積分 白話文是這麼說的:

設 $M=R^3$,在 R^3 中每一點先可微地指定一平面,得到一個 2 維平面場 D。 設通過每一點 p_0 有一個曲面 $\alpha(U)$,使得在 $\alpha(U)$ 上任一點的切平面都是原來指 定的平面,那麼 我們就稱 D 為可積的(integrable)。

3. **M** 是一個 **n**-dim 的微分流形,**k** 是小於 **n** 的正整數。D 是 M 的 k-dim 平面場 (distribution 子流形)

若 $\forall X,Y \in D \Rightarrow [X,Y] \in D$,則稱 D 為對合的(involutive)。 另一種寫法是:

在 U 存在 local basis
$$X_1, X_2, ... X_k \in D$$
 使得 $[X_i, X_j] = \sum_i c_{ij}^k X_k$

$$[X,Y] = \sum_{i} (XY^{i} - YX^{i}) \frac{\partial}{\partial x^{i}}$$

Frobenius 定理:

D是M的k維平面場(distribution),則D是可積的充要條件為D是對合的。

或者這麼說, L^k 是定義在 M 的一個開集 U 上的 k 維光滑分布,對任一點 $p \in U$

存在 p 點的局部坐標系 (W, w^i) , $W \subset U$ 使得 $L^k \Big|_{W} = \{\frac{\partial}{\partial w^1}, ..., \frac{\partial}{\partial w^k}\}$ 的充要條件是 L^k 適合 Frobenius 條件(即 L^k 對合的)。

$$[5] \quad X_1 = x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x}, X_2 = \frac{\partial}{\partial z}$$

D是R³中由 X_1, X_2 所張的平面場(distribution)

$$X_1 = x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x}, X_2 = \frac{\partial}{\partial z}$$
, $[X_1, X_2] = 0$,所以 D 是對合的(inv0lutive)

 X_1 的 flow 為 $\varphi_t(x, y, z) = (-y \sin t + x \cos t, y \cos t + x \sin t, z)$ 是以 z 軸為中心軸的 圓。

 X_2 的 flow 為 $\psi_t(x,y,z) = (x,y,t+z)$ 是平行 z 軸的直線。

所以平面場 D 的 integral manifold 是以 z 軸為中心的圓柱(cylinder)。

因為 S^2 上的連續向量場一定有奇異點(Hairy ball theorem) 所以 S^2 上沒有 1-dim 平面場。

[A Course in Modern Mathematical Physics Peter Szekeres p.441]

Theorem 15.4 A smooth k-dimensional distribution D^k on a manifold M is involutive if and only if every point $p \in M$ lies in a coordinate chart $(U; x^i)$ such that the coordinate vector fields $\partial/\partial x^{\alpha}$ for $\alpha = 1, ..., k$ span D^k at each point of U.

Theorem 15.5 A set of vector fields $\{X_1, X_2, \dots, X_k\}$ is equal to the first k basis fields of a local coordinate system, $X_1 = \partial_{x^1}, \dots, X_k = \partial_{x^k}$ if and only if they commute with each other, $[X_\alpha, X_\beta] = 0$.

(書中有證明)

佰[

在
$$R^3$$
 -{(0,0,0)} $X_1 = y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y}, X_2 = z \frac{\partial}{\partial x} - x \frac{\partial}{\partial z}, X_3 = x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x}$

因為 $xX_1 + yX_2 + zX_3 = 0$ 此三個向量場張出一個 2-dim 平面場 D(distribution)

計算一下[
$$X_1, X_2$$
] = $y \frac{\partial}{\partial x} - x \frac{\partial}{\partial y} = -X_3$,[X_2, X_3] = $-X_1, [X_3, X_1] = -X_2$

因此 D 是對合的,由 Frobenius 定理 存在一個 local transformation 座標

$$y^1, y^2, y^3$$
,使得 D 由 $\frac{\partial}{\partial y^1}, \frac{\partial}{\partial y^2}$ 所張。

取
$$X = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} + z \frac{\partial}{\partial z}$$
 ,則 $[X, X_i] = 0$

因此 由 $\{X,X_1\}$ 所張的 distribution \mathbf{E}^2 也是對合的。

D=span $\{X_1, X_2, X_3\}$ is a Lie subalgebra with [] of $\chi(R^3)$, isomorphic to $\{R^3, \times\}$

$$F: D \to R^3$$
 $F(aX_1 + bX_2 + cX_3) = (a, -b, c)$

Let us consider spherical polar coordinates, Eq. (15.2), having inverse transformations

$$r = \sqrt{x^2 + y^2 + z^2}, \qquad \theta = \cos^{-1}\left(\frac{z}{r}\right), \qquad \phi = \tan^{-1}\left(\frac{y}{r}\right).$$

Express the basis vector fields in terms of these coordinates

$$\begin{split} \partial_x &= \frac{\partial r}{\partial x} \partial_r + \frac{\partial \theta}{\partial x} \partial_\theta + \frac{\partial \phi}{\partial x} \partial_\phi = \sin \theta \cos \phi \partial_r + \frac{\cos \theta \cos \phi}{r} \partial_\theta - \frac{\sin \phi}{r \sin \theta} \partial_\phi, \\ \partial_y &= \frac{\partial r}{\partial y} \partial_r + \frac{\partial \theta}{\partial y} \partial_\theta + \frac{\partial \phi}{\partial y} \partial_\phi = \sin \theta \sin \phi \partial_r + \frac{\cos \theta \sin \phi}{r} \partial_\theta + \frac{\cos \phi}{r \sin \theta} \partial_\phi, \\ \partial_z &= \frac{\partial r}{\partial z} \partial_r + \frac{\partial \theta}{\partial z} \partial_\theta + \frac{\partial \phi}{\partial z} \partial_\phi = \cos \theta \partial_r - \frac{\sin \theta}{r} \partial_\theta, \end{split}$$

and a simple calculation gives

$$X_1 = y\partial_z - z\partial_y = -\sin\phi\partial_\theta - \cot\theta\cos\phi\partial_\phi,$$

$$X_2 = z\partial_x - x\partial_z = -\cos\phi\partial_\theta - \cot\theta\sin\phi\partial_\phi,$$

$$X_3 = x\partial_y - y\partial_x = \partial_\phi,$$

$$X = x\partial_x + y\partial_y + z\partial_z = r\partial_r = \partial_{r'} \text{ where } r' = \ln r.$$

The distribution D^2 is spanned by the basis vector fields ∂_{θ} and ∂_{ϕ} , while the distribution E^2 is spanned by the vector fields ∂_r and ∂_{ϕ} in spherical polars.

§2 differential forms 形式 定理

Let $\omega = \sum_{i} f_{i} dx^{i}$ be a one-form which does not vanish at O \circ

Suppose there is a one-form θ satisfying $d\omega = \theta \wedge \omega$. Then there are function f and g in a sufficiently small neighborhood of O which satisfy $\omega = fdg$

Example $\omega = xdy$ -ydx. Certainly $\omega \wedge d\omega$) = 0 since $\omega \wedge d\omega$) is a three-form. However, the form ω vanishes at 0 so one does not expect that the integral curves of $\omega = 0$ will span out evenly a neighborhood of 0; in fact these curves are just the lines ax + by = 0 through 0. We note, however, that $d\omega = \theta \wedge \omega$ is impossible in any neighborhood of 0. For $d\omega = 2 dx dy$ so that if $\theta = A dx + B dy$, then 2 = Ax + By which fails at x = y = 0.

[A Course in Modern Mathematical Physics Peter Szekeres p.455] 定理

Let $\omega^i (i=1,2,...,r)$ be a set of 1-forms on an open set U , linaerly independent at every point $p \in U$. The following statements are all equivalent :

1. There exist lcal coordinates $(U; x^i)$ at every point $p \in U$ such that $\omega^i = A^i_i dx^j$

- 2. There exist 1-forms θ_j^i such that $d\omega^i = \sum_i \theta_j^i \omega^j$
- 3. $d\omega^i \wedge \Omega = 0$ where $\Omega = \omega^1 \wedge \omega^2 \wedge ... \wedge \omega^r$
- 4. $d\Omega \wedge \omega^i = 0$
- 5. There exists 1-form θ such that $d\Omega = \theta \wedge \Omega$

書中有證明

A system of linerly independent 1-forms $\ \omega^1,...,\omega^r$ on an open set U , satisfying any of the condition (1)-(5) of this theorem is said to be completely integrable \circ The equations defining the distribution $\ D^k(k=n-r)$ that annihilates these $\ \omega^i$ is given by equations $\ <\omega^i,X>=0$, often written as a Pfaffian system of equations $\ \omega^i=0 \ (i=1,...,r)$

Condition (1) says that locally there exist r functions $g^i(x^1,...,x^n)$ on U such that $\omega^i=f^i_jdg^j$. Where the functions f^i_j form a non-singular $r\times r$ matrix at every point of U \circ The functions g^i are known as a first integral of the system \circ The r-dimensional submanifolds (N_c,ψ_c) defined by $g^i(x^1,...,x^n)=c^i=const$ have the property $\psi^*_c\omega^i=f^i_j\circ\psi_cdc^j=0$ and are known as integral submanifolds of the system \circ

Problem 16.8 Given an $r \times r$ matrix of 1-forms Ω , show that the equation

$$dA = \Omega A - A\Omega$$

is soluble for an $r \times r$ matrix of functions A only if

$$\Theta A = A\Theta$$

where $\Theta = d\Omega - \Omega \wedge \Omega$.

If the equation has a solution for arbitrary initial values $A = A_0$ at any point $p \in M$, show that there exists a 2-form α such that $\Theta = \alpha I$ and $d\alpha = 0$.

§ 在分析力學中

 $\omega=0$ 是線性速度約束,若 $d\omega\wedge\omega=0$ 則該動力系統的速度約束為可積,該系統為具有完整約束的動力系統。

約束 (constraint),可積的(holonomic)

[An introduction to Riemannian Geometry p.198] 幾何力學

Theorem 4.8

A ditribution Σ is integrable if and only if $X,Y\in \chi(\Sigma) \Rightarrow [X,Y]\in \chi(\Sigma)$

Wheel rolling without slipping (slipping 打滑; slipper 拖鞋)

Consider a vertical wheel of radius R rolling without slipping on a plane • Assuming that the motion takes place along a straight line • we can parameterize any position of the wheel by the position x of contact point

and the angle $\ \theta$ between a fixed radius of the wheel and the radius containing the contact point $\ ,$ hence the configuratin space is $\ R \times S^1 \ \circ$

Then $\dot{x} = R\dot{\theta}$, this is equivalent to requiring that the motion be compatible with the

distribution defined on $R \times S^1$ by the vector field $X = R \frac{\partial}{\partial x} + \frac{\partial}{\partial \theta}$ or equivalently, by the kernel of the 1-form $\omega = dx - Rd\theta$.

Since $\,d\omega\!=\!0\,$, we see that is a semi-holonomic constraint , corresponding to an integrable distribution $\,^\circ$

The leaves of the distribution are the submanifolds with equation $x = x_0 + R\theta$

例 溜冰(ice skate)

一個溜冰的簡單模型是沿本身(冰刀)移動或以中心旋轉,冰刀的位置可以用冰刀中心點座標(x,y)與冰刀與 x 軸的夾角 θ 來表示。如上圖。因此 其組態空間 (configuration space)為 $R^2 \times S$

若冰刀只沿本身移動,則(x,y)與 $(\cos\theta,\sin\theta)$ 成比例, $R^2 \times S$ 的平面場

(distribution)
$$\Sigma = \{X,Y\}$$
 ,其中 $X = \cos\theta \frac{\partial}{\partial x} + \sin\theta \frac{\partial}{\partial y}, Y = \frac{\partial}{\partial \theta}$

或者 $\Sigma = \ker(\omega)$, $\omega = -\sin\theta dx + \cos\theta dy$

$$d\omega \wedge \omega = -\cos^2\theta d\theta \wedge dx \wedge dy + \sin^2\theta d\theta \wedge dy \wedge dx$$

$$=-d\theta \wedge dy \wedge dx \neq 0$$

由 one-form ω 的 kernel 給定的約束是不可積約束(non-holonomic constraint)。 參考書目

- 1. 微分幾何講義 陳省身 p.29 p.80
- 2. 大域微分幾何 黃武雄 p.128
- 3. 微分幾何及其在理學中的應用 王興中 有三個 Frobenius 定理的應用 p.219
- 4. 物理學家用的微分幾何 侯伯元 侯伯宇 p.60
- 5. Differential forms with Application to the Physical Science Harley Flander Ch7
- 6. Geometric Mechanics

Darryl D Holm

- 7. Mathematical Physics : Classical Mechanics Andreas Knauf p.325
- 8. A Course in Modern Mathematical Physics Peter Szekeres p.440 > p.455
- 9. An introduction to Riemannian Geometry p.198 幾何力學
- 10. 一個可積的動力系統 平斯
- **11.** What is a completely integrable nonholonomic dynamical system?

 https://www.sciencedirect.com/science/article/abs/pii/S0034487799801426

習作

Let
$$\alpha = dz + xdy - ydx \in \Omega^1(\mathbb{R}^3)$$
 °

Consider the distribution $E \subset TM$ defined by

$$\mathbf{E}_p = \left\{ v_p \in T_p \mathbf{R}^3 \, \middle| \, \alpha_p(v_p) = 0 \right\} \, , \quad p \in \mathbb{R}^3$$

Determine whether or not E is integrable • Prove your answer •

$$d\alpha = -dx \wedge dy - dy \wedge dx = 0$$

$$\stackrel{\text{T.}}{\approx} \alpha = f dg = f \left(\frac{\partial g}{\partial x} dx + \frac{\partial g}{\partial y} dy + \frac{\partial g}{\partial z} dz \right) , \text{ then}$$

$$\begin{cases} f \frac{\partial g}{\partial x} = -y \\ f \frac{\partial g}{\partial y} = -x \implies x \frac{\partial g}{\partial x} + y \frac{\partial g}{\partial y} = 0 \implies g = h(z)e^{\frac{y}{x}} \end{cases}$$

$$f \frac{\partial g}{\partial z} = 1$$

$$dg = h(z)e^{\frac{y}{x}} \times (\frac{-y}{x^2})dx + h(z)e^{\frac{y}{x}} \times \frac{1}{x}dy + h'(z)e^{\frac{y}{x}}dz$$

取
$$f = \frac{x^2}{z} e^{-\frac{y}{x}}, h(z) = z$$
,所以 E 是可積的,其 integral surface($\alpha = 0$ 的解) 是

hypersurface $ze^{\frac{y}{x}} = cons \tan t$