LECTURE 11: THE FROBENIUS THEOREM

1. Distributions

Suppose M is an *n*-dimensional smooth manifold. We have seen that any smooth vector field X on M can be integrated locally near any point to an integral curve. Moreover,

- If $X_p = 0$, then the corresponding integral curve is the constant curve $\gamma_p(t) \equiv p$.
- If $X_p \neq 0$, then the corresponding integral curve $\gamma_p(t)$ is a 1-dimensional curve near p.

In what follows we would like to some higher dimensional analogue of this fact.

Definition 1.1. A k-dimensional distribution \mathcal{V} on M is a map which assigns to every point $p \in M$ a k-dimensional vector subspace \mathcal{V}_p of T_pM . \mathcal{V} is called *smooth* if for every $p \in M$, there is a neighborhood U of p and smooth vector fields X_1, \dots, X_k on U such that for every $q \in U$, $X_1(q), \dots, X_k(q)$ are a basis of \mathcal{V}_q . (In particular, $X_i(q) \neq 0$ for all $1 \leq i \leq k$.)

Remarks. (1) In what follows, all distributions will be smooth.

(2) We say a vector field X belongs to a distribution \mathcal{V} if $X_p \in \mathcal{V}_p$ for all $p \in M$.

(3) By definition, a k-dimensional distribution is rank k sub-bundle of TM.

Definition 1.2. Suppose \mathcal{V} is a k-dimensional distributions on M. An immersed submanifold $N \subset M$ is called an *integral manifold* for \mathcal{V} if for every $p \in N$, the image of $d\iota_N : T_pN \to T_pM$ is \mathcal{V}_p . We say the distribution \mathcal{V} is *integrable* if through each point of M there exists an integral manifold of \mathcal{V} .

Example. Any non-vanishing vector field X is a 1-dimensional distribution. The image of any integral curve of X is an integral manifold.

Example. The vector fields $\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_k}$ span a k-dimensional distribution \mathcal{V} in \mathbb{R}^n . The integral manifolds of \mathcal{V} are planes that are defined by the system of equations

$$x^i = c^i \quad (k+1 \le i \le n).$$

Remark. An integral manifold need not to be an embedded submanifold of M. For example, consider $M = S^1 \times S^1 \subset \mathbb{R}^2_x \times \mathbb{R}^2_y$. Fix any irrational number a, the integral manifold of the non-vanishing vector field

$$X^{a} = \left(x^{2} \frac{\partial}{\partial x^{1}} - x^{1} \frac{\partial}{\partial x^{2}}\right) + a\left(y^{2} \frac{\partial}{\partial y^{1}} - y^{1} \frac{\partial}{\partial y^{2}}\right)$$

is a dense "curve" in M. (However, it is an immersed submanifold.)

Although any 1-dimensional distribution is integrable, a higher dimensional distribution need not to be integrable.

Example. Consider the smooth distribution \mathcal{V} on \mathbb{R}^3 spanned by two vector fields

$$X_1 = \frac{\partial}{\partial x^1} + x^2 \frac{\partial}{\partial x^3}, \quad X_2 = \frac{\partial}{\partial x^2}$$

I claim that there is no integral manifold through the origin. In fact, if \mathcal{V} is integrable, then the integrable manifold N of \mathcal{V} containing the origin must also contain the integrable curve of X_1 passing the origin, which is a piece of the x^1 -axis, i.e. N contains all points of the form (t, 0, 0) for $|t| < \varepsilon$. Also N must contain the integral curves of the vector field X_2 passing all these points (t, 0, 0). It follows that for each $|t| < \varepsilon$, N contains a small piece of line segment parallel to the x^2 -axis, i.e. N contains for each $|t| < \varepsilon$ all points of the form $(t, s, 0), |s| < \delta_t$. In other words, N contains a piece of the x^1 - x^2 plane that contains the origin. This is a contradiction, because the vector $\frac{\partial}{\partial x^1}$ is a tangent vectors of this piece of plane but is not in \mathcal{V}_p for any $p \neq 0$.

We are interested in the conditions to make a distribution integrable. A necessary condition is easy to find. In fact, we have

Theorem 1.3. If a distribution \mathcal{V} is integrable, then for any two vector fields X and Y belonging to \mathcal{V} , their Lie bracket [X, Y] belongs to \mathcal{V} also.

Proof. Fix any $p \in M$, suppose $\iota : N \hookrightarrow M$ is an integrable manifold of \mathcal{V} . Since N is an immersed submanifold of M, one can "shrink" N so that $\iota(N)$ is in fact an embedded submanifold of M. Now suppose X, Y are vector fields belonging to \mathcal{V} , then the restrictions $X|_N, Y|_N$ to N are vector fields that are tangent to the submanifold N. By definition, X_N is ι related to X and $Y|_N$ is ι -related to Y. It follows that $[X|_N, Y|_N]$ is ι -related to [X, Y]. In other words, $[X, Y]_p = d\iota_p([X|_N, Y|_N]_p)$ is tangent to N also. It follows that for any $p \in M$, $[X, Y]_p \in \mathcal{V}_p$. So [X, Y] belongs to \mathcal{V} also. \Box

Definition 1.4. A distribution \mathcal{V} is *involutive* if it satisfies the following *Frobenius condition*: If $X, Y \in \Gamma^{\infty}(TM)$ belong to \mathcal{V} , so is [X, Y].

Example. Any 1 dimensional distribution is involutive since [fX, gX] is a multiple of X.

Example. The k-dimensional distribution spanned by $\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_k}$ is involutive.

Example. The distribution \mathcal{V} spanned by

$$X_1 = \frac{\partial}{\partial x^1} + x^2 \frac{\partial}{\partial x^3}, \quad X_2 = \frac{\partial}{\partial x^2}$$

is not involutive, since

$$[X_1, X_2] = -\frac{\partial}{\partial x^3}$$

is not in \mathcal{V} .

Example. Let $f : M \to N$ be a submersion. Then the distribution \mathcal{V} with $\mathcal{V}_p = \operatorname{Ker}(df_p)$ is involutive. In fact, if X, Y are vector fields belonging to \mathcal{V} , then $df_p(X_p) = df_p(Y_p) = 0$, i.e. both X and Y are f-related to the zero vector field on N. It follows that $df([X, Y]_p) = 0$. It is easy to see that \mathcal{V} is also integrable. In fact, the integrable manifold passing $p \in M$ is the submanifold $f^{-1}(f(p))$.

LECTURE 11: THE FROBENIUS THEOREM

2. The Frobenius Theorem

It turns out that the Frobenius condition is not only necessary but also sufficient for a distribution to be integrable.

Theorem 2.1 (Global Frobenius Theorem). Let \mathcal{V} be an involutive k-dimensional distribution. Then through every point $p \in M$, there is a unique maximal connected integral manifold of \mathcal{V} .

Example. Consider the distribution \mathcal{V} on \mathbb{R}^3 spanned by

$$X_1 = x^1 \frac{\partial}{\partial x^2} - x^2 \frac{\partial}{\partial x^1}, \quad X_2 = \frac{\partial}{\partial x^3}$$

on $M = \mathbb{R}^3 - \{x^1 = x^2 = 0\}$. Since $[X_1, X_2] = 0$, \mathcal{V} is involutive. What is its integral manifold? Well, let's first compute the integral curves of X_1 and X_2 . Through any point (x^1, x^2, x^3) , the integral curves of X_1 are circles in the x^3 -plane with origin the center, and the integral curves of X_2 are the lines that are parallel to the x^3 -axis. Note that the integral manifold passing (x^1, x^2, x^3) of the distribution should contains all points of the form $\varphi_t^{X_1}(\varphi_s^{X_2}(x^1, x^2, x^3))$ for all t, s. In our case, this is the cylinders centering at the x^3 -axis.

We first prove the following local version: Any involutive distribution is integrable, i.e. locally near each point one can find an integrable manifold.

Theorem 2.2 (Local Frobenius Theorem). Let \mathcal{V} be an involutive k-dimensional distribution. Then for every $p \in M$, there exists a coordinate patch (U, x^1, \dots, x^n) centered at p such that for all $q \in U$, $\mathcal{V}_q = \operatorname{span}\{\frac{\partial}{\partial x^1}(q), \dots, \frac{\partial}{\partial x^k}(q)\}$.

We need the following lemma whose proof is left as an exercise.

Lemma 2.3. Let X be a smooth vector field on M. If $p \in M$ such that $X_p \neq 0$, then there exists a local chart (U, x^1, \dots, x^n) near p such that $X = \frac{\partial}{\partial x^1}$ on U.

Proof of the Local Frobenius Theorem: By the lemma, this is true for k = 1. Suppose the theorem holds for k - 1 dimensional distributions. Let \mathcal{V} be an k dimensional distribution spanned by X_1, X_2, \dots, X_k . Suppose \mathcal{V} is involutive, i.e.

$$[X_i, X_j] \equiv 0 \mod (X_1, \cdots, X_k), \quad 1 \le i, j \le k.$$

Use the previous lemma, there exits a local chart $(U; y^1, \dots, y^n)$ near p such that $X_k = \frac{\partial}{\partial y^k}$. For $1 \le i \le k-1$ let

$$X_i' = X_i - X_i(y^k)X_k,$$

then $X'_i(y^k) = 0$ for $1 \le i \le k - 1$, and $X_k(y^k) = 1$. Note that the vector fields $X'_1, \dots, X'_{k-1}, X_k$ still span \mathcal{V} . Moreover, if we denote

$$[X'_i, X'_j] = a_{ij}X_k \mod (X'_1, \cdots, X'_{k-1}), \quad 1 \le i, j \le k-1,$$

then applying both sides to the function y^k , we see $a_{ij} = 0$ for all $1 \le i, j \le k-1$. In other words, the k-1 dimensional distribution

$$\mathcal{V}' = \operatorname{span}\{X'_1, \cdots, X'_{k-1}\}$$

is involutive. So there is a local chart (U, z^1, \dots, z^n) near p such that \mathcal{V}' is spanned by $\{\frac{\partial}{\partial z^1}, \dots, \frac{\partial}{\partial z^{k-1}}\}$. Since each $\frac{\partial}{\partial z^i}$ is a linear combination of X'_j for $1 \leq i, j \leq k-1$, we conclude $\frac{\partial}{\partial z^i}(y^k) = 0$.

Now denote

$$\left[\frac{\partial}{\partial z^{i}}, X_{k}\right] = b_{i} X_{k} \mod \left(\frac{\partial}{\partial z^{1}}, \cdots, \frac{\partial}{\partial z^{m-1}}\right).$$

Apply both sides to the function y^k , we see $b_i = 0$ for all *i*. So we can write

$$\left[\frac{\partial}{\partial z^{i}}, X_{k}\right] = \sum_{j=1}^{k-1} C_{j}^{i} \frac{\partial}{\partial z^{j}}.$$

Suppose $X_k = \sum_{j=1}^n \xi_j \frac{\partial}{\partial z_j}$. Insert this into the previous formula, we see

$$\frac{\partial \xi_j}{\partial z_i} = 0, \quad 1 \le i \le k - 1, k \le j \le n.$$

In other words, for $j \ge k$, $\xi_j = \xi_j(z^k, \cdots, z^n)$. Let

$$X'_k = \sum_{j=k}^n \xi_j \frac{\partial}{\partial z^j}.$$

Then $\{\frac{\partial}{\partial z^1}, \dots, \frac{\partial}{\partial z^{k-1}}, X'_k\}$ still span \mathcal{V} . Finally according to the pervious lemma again, there is a local coordinate change from $(z^1, \dots, z^k, \dots, z^n)$ to $(x^1, \dots, x^k, \dots, x^n)$ with $x^i = z^i$ for $1 \leq i \leq k-1$, such that $X'_k = \frac{\partial}{\partial x^k}$. This completes the proof.

Sketch of proof of the Global Frobenius theorem: For any $p \in M$, let

 $N_p = \{q \in M \mid \exists \text{ a piecewise smooth integral curve in } \mathcal{V} \text{ jointing } p \text{ to } q\}.$

We claim that N_p is the maximal connected integral manifold of \mathcal{V} containing p.

The manifold structure is defined as follows: for any $q \in N_p$, there is a coordinate patch (U, x^1, \dots, x^n) centering at q such that $\mathcal{V} = \operatorname{span}\{\frac{\partial}{\partial x^1}, \dots, \frac{\partial}{\partial x^k}\}$ in U. For each small ε , let

$$W_{\varepsilon} = \{ w \in U \mid (x^{1})^{2}(w) + \dots + (x^{k})^{2}(w) \le \varepsilon, x^{k+1}(w) = \dots = x^{n}(w) = 0 \}.$$

Then any point $w \in W_{\varepsilon}$ can be joint to p by the integral curve

$$\gamma(t) = t(x_1(w), \cdots, x_k(w), 0, \cdots, 0).$$

So $W_{\varepsilon} \subset N_p$. Let

$$\varphi: W_{\varepsilon} \to B^k(\varepsilon) \subset \mathbb{R}^k, \quad w \mapsto (x_1(w), \cdots, x_k(w)).$$

Now we define the topology on N_p by giving it the weakest topology such that all these W_{ε} 's are open. The atlas on N_p is defined to be the set of charts $(\varphi, W, B_k(\varepsilon))$. One can check that N_p is a manifold with this given atlas. For more details, c.f. Warner, pg.48-49.