
LECTURE 11: THE FROBENIUS THEOREM

1. Distributions

Suppose M is an n-dimensional smooth manifold. We have seen that any smooth vector field
X on M can be integrated locally near any point to an integral curve. Moreover,

• If Xp = 0, then the corresponding integral curve is the constant curve γp(t) ≡ p.
• If Xp 6= 0, then the corresponding integral curve γp(t) is a 1-dimensional curve near p.

In what follows we would like to some higher dimensional analogue of this fact.

Definition 1.1. A k-dimensional distribution V on M is a map which assigns to every point
p ∈ M a k-dimensional vector subspace Vp of TpM . V is called smooth if for every p ∈ M , there
is a neighborhood U of p and smooth vector fields X1, · · · , Xk on U such that for every q ∈ U ,
X1(q), · · · , Xk(q) are a basis of Vq. (In particular, Xi(q) 6= 0 for all 1 ≤ i ≤ k.)

Remarks. (1) In what follows, all distributions will be smooth.
(2) We say a vector field X belongs to a distribution V if Xp ∈ Vp for all p ∈M .
(3) By definition, a k-dimensional distribution is rank k sub-bundle of TM .

Definition 1.2. Suppose V is a k-dimensional distributions on M . An immersed submanifold
N ⊂ M is called an integral manifold for V if for every p ∈ N , the image of dιN : TpN → TpM
is Vp. We say the distribution V is integrable if through each point of M there exists an integral
manifold of V .

Example. Any non-vanishing vector field X is a 1-dimensional distribution. The image of any
integral curve of X is an integral manifold.

Example. The vector fields ∂
∂x1
, · · · , ∂

∂xk
span a k-dimensional distribution V in Rn. The integral

manifolds of V are planes that are defined by the system of equations

xi = ci (k + 1 ≤ i ≤ n).

Remark. An integral manifold need not to be an embedded submanifold of M . For example,
consider M = S1 × S1 ⊂ R2

x × R2
y. Fix any irrational number a, the integral manifold of the

non-vanishing vector field

Xa = (x2
∂

∂x1
− x1 ∂

∂x2
) + a(y2

∂

∂y1
− y1 ∂

∂y2
)

is a dense “curve” in M . (However, it is an immersed submanifold.)

Although any 1-dimensional distribution is integrable, a higher dimensional distribution need
not to be integrable.
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Example. Consider the smooth distribution V on R3 spanned by two vector fields

X1 =
∂

∂x1
+ x2

∂

∂x3
, X2 =

∂

∂x2
.

I claim that there is no integral manifold through the origin. In fact, if V is integrable, then the
integrable manifold N of V containing the origin must also contain the integrable curve of X1

passing the origin, which is a piece of the x1-axis, i.e. N contains all points of the form (t, 0, 0)
for |t| < ε. Also N must contain the integral curves of the vector field X2 passing all these points
(t, 0, 0). It follows that for each |t| < ε, N contains a small piece of line segment parallel to the
x2-axis, i.e. N contains for each |t| < ε all points of the form (t, s, 0), |s| < δt. In other words, N
contains a piece of the x1-x2 plane that contains the origin. This is a contradiction, because the
vector ∂

∂x1 is a tangent vectors of this piece of plane but is not in Vp for any p 6= 0.

We are interested in the conditions to make a distribution integrable. A necessary condition
is easy to find. In fact, we have

Theorem 1.3. If a distribution V is integrable, then for any two vector fields X and Y belonging
to V, their Lie bracket [X, Y ] belongs to V also.

Proof. Fix any p ∈M , suppose ι : N ↪→M is an integrable manifold of V . Since N is an immersed
submanifold of M , one can “shrink” N so that ι(N) is in fact an embedded submanifold of M . Now
suppose X, Y are vector fields belonging to V , then the restrictions X|N , Y |N to N are vector fields
that are tangent to the submanifold N . By definition, XN is ι related to X and Y |N is ι-related
to Y . It follows that [X|N , Y |N ] is ι-related to [X, Y ]. In other words, [X, Y ]p = dιp([X|N , Y |N ]p)
is tangent to N also. It follows that for any p ∈M , [X, Y ]p ∈ Vp. So [X, Y ] belongs to V also. �

Definition 1.4. A distribution V is involutive if it satisfies the following Frobenius condition: If
X, Y ∈ Γ∞(TM) belong to V , so is [X, Y ].

Example. Any 1 dimensional distribution is involutive since [fX, gX] is a multiple of X.

Example. The k-dimensional distribution spanned by ∂
∂x1
, · · · , ∂

∂xk
is involutive.

Example. The distribution V spanned by

X1 =
∂

∂x1
+ x2

∂

∂x3
, X2 =

∂

∂x2

is not involutive, since

[X1, X2] = − ∂

∂x3

is not in V .

Example. Let f : M → N be a submersion. Then the distribution V with Vp = Ker(dfp) is
involutive. In fact, if X, Y are vector fields belonging to V , then dfp(Xp) = dfp(Yp) = 0, i.e. both
X and Y are f -related to the zero vector field on N . It follows that df([X, Y ]p) = 0. It is easy to
see that V is also integrable. In fact, the integrable manifold passing p ∈ M is the submanifold
f−1(f(p)).
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2. The Frobenius Theorem

It turns out that the Frobenius condition is not only necessary but also sufficient for a distri-
bution to be integrable.

Theorem 2.1 (Global Frobenius Theorem). Let V be an involutive k-dimensional distribution.
Then through every point p ∈M , there is a unique maximal connected integral manifold of V.

Example. Consider the distribution V on R3 spanned by

X1 = x1
∂

∂x2
− x2 ∂

∂x1
, X2 =

∂

∂x3

on M = R3 − {x1 = x2 = 0}. Since [X1, X2] = 0, V is involutive. What is its integral manifold?
Well, let’s first compute the integral curves of X1 and X2. Through any point (x1, x2, x3), the
integral curves of X1 are circles in the x3-plane with origin the center, and the integral curves of
X2 are the lines that are parallel to the x3-axis. Note that the integral manifold passing (x1, x2, x3)
of the distribution should contains all points of the form ϕX1

t (ϕX2
s (x1, x2, x3)) for all t, s. In our

case, this is the cylinders centering at the x3-axis.

We first prove the following local version: Any involutive distribution is integrable, i.e. locally
near each point one can find an integrable manifold.

Theorem 2.2 (Local Frobenius Theorem). Let V be an involutive k-dimensional distribution.
Then for every p ∈ M , there exists a coordinate patch (U, x1, · · · , xn) centered at p such that for
all q ∈ U , Vq = span{ ∂

∂x1 (q), · · · , ∂
∂xk (q)}.

We need the following lemma whose proof is left as an exercise.

Lemma 2.3. Let X be a smooth vector field on M . If p ∈M such that Xp 6= 0, then there exists
a local chart (U, x1, · · · , xn) near p such that X = ∂

∂x1 on U .

Proof of the Local Frobenius Theorem: By the lemma, this is true for k = 1. Suppose the theorem
holds for k − 1 dimensional distributions. Let V be an k dimensional distribution spanned by
X1, X2, · · · , Xk. Suppose V is involutive, i.e.

[Xi, Xj] ≡ 0 mod (X1, · · · , Xk), 1 ≤ i, j ≤ k.

Use the previous lemma, there exits a local chart (U ; y1, · · · , yn) near p such that Xk = ∂
∂yk

. For

1 ≤ i ≤ k − 1 let
X ′i = Xi −Xi(y

k)Xk,

then X ′i(y
k) = 0 for 1 ≤ i ≤ k − 1, and Xk(yk) = 1. Note that the vector fields X ′1, · · · , X ′k−1, Xk

still span V . Moreover, if we denote

[X ′i, X
′
j] = aijXk mod (X ′1, · · · , X ′k−1), 1 ≤ i, j ≤ k − 1,

then applying both sides to the function yk, we see aij = 0 for all 1 ≤ i, j ≤ k− 1. In other words,
the k − 1 dimensional distribution

V ′ = span{X ′1, · · · , X ′k−1}
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is involutive. So there is a local chart (U, z1, · · · , zn) near p such that V ′ is spanned by { ∂
∂z1
, · · · , ∂

∂zk−1}.
Since each ∂

∂zi
is a linear combination of X ′j for 1 ≤ i, j ≤ k − 1, we conclude ∂

∂zi
(yk) = 0.

Now denote

[
∂

∂zi
, Xk] = biXk mod (

∂

∂z1
, · · · , ∂

∂zm−1
).

Apply both sides to the function yk, we see bi = 0 for all i. So we can write

[
∂

∂zi
, Xk] =

k−1∑
j=1

Ci
j

∂

∂zj
.

Suppose Xk =
∑n

j=1 ξj
∂
∂zj

. Insert this into the previous formula, we see

∂ξj
∂zi

= 0, 1 ≤ i ≤ k − 1, k ≤ j ≤ n.

In other words, for j ≥ k, ξj = ξj(z
k, · · · , zn). Let

X ′k =
n∑

j=k

ξj
∂

∂zj
.

Then { ∂
∂z1
, · · · , ∂

∂zk−1 , X
′
k} still span V . Finally according to the pervious lemma again, there

is a local coordinate change from (z1, · · · , zk, · · · , zn) to (x1, · · · , xk, · · · , xn) with xi = zi for
1 ≤ i ≤ k − 1, such that X ′k = ∂

∂xk . This completes the proof. �

Sketch of proof of the Global Frobenius theorem: For any p ∈M , let

Np = {q ∈M | ∃ a piecewise smooth integral curve in V jointing p to q}.
We claim that Np is the maximal connected integral manifold of V containing p.

The manifold structure is defined as follows: for any q ∈ Np, there is a coordinate patch
(U, x1, · · · , xn) centering at q such that V = span{ ∂

∂x1 , · · · , ∂
∂xk } in U . For each small ε, let

Wε = {w ∈ U | (x1)2(w) + · · ·+ (xk)2(w) ≤ ε, xk+1(w) = · · · = xn(w) = 0}.
Then any point w ∈ Wε can be joint to p by the integral curve

γ(t) = t(x1(w), · · · , xk(w), 0, · · · , 0).

So Wε ⊂ Np. Let
ϕ : Wε → Bk(ε) ⊂ Rk, w 7→ (x1(w), · · · , xk(w)).

Now we define the topology on Np by giving it the weakest topology such that all these Wε’s are
open. The atlas on Np is defined to be the set of charts (ϕ,W,Bk(ε)). One can check that Np is
a manifold with this given atlas. For more details, c.f. Warner, pg.48-49. �


