自旋幾何筆記
本筆記旨在介紹自旋幾何的基本結構,包括 Clifford 代數、旋量表示、Spin主叢、自旋叢(spinor bundle)與 Dirac算子等核心觀念。
自旋幾何位於微分幾何、表示論與分析之交界,並在現代幾何拓撲(特別是 index theory 與四維流形理論)中扮演重要角色。
[Hydrogen
Atom]
[Dirac equation]---[Spin
Geometry]---Clifford代數---流形上的Dirac算子---指標定理
[Spin Geometry Christian
Bar] [Clifford Algebra and Spinors] by Pertti
Lounesto] [Dirac operators and Spectral Geometry Joseph
C. Varilly]
第一章 Differential operators on Manifold
- Differential operators on Manifolds
- Sobolev spaces
- Laplace-type and Dirac-type operators
- The Analysis of Dirac-type opeartors
- Hodge theory
第二章 Lorentz群與SL(2,C)
- Lorentz transformation
- Lorentz group SO(1,3)
[習作] Lorentz spin group
Spin(1,3) or SL(2,C) [關於對稱性
:從SO(1,3) so(1,3) Spin(1,3)到Killing vector field]
- Lorentz群的表示 [表示隨處可見(席南華)] Represetations of the Lorentz Groups
[Topics in Representation
Theory by (Giovanni
Russo)]
[SO(2)的表示]
- SO(4)
[SU(2)]
習作
SO(3) [Spherical Harmonics]
第三章 Spinors and the classical Dirac operator
- Clifford Algebras Introduction
A
child guide to spinors Clifford
product (Reflection and Rotation: (1) Infinitesimal Generators)
[cl3]
[cl4
and Spin(4) (rotation)] 習作
習作
習作(reflection)
-
The spin Group ,Spin(3),Spin(4)
- Spinors
立體投影將球面上的點和酉旋量聯繫起來
(2) 建構一個么正旋量
(3) [The Pauli matrices
Pauli spinors]
(4) Hermitian
Vector Spaces [Energy
momentum
equation] [Klein-Gordon
equation] [自旋電子]
Spin Structure
Spinor
Bundle The Spin manifolds
- Spin strutures
-
The classical Dirac operator on spinors
- Hypersurfaces
- Spacelike hypersurfaces of Lorentzian manifolds
-
Maxwell,Dirac,Weyl,Majorana and Pauli spinors [習作 Dirac Spinors]
- Spin結構:[習作 Spin(4)]
- Spin 流形
第四章 [Dirac operator]
薛丁格方程
- The classical Dirac operator on spinors [習作 Pauli spinors]
[Dirac方程] [Dirac operator(1)]
[Dirac
Operator(2)] [The Dirac spectrum
S^3的Dirac譜]
- 電磁場與Dirac current Electromagnetic Field(電磁場與Dirac current
J(x)] 非常困難 pdf檔亂掉了
- 聯絡與曲率
- Twisted Dirac Operator and Index Theory
第五章 量子力學中的旋量與Dirac方程式
- 氫原子的能階譜
第六章 The heat equation and index theory
- The heat kernel
-
The formal heat kernel
-
Growth of eigenvalues
- The index of Dirac-type operators
-
簡介Atiyah–Singe指標定理的幾何與拓撲意義
-
以Dirac 算子為例說明指標的計算
-
應用範例:手徵反常、零模計數、拓撲不變量
第七章 Holonomy groups
- 引入 Berger 分類的簡要說明
-
說明Spin(7), 等特殊Holonomy流形與旋量的關係
第八章 Killing spinor fields
第九章 Open problems
- Spinors in 4-dimensional spaces Gerardo
F.Torres del Castillo(墨西哥)
1.Spinor Algebra 2.Connection
and Curveture 3.Applications to GR 4.Further Aplications
Killing Spinors [Exercise 1] [Exercise 2] [Exercise
3] [Exercise 4]
- The Dirac equation in Curved Spacetime Peter
Collas and David Klein
- The heat equation and index theory(熱核理論)
Atiyah-Singer-Index theorem
[Michael
Atiyah and Isadore Singer]
- 正標量曲率(positive scalar curvature) : 一個給定的流形上是否存在一個具有正標量曲率的黎曼度量?
Gromov-Lawson-Rosenberg conjecture [Open Problems]
- Kahler Manifolds and Complex Dirac Operators
- The Seiberg-Witten and Twistor Construtions(或Weitzenbock 公式應用)
- Applications to Gauge Theory and Topology
- Gemini建議的[自旋幾何講義]