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§ Representation [Spinor701-1] 

簡單來說，一個群的表示就是找到一個向量空間 V 和群同態 : ( )G GL V  。 

這裡的「表示」指的是用 V 的線性變換來「代表」或「實現」群 G 的元素。 

G V


 保持群運算 ( ) ( ) ( ), ( )g h g h e I        

正方形所有保持其形狀不變的對稱操作（旋轉和翻

轉）所構成的群。它有 8 個元素，稱為二面體群
4D   

群元素(抽象動作)包含旋轉與鏡射： 

4 90 180 270{ , , , , , , , }v h d adD e r r r s s s s  

例如
90r 是繞 x 軸逆時針旋轉 090 ，

ads 是對直線 y=-x 的

鏡射。 

把
4D 的元素對應到一個二階方陣，就是一個表現。只要針對基底(1,0)，(0,1)的

映射就可以找到對應的矩陣。
4: (2, )D GL R  ，這裡向量空間 2V R ，以下的

2( )A GL R   

例如 逆時針旋轉 090 ，
1 0 0 1

,
0 1 1 0

A A
       

        
       

則
0 1

1 0
A

 
  
 

  

所以 90

0 1
( )

1 0
r

 
  
 

  

同理 對直線 y=-x 的鏡射，
1 0 0 1

,
0 1 1 0

A A
       

        
       

則
0 1

1 0
A

 
  

 
  

所以
0 1

( )
1 0

ads
 

  
 

  

我們就說 2( , )R 是
4D 的一個表現(representation)。 

當然這裡還需要驗證滿足「同態」條件，即 ( ) ( ) ( ), ( )g h g h e I       

例如驗證
90 90( ) ( ) ( )ad ads r s r    

左邊
1 0 1 0 1 0

,
0 1 0 1 0 1

           
              

           
 90

1 0
( )

0 1
ads r

 
  
 

 

右邊是
0 1 0 1 1 0

1 0 1 0 0 1

      
    

    
，是沿 y 軸的翻轉。OK! 

 

1. SU(2)的表示 

 †(2) (2, ) ,det( ) 1SU U GL C U U I U    ， †U 是 U 的共軛轉置。 

是 SO(3)的雙重覆蓋。 
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以下是幾個最常見和最重要的不可約表示： 

 

用 Pauli 矩陣構造 j=1/2 的表示是 SU(2)的基本表示。 

(1) 引入 Pauli 矩陣
1 2 3, ,     

(2) 定義生成元
1

2
k kJ    

(3) 驗證對易關係 例如
1 2 3[ , ]J J iJ   

(4) 驗證量子數 j：計算總角動量算符 2 2 2 2

1 2 3J J J J   確認其特徵值為 j(j+1) 

物理詮釋：自旋態(略) 
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2. Lorentz 群的旋量表示 

與 SU(2)的表示由一個數字 j 標記不同，勞倫茲群的（有限維）不可約表示是由

一對半整數或整數 ( , )L Rj j 來標記的。 

其中
1 3

, 0, ,1, ,...
2 2

L Rj j    

旋量表示指的就是那些
Lj 或

Rj （或兩者）為半整數的表示。 

其中最基本的是外爾旋量 (Weyl spinors)，它們構成了描述費米子（如電子、夸

克）的基礎。 

首先，勞倫茲群 SO(1,3)是所有保持閔可夫斯基時空距離
2 0 2 1 2 2 3 2( ) ( ) ( ) ( )s x x x x     不變的線性變換所構成的群。 

物理上我們通常關注的是與單位元素連續相連的部分，稱為正常勞倫茲群 

(Proper Orthochronous Lorentz Group)，記為 (1,3)SO 。 

這個群的李代數 so(1,3)由 6 個生成元構成： 

(1) 3 個旋轉生成元：
1 2 3, ,J J J   

(2) 3 個加 boost 生成元：
1 2 3, ,K K K   

它們滿足對易關係 

直接從上述複雜的對易關係找出表示很困難。 

這裡有一個非常巧妙的數學技巧：我們將李代數複數化，並定義兩組新的生成

元： 

1 1
A ( ), ( )

2 2
k k k k k kJ iK B J iK      

當我們計算這兩組新生成元的對易關係時，會得到驚人的結果： 

[ , ] ,[ , ] ,[ , ] 0k l klm m k l klm m k lA A i A B B i B A B      

這表示 ,k kA B 分別構成獨立的 SU(2)的李代數，所以，我們成功地將複雜的勞倫

茲代數分解成了兩個我們已經非常熟悉的 SU(2)代數的直和： 

因此 (1,3) (2) (2)C C Cso su su    

建構表示： ( , )L Kj j 標記法 
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§ 基本旋量表示：Weyl spinors 

 

外爾旋量是勞倫茲群不可約的旋量表示。在物理上，它們被認為是描述無質

量、具有特定手性 (Chirality) 的費米子的基本單位。 

物理中的旋量：狄拉克旋量 (Dirac Spinor) 

在現實世界中，像電子這樣的帶電費米子是有質量的。描述它們需要用到狄拉

克旋量。 

一個狄拉克旋量不是勞倫茲群的不可約表示，而是由一個左手和一個右手外爾

旋量組合而成的可約表示： 

標記：
1 1

( ,0) (0, )
2 2

  維度：2+2=4 
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一個非常深刻的結果是，我們熟悉的四維向量在這種表示框架下，恰好對應於

1 1
( , )
2 2

 表示。這揭示了時空向量和旋量之間深層的數學聯繫。 


