EXERCISE 6.1

To the four-vector $\mathbf{X} = (x^0, x^1, x^2, x^3)$ of Minkowski space we make correspond the matrix $\chi = x^i \sigma_i$, where σ_i denotes the Pauli matrices.

- 1. Write the matrix χ explicitly and calculate the inverse correspondence.
- 2. Calculate the scalar product (X, X) as a function of χ .
- **3.** Let A be a matrix belonging to the group $SL(2,\mathbb{C})$. Determine a transformation which preserves the scalar product of four-vectors.
- 4. From this deduce that there exists a Lorentz transformation Λ_A corresponding to the matrix A.
- **5.** Show that there exists a homomorphism between the groups $SL(2, \mathbb{C})$ and $SO(3,1)^{\dagger}$.

EXERCISE 6.2

The infinitesimal matrices Y_{ij} of the group $SO(3,1)^{\dagger}$ are given by (6.1.9).

- 1. Calculate the commutators $[Y_{02}, Y_{01}], [Y_{12}, Y_{01}], [Y_{02}, Y_{12}].$
- 2. Compare them with the commutation relations of SO(3).

Exercise 6.3

Consider two spinors (ψ^1, ψ^2) and (ϕ^1, ϕ^2) of four-dimensional space.

- 1. Show that the product $(\psi^1\phi^2 \psi^2\phi^1)$ is invariant under all transformations of the group $SL(2,\mathbb{C})$.
- 2. In order that the product $(\psi^1\phi^2 \psi^2\phi^1)$ may be written in the classical form $\psi^k\phi_k$ of a scalar product, determine the expression for the 'covariant' components ϕ_k as well as the components of the fundamental tensor.

Exercise 6.4

Consider two Cartesian frames of reference Oxyz(t) and O'x'y'z'(t') which are moving with respect to each other at a speed v along the axis Ox parallel to O'x'.

1. Recall the formulas for the Lorentz transformation between two reference frames. Set

$$\beta = \frac{v}{c}.$$

2. For the moment use the following notations

$$ct = x^{0},$$
 $x = x^{1},$ $y = x^{2},$ $z = x^{3},$ $ct' = x^{0'}$ $x' = x^{1'},$ $y' = x^{2'},$ $z' = x^{3'}.$ (6.4.26)

Set

$$\gamma = (1 - \beta^2)^{-1/2}.$$

Calculate the matrix of the Lorentz transformation between the two reference frames.

3. Show that we can, indeed, set

$$\gamma = \cosh \varphi, \qquad \gamma \beta = \sinh \varphi.$$