Exercises 2.1

Consier a function F(z) the expansion of which in an entire series in z is $F(z) = \sum_{n=0}^{\infty} f_n z^n$

Let A be a operator with which we form the series $F(A) = \sum_{n=0}^{\infty} f_n A^n$ o

1. Let ψ_a be an eigenfunction of A corresponding to the eigenvalue a $A\psi_a = a\psi_a$. Prove that ψ_a is also an eigenfunction of F(A) and calculate the corresponding eigenvalue.

$$A^n \psi_a = a^n \psi_a$$

$$F(A)\psi_{a} = \sum_{n=0}^{\infty} f_{n}A^{n}\psi_{a} = \sum_{n=0}^{\infty} f_{n}a^{n}\psi_{a} = \psi_{a}\sum_{n=0}^{\infty} f_{n}a^{n} = F(a)\psi_{a}$$

所以 ψ_a 是 F(A)的 eigenfunction, 其對應的 eigenvalue 為 F(a)。

2. Prove that the matrix of an operator A is diagonal in the orthonormal basis of its eigenfunctions °

設
$$\{e_1, e_2, ..., e_n\}$$
 is an orthonormal basis ' $Ae_i = \lambda_i e_i$ ' $A = (a_{ii})$

The matrix representation of A in this basis is given by

$$a_{ij} = \langle e_i, Ae_j \rangle = \langle e_i, \lambda_j e_j \rangle = \lambda_j \delta_{ij}$$

3. Consider the following Pauli matrix $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ • Taking into account the result of Exercise 2 • calculate the matrix $\exp(\sigma_z)$ •

$$\exists \Box A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \text{ calculate } \exp(A)$$

$$\exp(A) = \sum_{n=0}^{\infty} \frac{A^n}{n!} = \begin{pmatrix} e & 0 \\ 0 & e^{-1} \end{pmatrix}, \text{ fill } \exp(\sigma_z) = \begin{pmatrix} e & 0 \\ 0 & e^{-1} \end{pmatrix}$$

Exercises 2.2

Let $A(\alpha)$ be an operator which depends on the parameter α •

By definition the derivative of $A(\alpha)$ with respect to α is the operator given by the limit under the condition that there exists $\frac{dA}{d\alpha} = \lim_{\Delta \alpha \to 0} \frac{A(\alpha + \Delta \alpha) - A(\alpha)}{\Delta \alpha}$

1. Calculate the derivative of the operator $\exp(\alpha A)$, where A is an operator which does not depend on α

$$e^{\alpha A} = \sum_{n=0}^{\infty} \frac{(\alpha A)^n}{n!} \frac{d(e^{\alpha A})}{d\alpha} = Ae^{\alpha A}$$

2. For the moment let $A(\alpha)$ be an operator which depends on α ° Calculate the matrix elements of the matrix representing the operator $\frac{dA}{d\alpha}$ as a function of the matrix elements A_{ij} of the matrix M(A) °

Exercises 2.3

Let A be a square matrix of order n and with elements a_{ij} \circ The matrix elements of A^k will be denoted $a_{ij}^{(k)}$ \circ

1. From the evident majorization $\left|a_{ij}\right| \leq M$, for any i and j, deduce a majorization for $a_{ij}^{(2)}, a_{ij}^{(3)}$, and then for $a_{ij}^{(k)}$

The elements of A^2 are given by $a_{ij}^2 = \sum_{k=1}^n a_{ik} a_{kj}$. The majorziation $\left|a_{ij}\right| \leq M$ implies $\left|a_{ij}^{(2)}\right| \leq \sum_{k=1}^n \left|a_{ik}\right| \left|a_{kj}\right| \leq nM^2$

Similarly , $\left|a_{ij}^{(3)}\right| \leq n^2 M^3$, by induction $\left|a_{ij}^{(k)}\right| \leq n^{k-1} M^k$

- 2. If the n^2 numerical series $S_{ij} = \delta_{ij} + \frac{a_{ij}}{1!} + \frac{a_{ij}^{(2)}}{2!} + ... + \frac{a_{ij}^{(k)}}{k!} + ...$ are convergent it will be said the matrix series $\exp(A) = I + \frac{A}{1!} + \frac{A^2}{2!} + ... + \frac{A^k}{k!} + ...$ converges in and the matrix formed by the sum of this series will be written $\exp(A)$ Using the majorization of the $a_{ij}^{(k)}$ is show that the series denoted $\exp(A)$ converges for every matrix A \circ
- 3. Show that a sufficient condition for exp(A)exp(B)=exp(A+B) to hold is that the matrices A and B commute °

Exercises 2.4

A two-dimensional representation of the group of plane rotation SO(2) is given by the

matrices
$$M(R_{\alpha}) = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$

1. Calculate the infinitesimal matrix $X^{(\alpha)}$ of the given representation

Differentiation of the matrix elements of $M(R_{\alpha})$ at $\alpha = 0$ gives the infinitesmal matrix $X^{(\alpha)} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

2. By a direct calculation verify the following expression for the matrices $M(R_{\alpha})$ of this representation $M(R_{\alpha}) = \exp(\alpha X^{(\alpha)})$

$$X^{(\alpha)} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
,計算 $(X^{(\alpha)})^{2n}, (X^{(\alpha)})^{2n+1}$

The matrix
$$\exp(\alpha X^{(\alpha)}) := I + \frac{\alpha X^{(\alpha)}}{1!} + \frac{\alpha^2 (X^{(\alpha)})^2}{2!} + \dots + \frac{\alpha^k (X^{(\alpha)})^k}{k!} + \dots$$
 拆開成兩部分
$$= I \cos \alpha + X^{(\alpha)} \sin \alpha = \begin{pmatrix} \cos \alpha & 0 \\ 0 & \cos \alpha \end{pmatrix} + \begin{pmatrix} 0 & -\sin \alpha \\ \sin \alpha & 0 \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$

Exercises 2.5

The matrices $M(R_{\alpha})$ of the representation of the group SO(2) are related by the relation

$$M(R_{\alpha})X^{(\alpha)} = \frac{dM(R_{\alpha})}{d\alpha}$$
 with $X^{(\alpha)} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

Calculate the matrices $M(R_{\alpha})$ by solving the differential system which the elements M_{ii} of these matrices satisfy

$$\begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} M_{12} & -M_{11} \\ M_{22} & -M_{21} \end{pmatrix} = \begin{pmatrix} \frac{dM_{11}}{d\alpha} & \frac{dM_{12}}{d\alpha} \\ \frac{dM_{21}}{d\alpha} & \frac{dM_{22}}{d\alpha} \end{pmatrix} \text{ with } M(R(0)) = I$$

The initial condition $M_{11}(0) = M_{22}(0) = 1, M_{12}(0) = M_{21}(0) = 0$ Then we obtain $M_{11} = M_{22} = \cos \alpha, M_{12} = -\sin \alpha, M_{21} = \sin \alpha$

Exercises 2.6

1. By expanding the expression $\exp(-i\frac{1}{2}\alpha\sigma_z)$, where $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, prove that a second-order matrix representation an element of the group SU(2) is obtained °

The matrix $\exp(-i\frac{1}{2}\alpha\sigma_z)$ has as its expansion in a series

$$\exp(-i\frac{1}{2}\alpha\sigma_z) = I + \sum_{n=1}^{\infty} (-i\frac{1}{2}\alpha)^n \frac{\sigma_z^n}{n!} \quad \text{where} \quad (\sigma_z)^{2n} = I, (\sigma_z)^{2n+1} = \sigma_z$$

consequently,
$$\exp(-i\frac{1}{2}\alpha\sigma_z) = \cos\frac{\alpha}{2}I - i\sin\frac{\alpha}{2}\sigma_z = \begin{pmatrix} e^{-i\alpha/2} & 0\\ 0 & e^{i\alpha/2} \end{pmatrix}$$

2. Calculate the expression for the spinor $\eta = (\psi_1, \psi_2)$ transformed by the matrix $\exp(-i\frac{1}{2}\alpha\sigma_z)$ °

What is the expression for the transgorm for $\alpha = 2\pi$? For which angle of rotation do we obtain an identity spinor?

A spinor transformed by this matrix becomes
$$\eta' = \begin{pmatrix} e^{-i\alpha/2} & 0 \\ 0 & e^{i\alpha/2} \end{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} = \begin{pmatrix} e^{-i\alpha/2} \psi_1 \\ e^{i\alpha/2} \psi_2 \end{pmatrix}$$

A rotation through an angle of 2π about the axis Oz transforms a spinor into its opposite \circ It is a rotation through an angle of 4π which once again gives a spinor identical to itself \circ