
 

Exercises 2.1 

Consier a function F(z) the expansion of which in an entire series in z is 
0

F(z)= n
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f z

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 。 

Let A be a operator with which we form the series 
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F A f A



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1. Let 
a  be an eigenfunction of A corresponding to the eigenvalue a，

a aA a  。

Prove that 
a  is also an eigenfunction of F(A) and calculate the corresponding 

eigenvalue。 
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所以
a 是 F(A)的 eigenfunction，其對應的 eigenvalue 為 F(a)。 

 

2. Prove that the matrix of an operator A is diagonal in the orthonormal basis of its 

eigenfunctions。 

設
1 2{ , ,..., }ne e e is an orthonormal basis，

i i iAe e ， ( )ijA a   

The matrix representation of A in this basis is given by 

< , ,ij i j i j j j ija e Ae e e       

3. Consider the following Pauli matrix 
1 0

0 1
z

 
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。Taking into account the result 

of Exercise 2，calculate the matrix exp( )z 。 

即
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0 1
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Exercises 2.2 

Let ( )A   be an operator which depends on the parameter  。 

By definition the derivative of ( )A   with respect to  is the operator given by the limit 

under the condition that there exists 
0

( ) ( )
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1. Calculate the derivative of the operator exp( )A ，where A is an operator which 

does not depend on    
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2. For the moment let ( )A   be an operator which depends on  。Calculate the 

matrix elements of the matrix representing the operator 
dA

d
 as a function of the 

matrix elements 
ijA  of the matrix M(A)。 

 

Exercises 2.3 

Let A be a square matrix of order n and with elements 
ija 。The matrix elements of kA  

will be denoted ( )k

ija 。 

1. From the evident majorization ija M ，for any i and j，deduce a majorzation for 

(2) (3),ij ija a ，and then for ( )k

ija   

The elements of 2A  are given by 2
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Similarly， (3) 2 3

ija n M ，by induction ( ) 1k k k

ija n M   

2. If the 2n  numerical series 
(2) ( )

... ...
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will be said the matrix series 
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matrix formed by the sum of this series will be written exp(A)。Using the 

majorization of the ( )k

ija ，show that the series denoted exp(A) converges for every 

matrix A。 

 

3. Show that a sufficient condition for exp(A)exp(B)=exp(A+B) to hold is that the 

matrices A and B commute。 

 

Exercises 2.4 

A two-dimensional representation of the group of plane rotation SO(2) is given by the 



matrices 
cos sin

M(R )=
sin cos
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1. Calculate the infinitesimal matrix ( )X   of the given representation 

 

Differentiation of the matrix elements of ( )M R  at 0   gives the infinitesmal matrix 
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2. By a direct calculation verify the following expression for the matrices ( )M R  of 

this representation ( )( ) exp( )M R X 

    
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Exercises 2.5 

The matrices ( )M R  of the representation of the group SO(2) are related by the relation  
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Calculate the matrices ( )M R  by solving the differential system which the elements 

ijM  of these matrices satisfy 

11 12

11 12 12 11

21 22 22 21 21 22

0 1

1 0

dM dM

M M M M d d

M M M M dM dM

d d

 

 

 
     

       
      

 
 

 with ( (0))M R I   

The initial condition 
11 22 12 21(0) (0) 1, (0) (0) 0M M M M      

Then we obtain 
11 22 12 21cos , sin , sinM M M M         

 

Exercises 2.6 

1. By expanding the expression 
1

exp( )
2

zi  ，where 
1 0

0 1
z

 
  

 
，prove that a 

second-order matrix representation an element of the group SU(2) is obtained。 

The matrix 
1

exp( )
2

zi   has as its expansion in a series  
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2. Calculate the expression for the spinor 
1 2( , )    transformed by the matrix 

1
exp( )

2
zi  。 

What is the expression for the transgorm for 2  ？For which angle of rotation do 

we obtain an identity spinor？ 

A spinor transformed by this matrix becomes 
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A rotation through an angle of 2  about the axis Oz transforms a spinor into its 

opposite。It is a rotation through an angle of 4   which once again gives a spinor 

identical to itself。 


