- § 3.1
- § 3.2
- § 3.3
- § 3.4

Exercise 3.1

- 1. Consider a rotation about the axis Ox through an angle α . Calculate the matrix $M^{(1/2)}[R(\alpha,0,0)]$ of the two-dimensional spinor representation of the group SO(3) starting from the infinitesimal matrix $A_x^{(1/2)}$ given by (3.4.1).
- 2. The same question for rotations about the axes Oy and Oz.
- 3. Show that the three matrices are particular cases of the matrix $M[R(n,\theta)]$ given by (3.4.2).

EXERCISE 3.2

The three-dimensional irreducible representation of the group SU(2) is given by the matrix (2.2.19). Show that the three-dimensional infinitesimal matrix of the irreducible representation is identical to the three-dimensional infinitesimal matrix in the canonical basis of the group SO(3) given by (3.2.34).

Exercise 3.3

Let us study the rotation $R(\varphi)$ through an angle φ of the vector \boldsymbol{u} about the axis Oz of a Cartesian frame of reference Oxyz. The origin of the vector \boldsymbol{u} is located on the axis Oz. We write the components of \boldsymbol{u} as u_x, u_y, u_z .

- 1. Calculate the components u_x', u_y', u_z' of the vector \boldsymbol{u} when rotated.
- **2**. Write the rotation matrix $M[R(\varphi)]$.

Exercise 3.4

- 1. Recall the meaning of the antisymmetric Kronecker symbol ε_{ijk} .
- 2. Show the validity of formulas (3.1.6)

$$(L_k)_{ij} = -arepsilon_{ijk}, \qquad i,j,k=1,2,3.$$

3. Use the Kronecker symbol to write a formula for the commutation relations of the infinitesimal matrices given by (3.1.7).