An Introduction to Riemannian Geometry Jose Natario
第一章 可微分流形 簡介
[ExerciseDG101]
- Topological Manifold
- Differentiable Manifolds Differentiable Maps
- (1)Lie derivative (2)holonomy
(1)Jacobi fields
(2) Why
are Killing
fields relevant in physics ? [Notes
on Killing fields]( by Ivo
Terek)
- metrics
- immersion and embedding
- Lie Groups
- Frobenius可積分定理 [積分因子 Lie群的觀點] [可積的動力系統]
[常均曲率曲面] :H.C.Wente 1986 發展的技巧, 建立起常均曲率曲面與可積系統之關聯, 常均曲率環面因之而能被深入探討。
如何理解三者的關係
- Geometric flows也稱為幾何演化方程
- Tangent bundle
- Manifolds with boundary
第二章 Differential Forms [ExerciseDG201]
- Differential Forms
- Integration on Manifolds
- Cartan magic formula
- Stokes定理 [習作] 向量場的微積分 (1)散度 梯度 旋度
- 曲面理論的活動標架法 (結構方程式) Gauss-Codazzi equations Structure equations
[Differential Forms and Connections] by Richard
W.R. Darling
第三章 黎曼流形 (M,g) [ExerciseDG301]
- Affine connection induced metric
曲線長度在座標變換下不變
- Covariant derivative , parallelism ,聯絡(connection)
- Exponential map normal coordinates(正則座標系)以簡化計算。
- Geodesic [虛功原理與Euler-lagrange方程式]
[the curvature
and geodesics on Torus]
[蟲洞的測地線] [the geodsic equations for metric of a charged BH] [Worm
hole]
- Hopf-Rinow定理
- Einstein manifold
第四章 曲率 [ExerciseDG401]
- (1)曲率(古典) (2)曲率
(3)S^2 IS^2 (傅科擺) (4)Ricci
(5)Cosmology(FLW
model) (6)Ricci
Scalar for BH
- [Geometry of the 3-phere]
by Garret Sobczyk
[Ruth Gregory ResearchGate]
GR and BH
- 黎曼曲率張量
- (Cartan) Structure equation (1)connection forms (2)curvature forms (3)R^n的結構方程
- Gauss Bonnet定理
- (1)sectional curvature (2)Ricci curvature (3)scalar curvature [Ricci flow]
(4)Ricci Scalar
for the BH space
- Isometric Immersions
- Minimal surfaces
- Hyperbolic
plane
第五章 Geometric Mechanics [ExerciseDG501]
第六章 Relativity [ExerciseDG601]
第七章 Manifold of constant curvature
第八章 能量的變分 Bonnet-Myers定理 Rauch比較定理 Morse 指標定理 Synge-Weistein定理
第九章 負曲率流形的基本群 complete manifolds Hadamard定理