Ricci flow and Poincare conjecture

by John MorganGang Tian(田剛 1958~)

的解沿著正Ricci曲率的方向向內收縮 然後沿著負Ricci曲率的方向向外擴張

例如在S^2上的任何正曲率解在有限時間內將向內收縮為一點 因此 我們猜測...

極大值原理(Maximum principle)  Harnack估計

What is the Ricci flow ?

  1. Hamilton's Ricci flow                                                    Bennett ChowPeng LuLei Ni   [Basic Riemannian Geometry]  
  2. The Ricci Flow :An Introduction                                Bennett Chow、Dan Knopf (Geometric Analysis , Differential Geometry , Geometric PDE)
  3. A complete proof of Poincare conjecture...                   Haui-Dong Cao(曹懷東) XI-Ping Zhu(朱熹平)
  4. Recent progress on Ricci solitons  曹懷東 2010年
  5. Lectures on the Ricci Flow                                            Peter Topping
  6. Hamilton's Ricci Flow                                                   Nick Sheridan
  7. An illustrated introduction to the Ricci flow                  Gabe Khan        Gabriel Khan

Introduction     [孤立波Soliton] 1834年8月 John Scott Rusell KdV方程的故事

The Ricci tensor : A complete guide with examples  [Ricci Curvature]

單質化定理(The uniformization theorem)任意一個單聯通的黎曼面都和三個標準黎曼面中的一個共形等價:

                    擴展複平面 S^2 複平面或者單位圓盤

                                                                                        Fields medal :

Stephen Smale (1930~

Michael Freedman(1951~ )

John Milnor (1931~  )

Grigori Perelman (1966~ )

1966

1986

1962

2006

專訪

 

A conversation

 

  1. [Ricci流與Poincare 猜想] 張樹城先生 1999 年發表在數學傳播季刊。
    2006年 Grigori Perelman證明了該猜想。
    為了研究一些非線性(橢圓)PDE 例如(1)最小曲面方程 (2)Monge-Ampere方程 (3)Yang-Mill方程 (4)E-L 方程
    解的存在性可反映出一些很好的幾何結果。
    為了研究這些elliptic方程 通常會有另一個相對應的parabolic方程(Heat flow)。
    文中提及的參考資料 可以在[Richard S. Hamilton]中找到。
    Wiliam Thurston(1946~2012) hyperbolic geometry        宇宙可能是S^3
  2. [Calabi conjecture] made by Eugenio Calabi in1957年。1978年 丘成桐先生證明了該猜想。
    丘成桐先生找到了非正純曲率的Kahlen-Einstein度量 進而解決了Calabi猜想。
    The Calabi flow is  a geometric flow which deforms  a Kahler metric on a complex manifold。
  3. 均曲率流 的穩定性 一維的極小子流形即測地線。
    透過研究極小子流形,我們常常可以對黎曼流形的幾何性質和拓樸性質之關聯有更深刻的認識。
  4. 2022年 Sir Hamilton參加了在克里特島的[Geodesic Flow夏令營],現在面對什麼問題?也許與黑洞 暗物質有關。
  5. Simon Brendle   On Ricci flow
    Definition of Ricci flow, some basic examples, self-similar solutions, evolution of curvature,curvature algebra in three dimensions
    Hamilton’s maximum principle for systems,
    preservation of nonnegative Ricci in three dimensions,pinching and convergence in three dimensions,
    curvature conditions in higher dimensions
    Perelman’s entropy, and noncollapsing
  6. Panagiota Daskalopoulos   on Ancient solutions to parabolic equations
    Ancient solutions to the heat equation and to the semi-linear heat equation
    on Ancient solutions to geometric flows
    Ancient solutions to the 2-dim Ricci flow
  7. Gerhard Huisken   Inverse Mean Curvature Flow
    Properties of smooth solutions to IMCF   
    Weak solutions for inverse mean curvature flow
    Applications to General Relativity
  8. Theodora Bourni on Ancient solutions to geometric flows
    Ancient solutions to the curve shortening flow.

  1. Discrete Surface Ricci Flow            顧險峰 曲面單值化定理 離散曲面
  2. 里奇曲率與最優運輸 (Optimal Transport)---Monge Leonid Kantorovich問題    Cedric Villani(1973~ ) 專訪   Gaspard Monge(最優運輸) 
    [Optimal Transport ,old and new]    什麼是里奇曲率 截面曲率   這裡提到凸性(convexity)  Lott-Strum-Villani space
    Leonid Kantorovich 1912~1986 1975年諾貝爾經濟獎
    [Red Plenty紅色財富] by Francis Spufford
  3. [遠得要命的數學王國]:這裡對Poincare 猜想有很簡潔的說明 及Grigori Perelman的三篇論文。
  4. 用heat flow method看geodesic的存在性 是Geometric Analysis(parabolic PDE)的第一步
    Ricci flow 是geoetric heat flow of curvature [Gabe Khan]如是說
    從heat equation說起 到Ricci flow 然後解釋maximum principle 與Li-Yau estimate,entropy for the Ricci flow
    解釋Ricci curvature與geometric Laplacian的關係
  5. Ricci scalar : [Structure equation]  [3-sphere]  [Hyperbolic plane]   [曲率] [Ricci Scalar for the BH spacetime]
  6. [3-sphere] 參看 RG4102    [A] p.106 3.3.3 (4)   p.140 4.2.8 (6)   [Spacetime and Geometry] p.148
    穩定的封閉CMC必為球面 J.L.Barbosa and M.do Carmo 1984
    宇宙可能99%是S^3
    Poincare猜想 : 任何一個單連通 閉(closed) 3維流形一定跟S^3拓撲等價
  7.  陳秀雄(Xiaohua Zhu) 王兵(Feng Wang) 2020年證明了[哈密頓-田猜想](Hamilton-Tian conjecture) [ResearchGate]  [ResearchGate]

  1. R.Hamilton 1982 的Ricci flow 基本上是想利用幾何方法來研究Thurston's Geometrization Conjecture 。
    大致上分成兩部份:(1)研究有限時間內 的奇異解  (2)非奇異解的分類
  2. Stephen Smale(1930~  )   The collected papers of Stephen Smale
  3. Michael Freedman(1951~  )   
  4. William Thurston(1946~2012) : Geometrization Conjecture(幾何化猜想 1982)
  5. Jeff Cheeger(1943~  ):Comparison Theorems in Riemannian Geometry;Degeneration of Riemannian metric under Ricci Curvature
  6. Mikhail Gromov(1943~  )  [2018 傳播季刊   ]
  7. Grigori Perelman(1966~ ) singularity、 surgery theory、comparison geometry、partial differential equation

H.Poincare 1904   R.Hamilton 1982   Grigori Perelman(1966~  ) 2006

1. Poincare conjecture:Every colsed 、smooth 、simply connected 3-manifold is diffeomorphic to

    Any closed 3-manifold with finite fundamental group is diffeomorphic to a 3-dimensional spherical space-form。

2. R.Hamilton 1982 :(M,g) is a closed 3-manifold with positive Ricci curvature ,then it is diffeomorphic to a spherical space form。

3. Calabi conjecture:a compact Kähler manifold has a unique Kähler metric in the same class whose Ricci form is any given 2-form representing the first Chern class。

In particular if the first Chern class vanishes there is a unique Kähler metric in the same class with vanishing Ricci curvature; these are called Calabi–Yau manifolds。(丘成桐 1977~1978)

「手術」是一個數學專有名詞,可以經由特定的切除與併接轉換流形的拓樸型態。

例如將球面挖去兩的小圓盤,再接上一根圓柱面,就可以得一個環面(即輪胎面)。