Ricci flow and the Poincare conjecture Gang Tian
§ Introduction to the Ricci flow
It 1s analogous to heat equation but it 1s non-lonear °
The Ricci flow was introduced by Richard Hamilton 1982 © [ResearchGate]
[EH &1 Poincare 15451999 #r52{8%  sRAgH]

§ 01 Definition
We have a Riemannian manifold M with the metric g, * the Ricci flow is a PDE that

evolves the metric tensor - %g(t) =—2Ric(g(t)) > 9(0)=g,

A solution to this equation (or a Ricci flow) 1s a one-parameter family of metrics g(t) °
(M, g(t,)) is called the initial condition ( or initial metric) °

We hope that the metric will evolve towards one of the Thurston eight fundamental
geometric structure °

In harmonic coordinates about p > that is to say AX' =0 > we have
.. 0 0 1 . . .
R, = R'C(g’ﬁ) = _EAgij +Qij(g_1,8g) where Q; s a quadratic form in g and

ag

So - the Ricci flow equation %;1 =—2Ric(g) = Ag +2Q; (97,09) is a heat equation for

the Riemannian metric ° ( heat equation U, = kAu)

Definition
The space-time for a Ricci flow is M x| > where tel -
Given (p,t) and r>0 > B(p,t,r) 1s the ball of radius r centered at (p,t) in the t time-slice ©

The Laplacian -
1. Au=div(grad(u))

2. Hessian matrix

2, 00, 00

preAl H?_yu Bz 0z W

() — |88, 8% 4.
Hess(u) = Gyl FEY  pyozv

a 4d a a ., a2
E%u E@u W'M

is called the Hessian matrix of u » then Au =trHess(u)
the Ricci curvature is the trace of the Riemann curvature tensor ©


https://www.researchgate.net/scientific-contributions/Richard-Hamilton-12584499
https://web.math.sinica.edu.tw/media/pdf/d232/23201.pdf

[Ricci flow on S?] 5244 & -
g_f C(r=R1))g(x,1), XM, >0
Where R 1s the scalar curvature of g (= twice the Gaussian curvature K) - ris the average

of R ° The r in the equation is inserted to preserve the area of M

§ 02 Some exact solutions to the Ricci flow

(1) Einstein manifolds
Let g, be an Einstein metric - Ric(g,) =49, > where A is a constant °
Then for any constant ¢>0 » setting g =cg,

. . . A
Ric(g) = Ric(cgs) = Ric(gy) = 40, = = @
Consider g(t) =u(t)g, is the solution of the Ricci flow » then

B _ ui(t)g, = —2Ric(u(t)g,) = ~2Ric(g,) = 22,

ot

su'(t)y=-24,u(t) =1-2A4t > thus g(t) =(1—-2A4t)g, is a solution of the Ricci
flow °

The case 4>0,4=0,4<0 correspond to shrinking * steady and expanding
solutions °

Notice that in the ssrinking case the solution exists for t €0, ﬂ) and goes singular

1
at t= °
22

(2) The standard metric on each of S",R",H"is Einstein °
(3) CP" equipped with the Fubini-Study metric » which is induced from the standard

metric of S*™' under the Hopf fibration with the fibers of great circles - is
Einstein °

) ) . 1
(4) Let h, be the round metric on S? with constant Gaussian curvature > °

Set h(t)=(L-t)h, » then the flow (S?h(t)),—o<t<1 isaRicci flow e

We also have the product of this flow with the trivial flow on the line
(S?xR,h(t)xds®),—o <t <1 - This is called the standard shrinking round
cylinder

The standard shrinking round cylinder is a model for evolving & —necks o
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Definition
Let (M,g(t)) beaRicci flow  Anevolving &—neck centered at (X,t,) and defined
for rescaled time t; isan &—neck

0:S*x (-t &™) SNe (M, g(t)) centeredat (x,t,) with the property that pull-back

via @ of the family of metric R(X,t,)g(t")|y,—t, <t'<0

A strong &—neck centered

Ly f}{:,\,ol at (X,1,) ina Ricci flow is
- $* x {0} e an evolving & —neck
T Ricci flow centered at (X,t,) and
defined for rescaled time 1 °

- , As left °
Pl Pl ot=-1
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FIGURE 1. Strong e-neck of scale 1.

§ [Ricci solitons]

A Riccti soliton is a Ricci flow » 0<t<T <o > with the property that for each
te[0,T) there is a diffeomorphism ¢, :M — M and a constant o (t) such

g(t) =o(t)¢9(0)

That 1s to say ’ 1n a Ricci soliton all the Riemannian manifold (M,g(t)) are 1sometric up to
a scale factor that 1s allowed to vary with t ©
The soliton is said to be shrinkng if o'(t)<0 forallt °

Theorem Hamilton 1982
Let M?® be a closed 3-manifold which admits a Riemannian metric with strictly positive
Ricci curvature * then M *also admits a metric of constant positive curvature ©

Uniformization(B&{E{E) Theorem :
Any Riemannian metric on a closed 2-manifold 1s conformal to one of constant
curvature °


RicciSoliton/RicciSoliton001.pdf

e AR S I P EEN R - BUESIRERE =58 —-
Whether there is a natural evolution equation which conformally deforms any metric on a
surface to a constant curvature metric °

§ 03 Special Solution of the Ricci flow
Lemma 1.11

Let X €T,M be a unit vector ° Suppose that X is contained in some orthonormal basis

for T,M > Ric(X, X) is then the sum of the sectional curvature of planes spanned by X

and other elements of the basis °

Given an orthonormal basis for T,M > the scalar curvature at p is the sum of all sectional

curature of planes spanned by pairs of basis elements °

For S"(n>1) of radius r(t) > the metric is given @ = r2§ » where 5 1S the metric on

the unit sphere ° The sectional curvature are all 7

B 3 4EBR B metric g =ds? = dy? +sin’ y (A6 +sin® 6d4?)
K r 19 3 4Bk 0 g =ds® =r’dy® +r?sin* iy (d9° +sin® 6d¢?)

R SRR > g=rg

n $EERAYEETRE Ric(g)=(n-1)g > AL Ricci flow JTA2EREH #8577

89 - 5 27 - drz
P — 2Ric(g) = 2 (r’g) =-2(n-1)g = —— =—-2(n—1
P ic(g) at(r 9)=-2("-Dg = (n-1)

r’ =R,>—2(n-1t

R? s s i }
r(t) =Ry —2(n—-1t - BFEt — 5 (no— D » PEERYE Fy—BE(Fl Ry a7 singularity)

Similarly  for hyperbolic n-space H"(n>1) - the Ricci flow reduces to the ODE

2
d Eirt ) =2(n-1) which has the solution r(t) =+R,” +2(n-1)t

So the solution expands out to infinity °




§ 04 Pinching(#£)

How the connected sum decomposition arises out of Ricci flow ?
Consider S'x I (I is an interval)between
two parts of a 2-manifolds °

s'x1 52 x|
‘ HHAF Ch 8 : The details of how the

pinching off (by surgery F-ifi7)actually
happens will in Chapter 8

Qe OO+ O C

Figure 2.3: A neck “pinching off” in a 2-manifold. This diagram is intended to illustrate by lower-
dimensional analogy what a neckpinch in a 3-manifold is like — the Ricci flow on 2-manifolds does
not give rise to neckpinches.

The torus decomposition arises in a different way °

§ 05 Hamilton Ricci flow
%] =(r—-R(x,t))g(x,t)...(*) xeM,t>0
Theorem 1.1 (Hamilton). Let (M, g) be a compact oriented Rieman-
nian surface.
(1) If M is not diffeomorphic to the 2-sphere S%, then any metric g
converges to a constant curvature metric under equation ( * ).
(2) If M is diffeomorphic to S*, then any metric g with positive Gaus-
sian curvature on S* converges to a metric of constant curvature under

(%) .

Theorem 1.2. If g is any metric on S*, then under Hamilton’s Ricci
flow, the Gaussian curvature becomes positive in finite time.

Combining the two theorems above yields:

Corollary 1.3. If g is any metric on a Riemann surface, then under
Hamilton’s Ricci flow, g converges to a metric of constant curvature.

[The Ricci flow on the 2-sphere]  Bennet Chow

1. An lustrated introduction to the Ricci flow  Gabriel Khan [B%f&] NAEAZE
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