Ricci flow and the Poincare conjecture Gang Tian § Introduction to the Ricci flow It is analogous to heat equation but it is non-lonear • The Ricci flow was introduced by Richard Hamilton 1982 • [ResearchGate]

[里奇流與 Poincare 猜想(1999 數學傳播 張樹城]

§ 01 Definition

We have a Riemannian manifold M with the metric g_0 , the Ricci flow is a PDE that

evolves the metric tensor : $\frac{\partial}{\partial t}g(t) = -2Ric(g(t))$, $g(0) = g_0$

A solution to this equation (or a Ricci flow) is a one-parameter family of metrics g(t), $(\mathbf{M}, g(\mathbf{t}_0))$ is called the initial condition (or initial metric) \circ

We hope that the metric will evolve towards one of the Thurston eight fundamental geometric structure \circ

In harmonic coordinates about p , that is to say $\Delta x^i = 0$, we have

$$R_{ij} = Ric(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}) = -\frac{1}{2}\Delta g_{ij} + Q_{ij}(g^{-1}, \partial g) \text{ where } Q_{ij} \text{ is a quadratic form in } g^{-1} \text{ and } \partial g$$

So , the Ricci flow equation $\frac{\partial g}{\partial t} = -2Ric(g) = \Delta g + 2Q_{ij}(g^{-1}, \partial g)$ is a heat equation for the Riemannian metric \circ (heat equation $u_t = k\Delta u$)

Definition

The space-time for a Ricci flow is $M \times I$, where $t \in I \circ$ Given (p,t) and r>0, B(p,t,r) is the ball of radius r centered at (p,t) in the t time-slice \circ

The Laplacian :

- 1. $\Delta u = div(grad(u))$
- 2. Hessian matrix

$$\operatorname{Hess}(u) = \begin{bmatrix} \frac{\partial^2}{\partial x^2} u & \frac{\partial}{\partial x} \frac{\partial}{\partial y} u & \frac{\partial}{\partial x} \frac{\partial}{\partial z} u\\ \frac{\partial}{\partial y} \frac{\partial}{\partial x} u & \frac{\partial^2}{\partial y^2} u & \frac{\partial}{\partial y} \frac{\partial}{\partial z} u\\ \frac{\partial}{\partial z} \frac{\partial}{\partial x} u & \frac{\partial}{\partial z} \frac{\partial}{\partial y} u & \frac{\partial^2}{\partial z^2} u \end{bmatrix}$$

is called the Hessian matrix of u , then $\Delta u = trHess(u)$ the Ricci curvature is the trace of the Riemann curvature tensor \circ [<u>Ricci flow</u> on S^2] 完全沒看懂。 $\frac{\partial g}{\partial t} = (r - R(x,t))g(x,t), x \in M, t > 0$

Where R is the scalar curvature of g (= twice the Gaussian curvature K) , r is the average of R \circ The r in the equation is inserted to preserve the area of M \circ

- § 02 Some exact solutions to the Ricci flow
- (1) Einstein manifolds

Let g_0 be an Einstein metric : $Ric(g_0) = \lambda g_0$, where λ is a constant \circ Then for any constant c>0, setting $g = cg_0$

$$Ric(g) = Ric(cg_0) = Ric(g_0) = \lambda g_0 = \frac{\lambda}{c}g$$

Consider $g(t) = u(t)g_0$ is the solution of the Ricci flow, then

$$\frac{\partial g}{\partial t} = u'(t)g_0 = -2Ric(u(t)g_0) = -2Ric(g_0) = -2\lambda g_0$$

$$\therefore u'(t) = -2\lambda, u(t) = 1 - 2\lambda t \quad \text{, thus} \quad g(t) = (1 - 2\lambda t)g_0 \quad \text{is a solution of the Ricci flow } \circ$$

The case $\lambda > 0, \lambda = 0, \lambda < 0$ correspond to shrinking , steady and expanding solutions \circ

Notice that in the ssrinking case the solution exists for $t \in [0, \frac{1}{2\lambda})$ and goes singular

at
$$t = \frac{1}{2\lambda}$$
 °

- (2) The standard metric on each of S^n , \mathbb{R}^n , H^n is Einstein \circ
- (3) CP^n equipped with the Fubini-Study metric , which is induced from the standard metric of S^{2n+1} under the Hopf fibration with the fibers of great circles , is Einstein \circ
- (4) Let h_0 be the round metric on S^2 with constant Gaussian curvature $\frac{1}{2}$ •

Set
$$h(t) = (1-t)h_0$$
, then the flow $(S^2, h(t)), -\infty < t < 1$ is a Ricci flow \circ

We also have the product of this flow with the trivial flow on the line $(S^2 \times R, h(t) \times ds^2), -\infty < t < 1$ ° This is called the standard shrinking round cylinder °

The standard shrinking round cylinder is a model for evolving ε -necks \circ

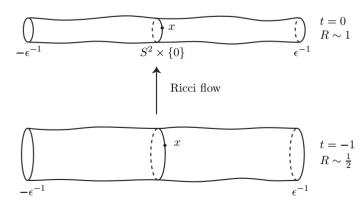
Definition

Let (M, g(t)) be a Ricci flow \circ An evolving ε -neck centered at (x, t_0) and defined for rescaled time t_1 is an ε -neck

 $\varphi: S^2 \times (-\varepsilon^{-1}, \varepsilon^{-1}) \xrightarrow{\cong} N \subset (M, g(t))$ centered at (x, t_0) with the property that pull-back

via φ of the family of metric $R(x,t_0)g(t')|_N, -t_1 < t' \leq 0$

•••



A strong ε -neck centered at (x,t_0) in a Ricci flow is an evolving ε -neck centered at (x,t_0) and defined for rescaled time 1 ° As left °

FIGURE 1. Strong $\epsilon\text{-neck}$ of scale 1.

§ [Ricci solitons]

A Ricci soliton is a Ricci flow , $0 \le t < T \le \infty$, with the property that for each $t \in [0,T)$ there is a diffeomorphism $\varphi_t : M \to M$ and a constant $\sigma(t)$ such

$g(t) = \sigma(t)\varphi_t^*g(0)$

That is to say \cdot in a Ricci soliton all the Riemannian manifold (M,g(t)) are isometric up to a scale factor that is allowed to vary with t \circ

The soliton is said to be shrinking if $\sigma'(t) < 0$ for all t \circ

Theorem Hamilton 1982

Let \mathbf{M}^3 be a closed 3-manifold which admits a Riemannian metric with strictly positive Ricci curvature , then M^3 also admits a metric of constant positive curvature \circ

Uniformization(單值化) Theorem:

Any Riemannian metric on a closed 2-manifold is conformal to one of constant curvature $\,\circ\,$

任何單連通的黎曼曲面都共形等價於複平面、單位圓盤和黎曼球面三者之一。 Whether there is a natural evolution equation which conformally deforms any metric on a surface to a constant curvature metric。

§ 03 Special Solution of the Ricci flow Lemma 1.11

Let $X \in T_p M$ be a unit vector \circ Suppose that X is contained in some orthonormal basis

for T_pM , Ric(X,X) is then the sum of the sectional curvature of planes spanned by X and other elements of the basis \circ

Given an orthonormal basis for $T_p M$, the scalar curvature at p is the sum of all sectional curature of planes spanned by pairs of basis elements \circ

For $S^n(n > 1)$ of radius r(t), the metric is given $g = r^2 \overline{g}$, where \overline{g} is the metric on the unit sphere \circ The sectional curvature are all $\frac{1}{r^2} \circ$ 單位 3 維球 的 metric, $\overline{g} = ds^2 = d\psi^2 + \sin^2 \psi (d\theta^2 + \sin^2 \theta d\phi^2)$ 半徑 r 的 3 維球, $g = ds^2 = r^2 d\psi^2 + r^2 \sin^2 \psi (d\theta^2 + \sin^2 \theta d\phi^2)$ 此處半徑是時間的函數, $g = r^2 \overline{g}$ n 維球的里奇張量 Ric(g)=(n-1)g, 因此 Ricci flow 方程變成常微分方程 $\frac{\partial g}{\partial t} = -2Ric(g) \Rightarrow \frac{\partial}{\partial t} (r^2 \overline{g}) = -2(n-1)\overline{g} \Rightarrow \frac{dr^2}{dt} = -2(n-1)$ $r^2 = R_0^2 - 2(n-1)t$ $r(t) = \sqrt{R_0^2 - 2(n-1)t}$, 時間 $t \rightarrow \frac{R_0^2}{2(n-1)}$, 此球縮為一點(稱為奇點 singularity) \circ

Similarly, for hyperbolic n-space $H^n(n > 1)$, the Ricci flow reduces to the ODE $\frac{d(r^2)}{dt} = 2(n-1)$ which has the solution $r(t) = \sqrt{R_0^2 + 2(n-1)t}$ So the solution expands out to infinity \circ

§ 04 Pinching(捏)

How the connected sum decomposition arises out of Ricci flow ?

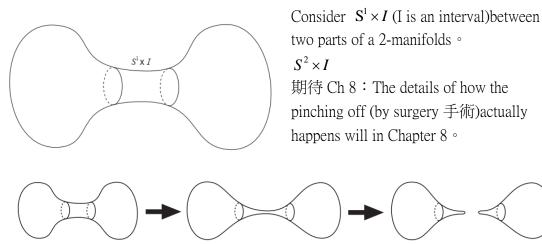


Figure 2.3: A neck "pinching off" in a 2-manifold. This diagram is intended to illustrate by lower-dimensional analogy what a neckpinch in a 3-manifold is like – the Ricci flow on 2-manifolds does not give rise to neckpinches.

The torus decomposition arises in a different way o

§ 05 Hamilton Ricci flow

 $\frac{\partial g}{\partial t} = (r - R(x, t))g(x, t)...(*) \quad x \in M, t > 0$

Theorem 1.1 (Hamilton). Let (M, g) be a compact oriented Riemannian surface.

(1) If M is not diffeomorphic to the 2-sphere S^2 , then any metric g converges to a constant curvature metric under equation (*).

(2) If M is diffeomorphic to S^2 , then any metric g with positive Gaussian curvature on S^2 converges to a metric of constant curvature under (*).

Theorem 1.2. If g is any metric on S^2 , then under Hamilton's Ricci flow, the Gaussian curvature becomes positive in finite time.

Combining the two theorems above yields:

Corollary 1.3. If g is any metric on a Riemann surface, then under Hamilton's Ricci flow, g converges to a metric of constant curvature.

[The Ricci flow on the 2-sphere] Bennet Chow

1. An Illustrated introduction to the Ricci flow Gabriel Khan [部落格] 內有本書

第三版

- § by Nick Sheridan
- 1. <u>Riemannian geometry</u>
- 2. <u>Introduction</u> to the Ricci flow <u>Ricci soliton</u>
- 3. The Maximum principle 這裡有兩個證明要看
- 4. <u>Curve-shortening flow</u> <u>Ben Andrew</u> 這裡有 PDEheatequation 的例子
- 5. Short time existence and uniquness of the Ricci flow
- 6. Derivative estimates and curvature explosion at singularities
- 7. 3-manifold with positive Ricci curvature
- 8. Singularities in the Ricci flow