An introduction to Riemannian Geometry Jose Natari
Ch 5 Geometric Mechanics

5.1 Mechanical Systems

Exercise 1.16

(1) Generalize Examples 1.1, 1.4, and 1.8 to a system of k particles moving in R".

(2) Let (M, (-, ), F) be a mechanical system. Show that the Newton equation
defines a flow on 7'M, generated by the vector field X € X(7 M) whose local
expression is

X = vi+ Zg”(x)F (x,v) — ZFk(x)vJ’ iv

Jj.k=1

where (x!, ..., x") are local coordinates on M, (x!,..., x", vl ... v")are

the local coordinates induced on 7'M, and

n
- Z Fi(x, v)dx’
i=1
on these coordinates. What are the fixed points of this flow?

(3) (Harmonic oscillator) The harmonic oscillator (in appropriate units) is the
conservative mechanical system (R, dx ® dx, —dU), where U : R — R is

given by
1
Ux):= szxz.

(a) Write the equation of motion and its general solution.

(b) Friction can be included in this model by considering the external force
X

d
F(ud—) = —dU — 2kudx

(where k£ > 0 1s a constant). Write the equation of motion of this new
mechanical system and its general solution.



(c) Generalize (a) to the n-dimensional harmonic oscillator, whose potential
energy U : R" — R is given by

U, ... x") = %wz ((x1)2 4+t (x”)2).

(4) Consider the conservative mechanical system (R, dx ® dx, —dU). Show that:

(a) the flow determined by the Newton equation on 7R = R? is generated by

the vector field 5 3
X=v— —U'(x)— € X(R?);
dx dv

(b) the fixed points of the flow are the points of the form (xq, 0), where xq 1s a
critical point of U;

(¢) if xg is a maximum of U with U”(xg) < O then (xp, 0) is an unstable fixed
point;

(d) if xq is aminimum of U with U”(x¢) > 0 then (xg, 0) is a stable fixed point,
with arbitrarily small neighborhoods formed by periodic orbits.

(e) the periods of these orbits converge to 27z U” (xo)_% as they approach (xg, 0);

(f) locally, any conservative mechanical system (M, (-, -), —dU) withdim M =
1 1s of the form above.

(5) Prove Lemma1.12. (Hint: Use the Koszul formula).

(6) Prove Lemma 1.13.

(7) If (M, (-, -)) is a compact Riemannian manifold, it is known that there exists a
nontrivial periodic geodesic. Use this fact to show thatif M is compact then any
conservative mechanical system (M, (-, -), —dU ) admits a nontrivial periodic
motion.

(8) Prove Proposition 1.14.



(9) Recall that the hyperbolic plane is the upper half plane

H:{(x,y)€R2|y>0}

with the Riemannian metric
1
(-,-) = ?(dx ®dx +dy @dy)

[cf. Exercise 3.3(5) in Chap. 3]. Use Proposition 1.14 to compute the Christoffel
symbols for the Levi—Civita connection of (H, (-, -)) in the coordinates (x, y).

(10) (Kepler problem) The Kepler problem (in appropriate units) consists in deter-
mining the motion of a particle of mass m = 1 in the central potential

|
U=—-.

r

(a) Show that the equations of motion can be integrated to
?‘29 = Po,
P2 opet

— - =E,
2 2r2 r

where E and py are integration constants.

(b) Use these equations to show that u = }, satisfies the linear ODE

d*u N 1
—_— H= ——F—".
d6? P92

(c) Assuming that the pericenter (i.e. the point in the particle’s orbit closer to
the center of attraction r = 0) occurs at # = 0, show that the equation of
the particle’s trajectory is

Pez

r=
1 +e&ecosf

e =+/1+2py?E.

(Remark: This is the equation of a conic section with eccentricity £ in polar coordinates).

where



(d) Characterize all geodesics of R2 \ {(0, 0)} with the Riemannian metric

1
()=———[@dxRdx +dy®dy).

Show that this manifold is isometric to the surface of a cone with aperture %.

5.2 Holonomic costrains

Exercise 2.9

(1) Use spherical coordinates to write the equations of motion for the spherical

(2)

3)

pendulum of length /, i.e. a particle of mass m > 0 moving in R? subject to a
constant gravitational acceleration g and the holonomic constraint

N:{(x,y,z)eR3 |x2+y2+z2:12].

Which parallels of N are possible trajectories of the particle?

Write the equations of motion for a particle moving on a frictionless surface
of revolution with equation z = f(r) (where r = /x2 + y2) under a constant
gravitational acceleration g.

Write and solve the equations of motion for a free dumbbell, i.e. a system of two
particles of masses m and m> connected by a massless rod of length /, moving
in:

(a) R?;
(b) R3.

(Hint: Use the coordinates of the center of mass, i.e. the point along the rod at a distance %:’ from

).

Y my




(4) The double pendulum of lengths /;, /> is the mechanical system defined by
two particles of masses m 1, m> moving in R? subject to a constant gravitational
acceleration g and the holonomic constraint

N = | x) e BY | Jlxil = 1 and v — x| = Lo}

(diffeomorphic to the 2-torus Tz).
(a) Write the equations of motion for the double pendulum using the

parameterization ¢ : (—m, ) x (—m,w) — N given by

@@, ¢) = (l1sinb, = cos b, | sinf+I, sin @, —I cos 8—I> cos @)

(cf. Fig.5.2).

(b) Linearize the equations of motion around 8 = ¢ = 0. Look for solutions of
the linearized equations satisfying ¢ = k6, with k € R constant (normal
modes). What are the periods of the ensuing oscillations?

5.3 Rigid Body
Exercise 3.20

(1) Show that the bilinear form ((-, -)} defined on SO (3) by a rigid body is indeed
a Riemannian metric.

(2) A general rigid body (i.e. with no fixed points) is any mechanical system of
the form (R x SO(3), ({{-, -))), F), with

({({(v, V), (w, W)))) I—](v + V& w+ W&)dm
R3
for all (v, V), (w, W) € T(X,S)R3 x SO(3) and (x, S) € R3 x SO(3), where

(-,-) is the usual Euclidean inner product on R3 and m is a positive finite

measure on R> not supported on any straight line and satisfying fR3 IENIPdm <
+0o0.

(a) Show that one can always translate m in such a way that

/Edm:O
R3

(i.e. the center of mass of the reference configuration is placed at the origin).



(b) Show that for this choice the kinetic energy of the rigid body is
1 1
K@, V)= ZM{v,v) + 5 {(V. V)),

where M = m(R?) is the total mass of the rigid body and ((-, -)) is the
metric for the rigid body (with a fixed point) determined by m.

(c) Assume that there exists a differentiable function F : R? — R such that

Fx,S,v,V)(w,W) = ](F(x + S&), w + W&)dm.
B3
Show that, if
/(SS) X F(x+ 88)dm =0
R?

for all (x, §) € R3 x SO(3), then the projection of any motion on SO (3) is
a geodesic of (SO(3), ({-, -))).

(d) Describe the motion of a rigid body falling in a constant gravitational field,
for which F' = —ge, is constant.

(3) Prove Proposition 3.6 for a planar rigid body. (Hint: Include the planar rigid body in a smooth

one-parameter family of non-planar rigid bodies) .

(4) Prove Lemma3.9.
(5) Show that I < I» 4+ I3 (and cyclic permutations). When is I} = I + 13?

(6) Determine the principal axes and the corresponding principal moments of iner-
tia of:

(a) ahomogeneous rectangular parallelepiped with mass M, sides 2a, 2b, 2¢ €
R™ and centered at the origin;

(b) a homogeneous (solid) ellipsoid with mass M, semiaxes a, b, c € R" and
centered at the origin. (Hint: Use the coordinate change (x, y, 2) = (au, bv, cw)).



(7) A symmetry of a rigid body is an isometry § € O(3) which preserves the
mass distribution (i.e. m(SA) = m(A) for any measurable set A C R%). Show
that:

(a) SIS" = I, where [ is the matrix representation of the inertia tensor;

(b) if S is a reflection in a plane then there exists a principal axis orthogonal to
the reflection plane;

(c) if S is a nontrivial rotation about an axis then that axis is principal;

(d) if moreover the rotation is not by 7 then all axes orthogonal to the rotation
axis are principal.

(8) Consider arigid body satisfying /1 = I>. Use the Euler equations to show that:

(a) the angular velocity satisfies

o
W= —p X w;
n?

(b) if I) = I = I3 then the rigid body rotates about a fixed axis with constant

angular speed (i.e. w is constant);
(c) if I} = I, # I5 then w precesses (i.c. rotates) about p with angular velocity

I

G)pr =

(9) Many asteroids have irregular shapes, and hence satisfy I} < I, < I3. To
a very good approximation, their rotational motion about the center of mass
is described by the Euler equations. Over very long periods of time, however,
their small interactions with the Sun and other planetary bodies tend to decrease
their kinetic energy while conserving their angular momentum. Which rotation
state do asteroids approach?

(10) Due to its rotation,_ the Earth is not a perfect sphere, but an oblate spheroid;
therefore its moments of inertia are not quite equal, satisfying approximately

I =1 # I3;
I3 -1, N 1
I 7306

The Earth’s rotation axis is very close to e3, but precesses around it (Chandler
precession). Find the period of this precession (in the Earth’s frame).



(11) Consider arigid body whose motion is described by the curve S : R — SO (3),
and let €2 be the corresponding angular velocity. Consider a particle with mass
m whose motion in the rigid body’s frame is given by the curve & : R — R3.
Let f be the external force on the particle, so that its equation of motion is

d2
mE(SE) = f.

(a) Show that the equation of motion can be written as
mE=F—mQx (QxE)—2mQUxE—mQ x &

where f = SF. (The terms following F are the so-called inertial forces,
and are known, respectively, as the centrifugal force, the Coriolis force and
the Euler force).

(b) Show that if the rigid body is a homogeneous sphere rotating freely (like the
Earth, for instance) then the Euler force vanishes. Why must a long range
gun in the Northern hemisphere be aimed at the left of the target?

(12) (Poinsot theorem) The inertia ellipsoid of a rigid body with moment of inertia
tensor [ is the set

E={sc® (g5 =1].

Show that the inertia ellipsoid of a freely moving rigid body rolls without
slipping on a fixed plane orthogonal to p (that is, the contact point has zero
VEIOCity at each instant). (Hinl: Show that any point S(¢)&(t) where the ellipsoid is tangent to a plane
orthogonal to p satisties S(1)&(1) = ﬂ:ﬁw(.’}).

. ven
(13) Prove PI'OpOSlthIl 3.19. (Hint: Notice that symmetry demands that the expression for K must not

depend neither on ¢ nor on 1;1).

(14) Consider the Lagrange top.

(a) Write the equations of motion and determine the equilibrium points.
(b) Show that there exist solutions such that 6, ¢ and y are constant, which in
the limit |¢| < || (fast top) satisfy

. Mgl
@~ —=-.
I3y



(15) (Precession of the equinoxes) Due to its rotation, the Earth is not a perfect
sphere, but an oblate ellipsoid; therefore its moments of inertia are not quite

equal, satisfying approximately
Iy = # I5;

L-05 1
L 306

[cf. Exercise 3.20(10)]. As a consequence, the combined gravitational attraction
of the Moon and the Sun disturbs the Earth’s rotation motion. This perturbation
can be approximately modeled by the potential energy U : SO(3) — R given

in the Euler angles (6, ¢, 1) by

Q2 5
U= —7(13 — I1)cos” 6,

2
where o ~ 168 days.

(a) Write the equations of motion and determine the equilibrium points.
(b) Show that there exist solutions such that 6, ¢ and i are constant, which in
the limit |¢| < || (as is the case with the Earth) satisfy

) Q2(Iz — 1) cos @
@ = — : .
Iy

Given that for the Earth 6 >~ 23°, determine the approximate value of the

period of ¢(1).

(16) (Pseudo-rigid body) Recall that the (non planar) rigid body metric is the restric-
tion to SO (3) of the flat metric on G L(3) given by

{(V,W)) = tr(VJWI) ,
where

Jij Z/'i’fti"f dm.
R3

(a) What are the geodesics of the Levi—Civita connection for this metric? Is
(GL(3), {{-,-))) geodesically complete?



10
(b) The Euler equation and the continuity equation for an incompressible

fluid with velocity field # : R x R3 — R3 and pressure p : R x R - R
are

O V)= -V
gr VM= TER
V-u=20,

v — 9 d 0
T \ox! ax2’ ax3

is the usual operator of vector calculus.

where

Given a geodesic S : R — GL(3), we define

x(1,8) = S(1)é,
u(t,x) = S(E =SS~ )x.

Show that the velocity field u satisfies the Euler equation (with p = 0), but
not the continuity equation.
(c) Let f : GL(3) — R be given by f(S) = det S. Show that

of
as;;

= cof (§);;
(where cof (§) is the matrix of the cofactors of §), and consequently

% = (det S) tr (SS*I) .

So the continuity equation is satisfied if we impose the constraint det S(r) =
1.

(d) Show that the holonomic constraint SL(3) C G L(3) satisfies thed’ Alembert
principle if and only if

n(8) =rwdf
detS =1.

Assuming that J is invertible, show that the equation of motion can be

rewritten as )
§=1 (S_]) 7L



11

(e) Show that the geodesics of (SL(3), ({-,-))) yield solutions of the Euler
equation with

p=—-x' (S_l)r J7ls

which also satisfy the continuity equation.

(Remark: More generally, it is possible to interpret the Euler equation on an open set U ¢ R" as a
mechanical system on the group of diffeomorphisms of U (which is an infinite-dimensional Lie group); the
continuity equation imposes the holonomic constraint corresponding to the subgroup of volume-preserving

diffeomorphisms, and the pressure is the perfect reaction force associated to this conslraint).

5.4 Non-holonomic Costrains

Exercise 4.15

(1) Show that an m-dimensional distribution X on an n-manifold M is differen-
tiable if and only if for all p € M there exists a neighborhood U > p and
I-forms w', ..., "™ € Q'(U) such that

X, = ker (a)l)q N---Nker (a;"_m)q

forallg € U.

(2) Show that the foliation

F={wye®?|y=vaxta}
weE

of R? induces a foliation ' on 72 = R?2 / Z? whose leaves are not (embedded)
submanifolds.

(3) Let ¥ be an integrable distribution. Show that X, ¥ € X(X) = [X, Y] €
X(X).

(4) Using the Frobenius theorem show that an m-dimensional distribution X is
integrable if and only if each local basis of vector fields {X1, ..., X, } satisfies

m k . k .
(Xi, X;] = 20, C;; X for locally defined functions Cj. (Remark: Since the
condition of the Frobenius theorem is local, this condition needs to be checked only for local bases whose

domains form an open cover of M).
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(5) Prove Proposition4.9. (Hint: Recall from Exercise 3.8(2) in Chap. 2 that do(X, ¥) = X - @(¥) — ¥ -
(X) — w([X, Y]) forany w € Q' (M) and X, ¥ € X(M)).

(6) Let M be an n-dimensional differentiable manifold with an affine connection
V. Show that the parallel transport of vectors is determined by a distribution
% on T'M, which is integrable if and only if the curvature of V vanishes.

(7) Prove Theorem4.14.

(é) (Ice skate) Recall that our model for an ice skate is given by the non-holonomic
constraint ¥ defined on R? x S! by the kernel of the 1-form o = — sinOdx +
cosfdy.

(a) Show that the ice skate can access all points in the configuration space:
given two points p, g € R? x S! there exists a piecewise smooth curve
c:[0,1] —» R? x §! compatible with X such that ¢(0) = p and ¢(1) = ¢.
Why does this show that ¥ is non-integrable?

(b) Assuming that the kinetic energy of the skate is

and that the reaction force is perfect, show that the skate moves with constant
speed along straight lines or circles. What is the physical interpretation of
the reaction force?

(c) Determine the motion of the skate moving on an inclined plane, i.e. subject
to a potential energy U = Mgsinw x.

(9) Consider a vertical wheel of radius R moving on a plane.

(a) Show that the non-holonomic constraint corresponding to the condition of
rolling without slipping or sliding is the distribution determined on the con-
figuration space R? x §' x §! by the 1-forms

' =dx — Rcospdy, w? =dy — Rsingdy,

where (x, y, ¥, ¢) are the local coordinates indicated in Fig.5.9.
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J 2
2 (v*)

and that the reaction force is perfect, show that the wheel moves with constant
speed along straight lines or circles. What is the physical interpretation of
the reaction force?

(c) Determine the motion of the vertical wheel moving on an inclined plane,
i.e. subject to a potential energy U = Mgsino x.

(10) Consider a sphere of radius R and mass M rolling without slipping on a plane.

(a) Show that the condition of rolling without slipping is

X = Ro’, y = —Row",

where (x, y) are the Cartesian coordinates of the contact point on the plane
and w is the angular velocity of the sphere.

(b) Show that if the sphere’s mass is symmetrically distributed then its kinetic
energy is

M 1

where [/ is the sphere’s moment of inertia and (-, -) is the Euclidean inner
product.
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(c) Using w as coordinates on the fibers of 750 (3), show that

Dé_ o 0
— =X—+V—+4 .
dr  ax  2ay

(Hint: Recall from Exercise 4.8(3) in Chap. 3 that the integral curves of left-invariant vector fields on a Lie

group with a bi-invariant metric are geodesics).

(d) Since we are identifying the fibers of 7SO0 (3) with R®, we can use the
Euclidean inner product to also identify the fibers of T*SO(3) with R3.

Show that under this identification the non-holonomic constraint yielding
the condition of rolling without slipping is the distribution determined by
the kernels of the 1-forms

0" :=dx — Rey, 0¥ :==dy+ Rey

(where {e_r, ey, e; } is the canonical basis of R3). Is this distribution inte-
grable‘? (Hint: Show that any two points of 2 x SO(3) can be connected by a piecewise smooth curve

compatible with the distribulion).

(e) Show that the sphere moves along straight lines with constant speed and
constant angular velocity orthogonal to its motion.

(f) Determine the motion of the sphere moving on an inclined plane, i.e. subject
to a potential energy U = Mgsina x.

(11) (The golfer dilemma) Show that the center of a symmetric sphere of radius
R, mass M and moment of inertia / rolling without slipping inside a vertical
cylinder of radius R + a moves with constant angular velocity with respect
to the axis of the cylinder while oscillating up and down with a frequency

Fi . .
V T times the frequency of the angular motion.

5.5 Lagrangian Mechanics
Exercise 5.14

(1) Complete the proof of Theorem 5.3.
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(2) Let (M, (-,-)) be a Riemannian manifold. Show that the critical points of the
arclength, i.e. of the action determined by the Lagrangian L : TM — R given

by
L(v) = (v, v)?

(where we must restrict the action to curves with nonvanishing velocity) are
reparameterized geodesics.

(3) (Brachistochrone curve) A particle with mass m moves on a curve y = y(x)
under the action of a constant gravitational field, corresponding to the potential
energy U = mgy. The curve satisfies y(0) = y(d) = 0 and y(x) < O for
0<x<d.

(a) Assuming that the particle is set free at the origin with zero velocity, show
that its speed at each point is

V= V—'zgy’

and that therefore the travel time between the origin and point (d, 0) is

d

S=<Zg)“%/(1+y’2)% (—y)"1dx,

0

where y' = (%

(b) Show that the curve y = y(x) which corresponds to the minimum travel
time satisfies the differential equation

£](1+7)5] 0

(c) Check that the solution of this equation satisfying y(0) = y(d) = 01s given
parametrically by
x = RO — Rsind
y=—R+ Rcosf

where d = 27 R. (Remark: This curve is called a cycloid, because it is the curved traced out by a

point on a circle which rolls without slipping on the ,r_r—axis).



16

(4) (Charged particle in a stationary electromagnetic field) The motion of a particle
with mass m > 0O and charge ¢ € R in a stationary electromagnetic field is
determined by the Lagrangian L : TR? > R given by

1
L= im(v, v) +e(A,v) —ed,

where (-, -) is the Euclidean inner product, & € C°(R3) is the electric potential
and A € X(R3) is the magnetic vector potential.

(a) Show that the equations of motion are
mx = eE +ex x B,

where £ = — grad ® is the electric field and B = curl A is the magnetic
field.

(b) Write an expression for the Hamiltonian function and use the equations of
motion to check that it is constant along any motion.

(5) (Restricted 3-body problem) Consider two gravitating particles moving in
circular orbit around their common center of mass. We choose our units so
that the masses of the particles are 0 < < 1 and 1 — p, the distance between
them is 1 and the orbital angular velocity is also 1. Identifying the plane of the
orbit with R2, with the center of mass at the origin, we can choose fixed positions
p1 = (1 —pu,0)and p; = (—pu, 0) for the particles in the rotating frame where
they are at rest.

(a) Use Exercise3.20(11) to show that in this frame the equations of motion of
a third particle with negligible mass m moving in the plane of the orbit are

. B .
X=—+x+2y
m

y

y=—+y—-2
m

where (FX, F y) is the force on m as measured in the rotating frame.
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(b) Assume that the only forces on m are the gravitational forces produced by

pand 1 — u, so that

[ F, Iz — K
— == =14+ - —5(x+p
m r 2
Fy M l—p
—=——y——=5y=0

| m r r2

where ry, r : R2 — R are the Euclidean distances to P1, P2- Show that the
equations of motion are the Euler-Lagrange equations for the LLagrangian
L:T (R%2\ {p1, p2}) — R given by

L(x,y,v"v) = ((Ux)z + (vy)2) + xv’ — yv*

1 —
+5 (2 +y)+ 2+ =5

r 2

= -

(3]

(C) Find the Hamiltonian function. (Remark: The fact that this function remains constant gives

(d)

(e)

the so-called Tisserand criterion for identifying the same comet before and after a close encounter with

I upiter) .

Compute the equilibrium points (i.e. the points corresponding to stationary
solutions) which are not on the x-axis. How many equilibrium points are
there in the x-axis?

Show that the linearization of the system around the equilibrium points not
in the x-axis is

3 33
§—2i= ZSi‘Tfa—zu)n

33

) 3 9
D428 =+"""(1-2u -
_n+$ 4( #)%‘+4n

and show that these equilibrium points are unstable for

(-9)-4(9)
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(6) Consider the mechanical system in Example 5.13.

(a) Use the Noether theorem to prove that the total linear momentum

k
P = E mgjff

i=1

is conserved along the motion.

(b) Show that the system’s center of mass, defined as the point

X — Zf:] m;xi

k
Zi:l mi

moves with constant velocity.

(7) Generalize Example 5.13 to the case in which the particles move in an arbitrary
Riemannian manifold (M, (-, -)), by showing that given any Killing vector field
X € X(M) [cf. Exercise 3.3(8) in Chap. 3] the quantity

k
= mié, X)

i=l1

is conserved, where ¢; : I C R — M is the motion of the particle with mass
mi.

(8) Consider the action of SO (3) on itself by left multiplication.

(a) Show that the infinitesimal action of B € so(3) is the right-invariant vector
field determined by B.

(b) Use the Noether theorem to show that the angular momentum of the free
rigid body is constant.
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(9) Consider a satellite equipped with a small rotor, i.e. a cylinder which can spin
freely about its axis. When the rotor is locked the satellite can be modeled by a
free rigid body with inertia tensor /. The rotor’s axis passes through the satellite’s

center of mass, and its direction is given by the unit vector e. The rotor’s mass
is symmetrically distributed around the axis, producing a moment of inertia J.

(a) Show that the configuration space for the satellite with unlocked rotor is the
Lie group SO(3) x S', and that its motion is a geodesic of the left-invariant
metric corresponding to the kinetic energy

1 1
K =(12.9) + EJzzrz +Jw(Q,e),

where the Q € R? is the satellite’s angular velocity as seen on the satellite’s
frame and o € IR is the rotor’s angular speed around its axis.

(b) Use the Noether theorem to show that /| = J(w@w + (2,¢)) € Rand p =
SUQL+ Jome) € R3 are conserved along the motion of the satellite with
unlocked rotor, where S : R — SO(3) describes the satellite’s orientation.

5.6 Hamiltonian Mechanics

Exercise 6.15

(1) Prove Proposition6.5.

(2) Let(M, (-,-)) beaRiemannian manifold,« € Q' (M)al-formandU € C*®(M)
a differentiable function.

(a) Show that the Euler-Lagrange equations for the Lagrangian L : TM — R
given by
1
L(v) = E(U’ v) + (v, —U(p)

for v € T, M yield the motions of the mechanical system (M, (-, -), F),

where
F) = _(dU)p - "-(U)(da)p

forveT,M.

(b) Show that the mechanical energy E = K +U is conserved along the motions
of (M, (-, -), F) (which is therefore called a conservative mechanical sys-
tem with magnetic term).
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(c) Show that L is hyper-regular and compute the Legendre transformation.

(d) Find the Hamiltonian H : 7*M — R and write the Hamilton equations.

(3) Let ¢ > 0 be a positive number, representing the speed of light, and consider
the open set U := {v € TR" | ||v]| < c}, where || - || is the Euclidean norm.
The motion of a free relativistic particle of mass m > 0 is determined by the
Lagrangian L : U — R given by

L(v) := —mc? 1 —

(a) Show that L is hyper-regular and compute the Legendre transformation.

(b) Find the Hamiltonian H : T*R"” — R and write the Hamilton equations.

(4) Show that in the Poincaré recurrence theorem the set of points & € U such that
Yi(a) € U for some t > T is dense in U. (Remark: It can be shown that this set has full

measur e) .

(5) Let (M, (-, -)) be a compact Riemannian manifold. Show that for each normal
ball B C M and each T > 0 there exist geodesics ¢ : R — M with ||¢(2)] = 1
such that ¢(0) € Band ¢(t) € B forsome ¢t > T.

(6) Let (xl, ..., X", p1, ..., pa) be the usual local coordinates on 7* M. Compute
Xxi, pr {xza x'I}a {Pr', p_,'} and {pi: xj}-
(7) Show that the Poisson bracket satisfies the Leibniz rule
{F,GHY={F,GIH +{F,H}G

forall F,G, H € C°°(T*M).

5.7 Completely Integrable Systems
Exercise 7.17

(1) Show that if F,G € C™(T*M) are first integrals, then {F, G} is also a first
integral.

(2) Prove Proposition7.3.
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(3) Consider a surface of revolution M C R> given in cylindrical coordinates
(r,0,2) by
r= f(2),

where f : (a, b) — (0, +00) is differentiable.

(a) Show that the geodesics of M are the critical points of the action determined
by the Lagrangian L : TM — R given in local coordinates by

1 .
L2 0%) = 2 (F@P0) + (@) +1) 7).

(b) Show that the curves given in local coordinates by § = constantor f'(z) = 0
are images of geodesics.

(c) Compute the Legendre transformation, show that L is hyper-regular and
write an expression in local coordinates for the Hamiltonian H : T*M — R.

(d) Show that H is completely integrable.

(e) Show that the projection on M of the invariant set
Lz =H ' (E)Npy~ ()

(E,l = 0) is given in local coordinates by

[
@)z —.
V2E
Use this fact to conclude that if f has a strict local maximum at z = z
then the geodesic whose image is 7 = zg is stable, i.e. geodesics with initial
condition close to the point in 7 M with coordinates (6y, zo, 1, 0) stay close
to the curve z = zy.

(4) Recall from Example 7.5 that a particle of mass m > 0 moving in a central field
is described by the completely integrable Hamiltonian function

pr2 n p62
2m 2mr?

H(r, 0, pr, pp) = + u(r).

(a) Show that there exist circular orbits of radius ro whenever u’(rg) > 0.
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(b) Verify that the set of points where d H and dpy are not independent is the
union of these circular orbits.

(c) Show that the projection of the invariant set

Ly =H YE)N ps~ (1)

on R? is given in local coordinates by

2

[
< E.
u(r)+2 <

er

(d) Conclude that if ' (rg) > 0 and

3u'(rp)
ro

>0

u” (ro) +
then the circular orbit of radius ry is stable.

(5) In general relativity, the motion of a particle in the gravitational field of a point
mass M > 0 is given by the Lagrangian L : TU — R written in cylindrical
coordinates (u, r, ) as

B L (R I

r 2 r

where U C R3 is the open set given by r > 2M (the coordinate u is called the
time coordinate, and in general is different from the proper time of the particle,
i.e. the parameter 7 of the curve).

(a) Show that L is hyper-regular and compute the corresponding Hamiltonian
H:T*U - R.

(b) Show that H is completely integrable.

(c) Show that there exist circular orbits of any radius ro > 2M, with H < O for
ro > 3M, H = 0 forrg =3M and H > 0 for ryp < 3M. (Remark: The orbits
with H = 0 are not physical, since they correspond to speeds greater than the speed of light; the orbits with

H = 0 can only be achieved by massless particles, which move at the speed Dflig_ht).

(d) Show that the set of points where d H, dp, and dpgy are not independent
(and p, # 0) is the union of these circular orbits.
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(e) Show that the projection of the invariant cylinder
Ly =HYE)Np, 'K Npy~ (D)

on U is given in local coordinates by

(f) Conclude that if ro > 6 M then the circular orbit of radius r is stable.

(6) Recall that the Lagrange top is the mechanical system determined by the
Lagrangian L : TSO(3) — R given in local coordinates by

)

L ((v9)2 - (v¢)2 sin’ 8) - ;—3 (v¥ + v¥ cos 9)2 — Mgl cos 0,

where (6, ¢, V) are the Euler angles, M is the top’s mass and / is the distance
from the fixed point to the center of mass.

(a) Compute the Legendre transformation, show that L is hyper-regular and
write an expression in local coordinates for the Hamiltonian H : T*SO(3)
— [R.

(b) Prove that H is completely integrable.

(¢) Show that the solutions found in Exercise 3.20(14) are stable for |¢| < |1j/|
if |1j;| is large enough.

(7) Show that the the Euler top with /; < I, < I3 defines a completely integrable
Hamiltonian on 7*S O (3).

(8) Consider the sequence formed by the first digit of the decimal expansion of each
of the integers 2" for n € Np:

1,2,4,8,1,3,6,1,2,5,1,2,4,8,1,3,6,1,2,5, ...

The purpose of this exercise is to answer the following question: is there a 7 in
this sequence?

(a) Show thatif v € R\ Q then

2rivk -0

m ? €
n—4+oo n
k=0
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(b) Prove the following discrete version of the Birkhoff ergodicity theorem: if a
differentiable function f : R — R is periodic with period 1 and v € R\ Q
then forall x € R

1
lim

n 1
n—>+oon+lgf(x+vk):0/f(x)dx-

(c) Show that log 2 is an irrational multiple of log 10.

(d) Is there a 7 in the sequence above?

5.8 Symmetry and Reduction
Exercise 8.23

(1) Consider the symplectic structure on
S ={(x,y, ) eR | +y* +7 =1}

determined by the usual volume form. Compute the Hamiltonian flow gener-
ated by the function H(x, y,z) = z.

(2) Let (M, w) be a symplectic manifold. Show that:

(@) @ =>"_dpi Adx"ifandonly if {x', x/} = {p;, pj} = 0and {p;, x/} =
§jjfori, j=1,...,n;

(b) M is orientable;

(c) if M is compact then @ cannot be exact. (Remark: In particular if M is compact and
all closed 2-forms on M are exact then M does not admit a symplectic structure; this is the case for all

even-dimensional spheres $2 with n > 1).

(3) Let (M, {-,-)) be a Riemannian manifold, « € Q! (M) a 1-form and U €
C°°(M) a differentiable function.

(a) Show that @ := w + 7*dw is a symplectic form on 7*M, where w is the
canonical symplectic form and 77 : T*M — M is the natural projection (@
is called a canonical symplectic form with magnetic term).

(b) Show that the Hamiltonian flow generated by a function H e C(T*M )
with respect to the symplectic form @ is given by the equations
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—

. 9H
X =
api
0H (0 0o\ .;
y — 20 A Y
pi 81’+_Zl(8x’ Bxf)x
L j=

(c) Themap F : T*M — T*M given by

F(§):=§—ap

for& e T; M is a fiber-preserving diffeomorphism. Show that F carries the

Hamiltonian flow defined in Exercise 6.15(2) to the Hamiltonian flow of H
with respect to the symplectic form @, where

~ 1
H(E) = 7(.§) + Up)

for ég_ (S T;: M. (Remark: Since the projections of the two flows on M coincide, we see that the

magnetic term can be introduced by changing either the Lagrangian or the symplectic fDrm).

(4) Let (M, {-, -}) be a Poisson manifold, B the Poisson bivector and (x!, ..., x™)
local coordinates on M. Show that:

(a) B can be written in these local coordinates as

S 9
B = BU—. —
z‘jz—l daxt dx/

where B = {x",xf}fori,jz 1,...,nm;

(b) the Hamiltonian vector field generated by F € C°°(M) can be written as

p
OF 9
— 1] .
e ijz—l ’ ox! 8xj1

(d) if {-, -} arises from a symplectic form w then (B") = —(co,-j)_';

(e) if B is nondegenerate then it arises from a symplectic form.



(c) the components of B must satisfy

mn

=1

foralli, j,k=1,....n;

DUt
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