§ 歷史背景
Sophus Lie Wilhelm Killing Elie Cartan Hermann Weyl
[簡介與習作]
[from SO(2) to SO(3)] [證明O(n)是李群] [李群與微分方程] [Iwasawa分解定理] [Hyperbolic Plane]
§ 物理上的應用
- 何謂E8李群 ? [A Garrett Lisi]李斯
- 規範場論
- Lie group理論中 李氏積關鍵性的決定了群的無窮小結構(infinitesimal structure of the group) 大域微分幾何 p.112
- 積分因子--李群之觀點 林琦焜
- Sophus Lie's Approach to Differential Equations (S.Helgason)
- [群表現(Representation)] (數學傳播季刊 36卷第4期)
- [Elie Cartan的故事]
- S^0,S^1,S^3 are the only spheres which are also groups(Lie groups)
- [Introduction to Lie Groups and Lie Algebras] Alxander Kirillov Jr.
- [Foundations of Differentiable Manifolds and Lie Groups] Frank W.Warner
- [Lectures on Lie Groups] 項武義
- Lie Groups for Pendestrians---on line
- [Lie algebras for physicists] Douglas W.Mckenzie
- [Lie Groups New Research] Altos B. Canterra
關於Clifford algebra
1990年 David Hestenes(1933~ ) [Space-Time algebra]認識到Clifford algebra及其在量子力學的解釋(電子自旋)
1965年 Harry J. Lipkin(1921~ ) 在[Lie group for Pendestrains]中引用Clifford algebra
[Lie group Guide to the Universe]是Altos B. Canterra寫的一本小冊子 解釋李代數在Clifford代數中的意義
- [Lie Groups,Differential Equations and geometry] Giovanni Falcone