Lie algebra ismorphism to left-invariant fields

1. A Lie algebra and Lie bracket

A vector field X on G is called left-invariant if for every $g \in G$, the pushforward of X by the left translation map $L_g: G \to G$ (defined by $L_g(h) = gh$) satisfies:

$$(L_a)_* X = X.$$

 γ This means that for any $h\in G$, $X_{gh}=(L_g)_*X_h.$

Construct the isomorphism:

We define a map $\phi: \mathfrak{g} \to \mathrm{Lie}(G)$, where $\mathrm{Lie}(G)$ is the space of left-invariant vector fields on G, as follows:

$$\phi(X)(g) = (L_g)_* X,$$

for $X\in \mathfrak{g}$ and $g\in G$. Here, $(L_g)_*X$ is the pushforward of X by L_g .

Show ϕ is a vector space isomorphism:

- Injectivity: If $\phi(X)=0$, then $(L_g)_*X=0$ for all $g\in G$. In particular, at g=e, we have X=0. Thus, ϕ is injective.
- Surjectivity: Given a left-invariant vector field Y on G, define $X=Y_e\in\mathfrak{g}$. Then, by left-invariance, $Y_g=(L_g)_*X$ for all $g\in G$, so $Y=\phi(X)$. Thus, ϕ is surjective.

Show that ϕ preserves the Lie bracket:

We need to show that $\phi([X,Y])=[\phi(X),\phi(Y)]$ for all $X,Y\in\mathfrak{g}$.

- The Lie bracket on $\mathfrak g$ is defined by $[X,Y]=\operatorname{ad}_XY$, where ad_XY is the derivative of the adjoint action.
- The Lie bracket of left-invariant vector fields is given by the commutator of vector fields.

Using the definition of ϕ and the properties of left-invariant vector fields, we can show that:

$$\phi([X,Y])(g) = (L_g)_*[X,Y] = [(L_g)_*X, (L_g)_*Y] = [\phi(X)(g), \phi(Y)(g)].$$

Thus, $\phi([X,Y]) = [\phi(X),\phi(Y)]$, and ϕ preserves the Lie bracket.