§證明 O(n)是一個李群

$$M \xrightarrow{f} N, T_A M \xrightarrow{df} T_{f(A)} N$$

1. $p \in M$, 若(df)_p是蓋射(surjective) 則稱 p 是 f 的正則點(regular point)

- 2. $\ker(df)_p = \{B \in T_A M \mid (df)_A B = 0\}$
- 3. $q \in N$, 若 ∀ $p \in f^{-1}(g)$ 皆為正則點 則稱 q 為 f 的正則值

定理(regular value theorem)

 $M \xrightarrow{f} N$, $q \in N$ 是f的正則值 使得 $L = f^{-1}(q) = \{p \in M | f(p) = q\} \neq \emptyset$ 則L是M的子流形,且 $T_pL = kef(df)_p \subset T_pM$ for all $p \in L$

以下證明 O(n)=
$$\{A \in M | A^{t}A = I\}$$
是一個李群

$$GL(n) \xrightarrow{f} S (S 是對稱矩陣) , f(A) = A^{t}A$$
$$(df)_{A}B = \lim_{h \to 0} \frac{f(A+hB) - f(A)}{h} = \dots = A^{t}B + B^{t}A$$

Since $A \in O(n)$, $A^t = A^{-1}$, substituting $Y = A^t B$, $(df)_A Y = Y + Y^t$

For any symmetric matrix S , set $Y = \frac{1}{2}S$ solves Y' + Y = S, showing that $(df)_A$ is surjective \circ

Since I is a regular value , by regular value theorem O(n) is a smooth manifold °

The dimO(n)=
$$n^2 - \frac{n(n+1)}{2} = \frac{n(n-1)}{2}$$

O(n) is a subgroup of $GL(n,\mathbb{R})$, which is a Lie group \circ The group operations (multiplication and inversion) on O(n) are smooth as they are restrictions of smooth operations on $GL(n,\mathbb{R}) \circ$ Thus, O(n) is a Lie group \circ

Regular value theorem

Let *M* and *N* be smooth manifolds of dimensions *m* and *n*, respectively, and let $f: M \to N$ be a smooth map \circ A point $y \in N$ is called a **regular value** of *f* if for

every $x \in f^{-1}(y)$, the differential $df_x : T_x M \to T_y N$ is surjective (i.e., the Jacobian matrix of f at x has full rank \circ

The Regular Value Theorem states :

If $y \in N$ is a regular value of f, then the preimage $f^{-1}(y)$ is a smooth submanifold of M of dimension m-n \circ

This theorem is widely used to construct manifolds and study their properties \circ For example , it is used to show that level sets of smooth functions are manifolds \circ

Example

1. Consider the smooth map $f: \mathbb{R}^3 \to \mathbb{R}$ defined by $f(x, y, z) = x^2 + y^2 + z^2$

The derivative df = (2x, 2y, 2z)

The only critical point of f is (0,0,0), so every $c \neq 0$ is a regular value \circ

For c>0 , the preimage $f^{-1}(c)$ is the sphere S^2 of radius \sqrt{c} , which is a 2dimensional smooth manifold \circ

The proof relies on the Implicit Function Theorem. At each point $x \in f^{-1}(y)$, the surjectivity of df_x allows us to locally express $f^{-1}(y)$ as the graph of a smooth function, ensuring it is a smooth manifold.

Application

1. Level sets

If $f: M \to R$ is a smooth function and c is a regular value , then $f^{-1}(c)$ is a smooth hypersurface in M \circ

2. Lie grups

The theorem is used to show that certain subsets of a Lie groups are submanifolds °

3. Physics : In mechanics , level sets of conserved quantities (e.g. energy) often form manifolds °