1. The Mathematical Theory of Black Holes      S.Chandrasekhar(1910~1995) 錢卓斯卡 1983諾貝爾物理獎
  2. The Geometry of Kerr black holes      Barrett O'Neill 1924~2011

[Truth and Beauty ]

 

§ 愛因斯坦的廣義相對論在1915年11月完成 ,兩個月內Karl Schwarzschild解出愛因斯坦場方程(Schwarzschild solution

決定了非旋轉點微塵時空幾何的精確解 ,然後歷經48年才得到Kerr 解 。

Curvature properties  of interior black hole metric   by Ryszard Deszcz   Abdulvahid H. Hasmani   Vrajeshkumar G. Khambholja   Absos A. Shaikh

A spacetime is a connected 4-dimensional semi-Riemannian manifold endowed with a metric g with signature (− + ++).

時空的幾何由度量張量g與里奇張量S來描述,whereas(然而) the energy momentum tensor 描述時空的物理內涵.

Einstein’s field equations relate g, S and the energy momentum tensor and describe the geometry and physical contents of the spacetime.

By solving Einstein’s field equations for empty spacetime (i.e. S = 0) for a non-static(非靜態) spacetime metric, one can obtain the interior black hole solution, known as the interior black hole spacetime which infers(推論)that a remarkable change occurs in the nature of the spacetime, namely, the external spatial radial(徑向)and temporal coordinates exchange their characters to temporal and spatial coordinates, respectively, and hence the interior black hole spacetime is a non-static one as the metric coefficients are time dependent.

For the sake of mathematical generalizations, in the literature, there are many rigorous geometric structures constructed by imposing the restrictions to the curvature tensor of the space involving first order and second order covariant differentials of the curvature tensor.

Hence a natural question arises that which geometric structures are admitted by the interior black hole metric.

黑洞的研究:

  1. Karl Schwarzschild (1873~1916) non-rotating massive spherically symmetric solution   (1) Birkhoff theorem
  2. Roy Kerr 1963
  3. John Friedmann(1926~2017)
  4. Reissner Nordstrom          a black hole with mass and electric charge ,but no spin
  5. Roger Penrose(1931~ )     cosmic censorship conjecture(宇宙審查猜想) [2020諾貝爾物理獎得主 Sir Roger Penrose 的黑洞研究]
  6. Stephen Hawking(1942~2018) black hole thermodynamics   Quantum Field theory 1974年  quantum gravity
  7. John Archibald Wheeler(1911~2008)      no-hair theorem
  8. Robert Bartnik(1956~2022)
  9. Joel Smoller , Arthur Wasserman,Yau,J.B.McLeod

 

先看一段影片Christopher Reynolds [年輕天文學家講座] [The Stability of Black Holes with Matter]

AMS中有一篇可供參考 [stable black holes in vacuum and beyond] by Elena Giorgi 是王慕道的學生 [ResearchGate]

 Roy Kerr   Christopher Reynolds  Barrett O'Neill   Elena Giorgi


  1. Black Holes :  [黑洞照片] M87與銀河系中心超大質量黑洞 [重力波]
  2. [黑洞:窮盡人類知識的極限]
  3. [黑洞 重力波特展] 科博館~  2024/04/07
  Non-rotating J=0 Rotating
uncharged (Q=0) Schwarzschild Kerr
chargedd Reissner-Nordstrom Kerr-Newman
  1. Rotating Black Holes The Geometry of Kerr Spacetime      Anusar Farooqui
  2. Kerr Black Holes(1963)                                                      Chris Reynolds
  3. The kerr Spacetime : A brief introduction                           Matt Visser [arXiv]
  4. The geometry of Kerr Black Hole                                       Barrett O'Niell

 

  1. Killing vector field的metric是Isometry(等距同構)   Kerr metric
  2. Ricci scalar for the BH
  3. ergosphere(動圈)   geodesics of BH with charge
  4. [黑洞似乎可以逃避熱寂] Evade Heat Death
  5. 新計算顯示如何擺脫霍金的黑洞悖論