F=E+IB 在 Clifford 代數框架中的(古典力學)電磁場

 $\nabla F = J = \rho - \vec{j}$ (Maxwell 方程)

 $J^{\mu}(\mathbf{x}) = c \psi(\mathbf{x}) \gamma^{\mu} \psi(\mathbf{x})$ 量子場論的 Dirac 場(電流密度)

物質產生電磁場,電磁場影響物質場:

- 1. Dirac 場 $\psi(x)$ 透過 $J^{\mu} = c \psi(x) \gamma^{\mu} \psi(x)$ 產生電流 J^{μ}
- 2. 這個電流 J^{μ} 作為源,透過 $\nabla F = J^{\mu}$ 產生電磁場 F(及其對應的四維勢 $A_{\mu})$
- 3. 電磁場勢 A_{μ} 透過耦合後的 Dirac 方程影響 $\psi(x)$ 的演化。

$$(i\gamma^{\mu}(\partial_{\mu}+iqA_{\mu})-m)\psi=0$$

這兩個方程構成一個自洽(self-consistent)的系統。