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1ii
Preface

Bernhard Riemann (1826 -1866) was one of the greatest mathematicians of
the modern era. He aimed very deliberately at new ways of thinking about
existing problems and concepts in mathematics, often with startling success.
Looking for a quantitative way to support the assertion that he influenced
twentieth century mathematics more than his contemporaries, 1 turned to
the collection ‘Development of Mathematics 1900-1950’, edited by J-P. Pier.
Riemann is mentioned in the index as many times as Gauss, Cauchy, Weier-
strass and Dedekind combined.

Over the years, I have often talked to mathematicians and students who
would like to read Riemann’s papers, but find this difficult or time-consuming
in the original German. This is the audience I had in mind in organizing the
present volume. A few of the papers have been translated before, but the
translations in this book are all new.

Riemann was fortunate enough to attend the lectures (on the least squares
method) of the legendary C.F. Gauss (1777-1855) as a young student in
Gottingen. He came to idolize Gauss later, but in 1847 he traveled to Berlin
for greater stimulus. There he attended the lectures, and took part in the
discussions, of C.G.J. Jacobi (1804-1851) and P.G.L. Dirichlet (1805-1859).
Both these scholars became important influences on Riemann. He cited Ja-
cobi’s great memoir ‘Fundamenta nova theoriae functionum ellipticarum’ in
many places in his own work, and it suggested possibilities to him that went
well beyond Jacobi’s beautiful calculations. Dirichlet, on the other hand,
liked to take an abstract approach to each topic, and Riemann much pre-
ferred this way of attacking problems. Dirichlet was also an enthusiastic
proponent of mathematical models of physical problems, and Riemann was
to carry Dirichlet’s approach further in both his writings and his lectures.
Returning to Gottingen, he also became fired with enthusiasm for experi-
mental physics and the construction of theoretical explanations for the new
phenomena that were being observed. Here his great mentor was Wilhelm
Weber (1804-1891).

As a young researcher, Riemann was drawn in many directions. However,
his doctoral thesis of 1851 on the foundations of the theory of functions of
a complex variable took on great importance in suggesting to him several
further lines of research that needed to be carried through. The thesis also
became a watershed in the subject, and in 1951 was celebrated with a cen-
tennial conference. There were many inspired ideas in the thesis. Riemann
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surfaces appear there for the first tiine. Analytic functions are viewed as
conformal mappings, and the Riemann mapping theorem is proposed and
given a proof, albeit unsatisfactory. Riemann’s researches later in the 1850s
on hypergeometric functions, Abelian functions and the Riemann zeta func-
tion demonstrate his commitment to complex function theory as a tool of
exploration. Yet Dieudonné (1985) writes of Riemann’s great paper VI on
Abelian functions as an ‘epoch’ in algebraic geometry. It took a very long
time before all the mathematical ideas in this paper fully bore fruit. Even
a brilliant contemporary such as A. Clebsch (1833-1872) felt somewhat de-
feated by Riemann’s memoir, although Clebsch took up the potent idea of
genus of an algebraic curve from it. The paper VII on the Riemann zeta
function, treasured by number theorists as a gem, is the source of the most
famous unsolved problem in mathematics, the ‘Riemann hypothesis’.

Simply in preparing for his habilitation in 1854, Riemann wrote two works
of genius—his habilitation thesis on trigonometric series, and his ‘trial lec-
ture’ on the foundations of geometry. The methods in the thesis can still
be found intact in modern works such as Zygmund’s ‘Trigonometric Series’.
The trial lecture became the inspiration for a new era in differential geometry,
and Einstein’s theory of general relativity is its (not very indirect) descen-
dant. Yet Riemann never published either the thesis or the trial lecture—this
was left to his friend and colleague Richard Dedekind (1831-1916) after Rie-
mann’s death. In 1854, these works simply qualified Riemann to be a poorly
paid instructor at Gottingen.

It is hard to believe, yet while working on these wonderful ideas, Riemann
still had a great deal of time to think about problems of physics. Of the
nine papers that he published during his lifetime, four are on problems of
mathematical physics. (Riemann’s total of publications up to 1866 is brought
up to eleven by announcements of his papers on the hypergeometric functions
and the propagation of sound waves.) Much of his writing on physics from
the 1850s was not submitted for publication.

It is difficult to guess the directions in which Riemann might later have
focused his extraordinary abilities. He succeeded Dirichlet as professor at
Gottingen in 1859, but his health deteriorated from 1862 onwards. He re-
mained dedicated to scholarship to the last; this touching story is told here
in an essay by Dedekind. Among his contemporaries, Dedekind was the one
who most fully appreciated Riemann’s mathematics.

After Riemann died in Italy in 1866, Dedekind and others oversaw the
publication of seven posthumous papers. The early death of Clebsch delayed



Lhe appearance of the collected works, but eventually Heinrich Weber (1842
1913) was able to send the first edition to the press in 1876. Weber was ably
assisted by Dedekind and by H.A. Schwarz (1848-1921). A dozen papers
in the first edition were assembled by poring over Riemann’s Nachlass, the
mass of materials left behind at his death. The 1892 edition, which is the
source for the present translations, contained some modest additions and
corrections, and its numbering I-XXXI of the papers is preserved here for
the reader’s convenience. However, I omitted three non-mathematical items:
XVIII, ‘The mechanism of the ear’, and two fragments on philosophy that
can be found on pages 509-525 of Weber (1892).

Footnotes in the text of the papers are mostly Riemann’s. However, some
[ootnotes making Riemann’s references to the literature more precise were
added by Weber. These are indicated by a W.

There is far more in Riemann’s work than any one person can comprehend
if the influence of the papers is to be properly considered. Nevertheless, I
provide notes at the end of the book containing basic information about each
paper and suggestions for further reading.

A natural next step would be the book of Laugwitz (1999), which gives
a unified account of Riemann as a mathematician and natural philosopher.
Riemann also had a very important role as teacher and expositor through
the revision and publication of his lectures by Hattendorff, Stahl and others.

Readers who would like to suggest corrections or alternative readings
within the papers, or additional remarks for the notes, should send these to
baker@math.byu.edu. I will maintain a web page that takes these suggestions
into account, at http://www.math.byu.edu/~baker/Riemann/index.htm

During the final stages of the preparation of this book, Henry Orde, one
of my fellow translators, died in Kent, England. Henry was born in 1922. He
scrved in the British armed forces throughout the second world war, and then
studied mathematics at Cambridge. After working for a firm of merchants in
Malaya for several years, he joined the nascent computer industry in England.
A heart attack forced him into retirement at age 50, and he was then able to
devote his energies to pure mathematics, book collecting and music. Number
theorists will recall that he gave an elementary proof of the class number
[ormula for quadratic fields with negative discriminant. See Orde (1978).

Roger Baker
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Riemann, Collected Papers

I

Foundations for a general theory of functions of a complex
variable.

(Inaugural dissertation, Géttingen 1851; second printing (unchanged),
Géttingen 1867.)

1.

Denote by z a variable that can take successively all possible real values.
When there is a unique value of the variable w corresponding to each z, we
wy that w is a function of z. If w varies continuously when z runs contin-
nously over all values between two given points, we say that the function is
vontinuous in this interval.

This definition clearly enforces no law between individual values of the
Iunction. For when the function is specified in a certain interval, the method
ol continuing it outside the interval remains entirely arbitrary.

The dependence of the quantity w on z can be expressed by a mathemat-
ivnl law, so that definite operations at each value of z yield the corresponding
. 'The possibility of a single law of dependence for all values of z in a given
interval was formerly ascribed only to a certain class of functions (functiones
continuae in Euler’s terminology). More recent researches have shown, how-
wver, that there are analytic expressions that represent each continuous func-
tion on a given interval. Hence it is one and the same thing to say that w
flepends on z in some arbitrary given manner; or that w is given by definite
operations. Both notions are equivalent, in view of the results mentioned.

T'his is not the case, however, if z is not restricted to real values, but
viries over complex numbers of the form x + yi (where i = /—1).

et

T+yi, z+yi+dr+dy:

Ine two values of the quantity z with an infinitely small difference, and let
u+vi, u-+vi+du+dvi
he the corresponding values of w. If the dependence of w on z is defined

arbitrarily, the ratio
du + dvi

dr + dye

1
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varies, generally speaking, according to the values of dr and dy. Indeed, let
dr + dyi = ee®*; then

i L (O ) (000w,
dr+dyi 2 \0x Oy 2\0r Oy
1[/0u Ov dv  ou\ | dxr—dyi
|G w) s
(G 2y (),
2\0x Oy 2 \dx Oy
1[ou Ov Qv Ou\ | gy
+§|:%—a—y+<%+a—y)l:|€ .

In whatever way w is determined from z by a combination of simple op-
erations, the value of the derivative ‘2—‘;’ will always be independent! of the
particular value of the differential dz. Obviously we cannot obtain arbitrary
dependence of complex w on complex z in this way.

The above characteristic, common to all functions obtained via any op-
erations, will be fundamental to the following investigation, where such a
function will be treated independently of its expression. Without proving
the general sufficiency and validity of the definition of dependence via oper-
ations, we take the following definition as starting point.

A complex variable w is said to be a function of another complex variable
z, if w varies with 2z in such a way that the value of the derivative %’;" is

independent of the value of the differential dz.

2.

Both quantities z and w will be treated as variables that can take every
complex value. Tt is significantly easier to visualize variation over a connected
two-dimensional domain, if we link it to a spatial viewpoint.

We represent each value xz + yi of the quantity z by a point O of the
plane A having rectangular coordinates z,y; and every value u + vi of the
quantity w by a point ) of the plane B, having rectangular coordinates u, v.
Dependence of w on z is then represented by the dependence of the position
of @ on the position of O. When w corresponds to z in a way that varies

IThis assertion is obviously justified in all the cases where one can obtain from the

expression of w in terms of z, using the rules of differentiation, an expression for ‘fi—f in

terms of z. The rigorous general validity of the assertion is left aside for now.
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continuously with z, or in other words when u, v are continuous functions of
.y, then to every point of the plane A corresponds a point of the plane B;
penerally speaking, to every line corresponds a line, and to every connected
picce of surface there is a corresponding connected piece of surface. Thus we
can think of this dependency of w on z as a mapping of the plane A on the
plane B.

3.

We now investigate the properties that this mapping has when w is a
[unction of z, that is, when dw/dz is independent of z.
We denote by o a general point of the plane A in the neighborhood of
(), and the image of o in the plane B by ¢. Further let = + yi + dz + dyi
and u + vi + du + dvi be the values of z and w at these points. We may
view dz,dy and du, dv as rectangular coordinates of the points o and ¢ with
respect to the points O and @ taken as origins. If we write dx + dyi = ee®
and du + dvi = ne??, then the quantities ¢, ¢, 7,1 become polar coordinates
of these points relative to these origins. Now let o and 0" be any two points
infinitely close to O. For quantities depending on o', 0", we use the above
notations with appropriate accents. By hypothesis,

du’ + dv't B du” + dv”i
de' +dy'i  dx’ +dy"i’

(‘onsequently

du' +dv'i 0y dT tdy
—_— = _ ez
du// + d,U//l' ?;’” dl’” _|_ dy”l.
/
_ £ w-eMi
6”

and so

n € / /Y 1/

G=w o Ve=d g
'I'hat is, in the triangles o'O0” and ¢'Qq" the angles 0’O0”, ¢'Qq" are equal,
and the corresponding sides are proportional.

This yields the similarity of two corresponding infinitely small triangles;

nnd consequently, in general, similarity of the smallest parts of the plane A
and their images on the plane B. An exception to this result occurs only
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in the special case where the corresponding variations of the quantities z
and w are not in finite ratio. We tacitly excluded this exception from our
deduction.?

4.

If we write the differential quotient 4utdv

dx+dyi

in the form

0 ov o2} ou .
(g}:—kéz) dr + (@— -552) dyi
dz + dyi

it is plain that it will have the same value for any two values of dz and dy,
exactly when

ou B ov ov ou

9r  dy  dz oy

Hence this condition is necessary and sufficient for w = u + v2 to be a
function of z = x + yi. For the individual terms of the function, we deduce
the following:

Pu  Ou v 0%

+ =0, + =

ox? = 0Oy? ox?  Oy?
This equation is the basis for the investigation of the properties of the indi-
vidual terms of such a function. We give the proof of the most important
of these properties before undertaking a deeper treatment of the complete
function. However, we first establish some points concerning more general
matters, in order to smooth the ground of the investigation.

0.

5.

For the following treatment we permit z,y to vary only over a finite
region. The position of the point O is no longer considered as being in the
plane A, but in a surface T spread out over the plane. We choose this wording
since it is inoffensive to speak of one surface lying on another, to leave open
the possibility that the position of O can extend more than once over a given
part of the plane. However, in such a case we suppose that the portions of

20n this subject, see: ‘General solution of the problem of mapping the portions of
a surface so that the image is similar to the original in the smallest parts’, C.F. Gauss.
{Response to the 1822 prize question proposed by the Royal Society of Sciences in Copen-
hagen. Astronomische Abhandlungen, edited by Schumacher, vol. III, Altona 1825; Gauss,
Collected works, vol. IV, p. 189.)
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surface lying upon one another do not connect along a line. Thus a folding
of the surface, or a splitting of the surface into superimposed parts, does not
OCCur.

Now the number of pieces of surface superimposed in each part of the
plane is completely determined, when we give the boundary of the region
and its direction (that is, its inner and outer sides). A transit of these pieces
can take different forms.

Indeed, if we draw a line through the part of the plane covered by the
surface, the number of superimposed surfaces only changes on crossing the
boundary. Indeed, the number changes on moving from outside to inside by
+1, in the opposite case by —1. Thus the number is determined everywhere.
Along the edge of the line, each bordering portion of surface continues in a
definite way, as long as the line does not meet the contour. For indeterminacy
can only occur at an isolated point, and consequently occurs either at a point
of the line itself, or at a finite distance from it. If we confine ourselves to
part of the line ¢ in the interior of the surface, and both sides of it on a
sufficiently narrow strip of surface, we may speak of definite bordering parts
of the surface, whose number is equal on either side. Specifying a definite
direction of the line, denote the parts of the surface on the left side by
ay,...,a, and those on the right by a},...,a,. Each part a will continue
into one of the parts a’. Indeed, this will in general be the same part along
the length of the line ¢, except that for certain positions of £ it can change at
one point. Suppose that above such a point o (that is, along the preceding
part of £) the surface portions ay, ..., a, are connected respectively with the

portions a!, ..., a,, while below 7, aq,, @q,, - - - , @q, connect respectively with

b n?
a),...,a,. Here ay,...,q, is a permutation of 1,...,n. A point of a; that
moves into a}, above o, will pass to a,, if we go back to the left side below o.
Il a point moves around ¢ from left to right, the index of the part of surface

in which it lies takes successively the values

Loy, aa,,. . oy, . ...

In this sequence, as long as the term 1 does not recur, the terms are neces-
sarily distinct. For an arbitrary intermediate term «, is necessarily preceded
by u, and in direct succession by all preceding terms up to 1. But when after
n certain number of terms, say m, a number evidently less than n, the term
| reappears, the other terms must then recur in the same order. The point
moving around ¢ comes back after every m circuits into the same part of the
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surface and is restricted to m superimposed surface parts, that meet above
o at a unique point. We call this point a branch point of order m — 1 of the
surface T'. Repeating the procedure, the n — m remaining surface parts, pro-

vided they are not isolated, divide into systems of my, mo, ... surface parts.
In this case, further branch points of orders m; — 1, my — 1, ... are located
at 0.

When the position and direction of the boundary of T', and the position
of the branch points, are given, then T is either completely determined, or
restricted to one of a finite number of distinct forms. The latter occurs, in
so far as these determining portions can lie on different parts of the super-
imposed surfaces.

A variable which in general, that is after excluding isolated lines or
points,? takes a definite value at each point O of the surface 7" that varies
continuously with position, can obviously be considered as a function of z, y.
When we refer to functions of z,y in what follows, the term will always be
employed in this fashion.

Before passing to the treatment of such functions, we introduce some clar-
ifications on the connectivity of a surface. We restrict ourselves to surfaces
that do not split apart along a line.

6.

We regard two parts of surface as connected, or belonging to a single
piece, if from any point of one part to any point of the other, a line can be
drawn interior to the surface. We regard two parts as separate, when this
procedure is not possible.

The study of the connectivity of a surface is based on its decomposi-
tion via transverse cuts, that is lines which cut through the interior from
one boundary point simply (no point occurring multiply) to another bound-
ary point. The terminal point can lie in the part of the boundary thereby
adjoined, and thus at an earlier point of the transverse cut.

A connected surface that is split apart by each transverse cut, is said to

3This restriction does not arise from the definition of a function, but is needed for the
application of infinitesimal calculus to it. As an example of a function discontinuous at all
points of a surface, take the function whose value is 1 for rational z and y, and otherwise
is 2. We cannot apply to the function either differentiation or integration, and so cannot
directly use infinitesimal calculus. The arbitrary restriction placed here on the surface T
will be justified later (Section 15).
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he simply connected; otherwise it is multiply connected.

Theorem 1 A simply connected surface is divided by each transverse cut ab
into two simply connected pieces.

Suppose that one of the pieces is not split apart by a transverse cut cd.
‘There are three possible cases: neither of the endpoints ¢, d is situated on
ab; only c¢ is on ab; both are on ab. Rejoining the surface respectively along
the whole line ab; along the part cb; or along the part cd of the line, we
obtain a connected surface that arises from a transverse cut of A, contrary
Lo hypothesis.

Theorem 2 Suppose that a surface T divides via n; transverse cuts? ¢
into a system 717 of m; simply connected pieces, and via ny transverse cuts
(y into a system Ty of my pieces. Then ny — my < ny — my.

Every line ¢,, not completely contained in the system of transverse cuts
1, yields together with the system of cuts ¢; one or several transverse cuts
iy of the surfaces T}. As endpoints of the transverse cuts ¢}, we have:

1) The 2n, endpoints of the transverse cuts ¢y, except for those whose
endpoints meet part of the system of lines ¢;.

2) Every intermediate point of a transverse cut go, at which this cut
meets an intermediate point of a line ¢, except for the case where the point
is already on another line of ¢;, that is, when an end of a cut ¢ coincides
with this point.

Denote now by g the nummber of times that lines of both systems join or
separate (where in consequence an isolated common point is to be counted
(wice); by vq, the number of times an end part of a line ¢; coincides with
all intermediate part of a line ¢o; by vy, the number of times an end part
of a line gy coincides with an intermediate part of a line ¢;; and finally, by
14y the number of times an end portion of a line ¢; coincides with an end
part of a line go. Then case 1) yields 2ny — 19 — 13 endpoints, case 2) yields
it — vy endpoints, of the transverse cuts ¢5. Both cases taken together yield
nll endpoints, each one only once. The number of these transverse cuts is

1By a decomposition through several transverse cuts we understand a successive de-
composition. That is, the surface obtained by one transverse cut is decomposed further
by a new transverse cut.
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thus
2n9 — vy — U3+ L — 1

2

In an entirely analogous way we conclude that the number of transverse
cuts ¢} of the surface 15, formed by the lines ¢, is

=No + 8.

2n1—1/1—1/3+/,L—1/2

2

=n;+S.

Now the surface T will obviously be transformed by the ns+ s transverse
cuts ¢4 into the same surface obtained from 75 by the n; + s transverse
cuts ¢j. But T} comprises m, simply connected pieces and consequently, by
Theorem 1, is decomposed by n, + s transverse cuts into m; + nq + s pieces.
Consequently, if my < m; 4+ ny — ny, the number of pieces of the surface T,
would be increased by more than n; + s by the effect of n; + s transverse
cuts, which is absurd.

As a consequence of this theorem, if the indeterminate number of trans-
verse cuts is denoted by n, and the number of pieces by m, then n — m is
constant for all divisions of the surface into simply connected pieces. For
consider any two divisions, by n; transverse cuts into m; pieces and by ns
cuts into mo pieces. Since the first set of pieces are simply connected, we
have

Ng — My < Ny — My.

Since the second set are simply connected, we have
ny —my < ng = My;

and since both inequalities hold, we have ny — my = n; — m;.

This number can properly be designated the ‘connectivity’ of a surface.
By definition, it will be diminished by 1 by a transverse cut. It will be
unchanged by the effect of a simple cut, starting from a point of the interior
and ending either at a point of the boundary, or at a point of a previous cut.
It will be increased by 1, by a simple cut in the interior of the surface with
two endpoints. For in the first case, the cut becomes a transverse cut, if we
make a new transverse cut. In the latter case, two new transverse cuts are
needed.

Finally the connectivity of one surface formed from several pieces is ob-
tained by adding the connectivities of these pieces.

8
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In the following, we usually restrict ourselves to surfaces that have only
one piece, and for their connectedness we simply speak of simple, double,
and so on. Here we understand, by an n-fold connected surface, a surface
that can be decomposed by n — 1 transverse cuts into one that is simply
connected.

As to the dependence of the connectedness of the boundary on the con-
nectedness of the surface, it is clear that:

1) the boundary of a simply connected surface necessarily comprises a
single closed line.

Suppose the boundary comprised two separate pieces. A transverse cut ¢
that joins a point of one piece a to a point of another piece b, merely divides
connected parts of the surface from each other. For one can form a line
interior to the surface along a, starting from one side of the transverse cut ¢
and ending on the opposite side. So ¢ does not split the surface, contrary to
hypothesis.

2) Each transverse cut either decreases by 1, or increases by 1, the number
of pieces of the boundary.

For a transverse cut ¢ there are three cases: Either ¢ joins a point of
one piece of the boundary a, to a point of another piece b. In this case, all
(hese lines taken in the sequence a,q,b,q form a single closed piece of the
houndary. Or, ¢ joins two points of a single piece of the boundary. In this
case the boundary falls into two pieces via the two endpoints, each of which,
taken together with the transverse cut, gives a closed piece of the boundary.

Or finally, ¢ ends at one of its own preceding points. In this case ¢ can
e considered as comprising a closed line o and a line ¢ joining a point of o
to a point of a boundary piece a. In this case o on the one hand, and a, ¢, 0, ¢
ot the other hand, are closed paths each forming a piece of the boundary.

Instead of two boundary pieces we obtain one, in the first case; and two
instead of one, in the last two cases. This yields our theorem.

The number of pieces comprising the boundary of an n-fold connected
portion of surface, is thus either n, or less than n by an even number.

From this we obtain a corollary:

If the number of boundary pieces of an n-fold connected surface is n,
the surface is split into two separate parts by every simple closed cut in its
interior.

For the connectivity is not altered by this cut and the number of boundary

9
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pieces is increased by 2. Consequently, if the new surface were connected, it
would be n-tuply connected with n + 2 boundary pieces, which is impossible.

7.

Let X and Y be two functions of z,y continuous at all points of the
surface T spread out over A. With the surface integral extended over all
elements dT" of this surface, we have

0xX oY
/(ax ay>dT——/(Xcos§+Ycosn)ds.

Here, at each point of the boundary, £ denotes the inclination of the interior
normal to the z-axis, and 1 denotes its inclination to the y-axis. On the right
side, the integral extends over all elements ds of the boundary line.

In order to transform the integral [ %% dT, we divide the part of the plane
A covered by T into strips, via a system of lines parallel to the z axis, in
such a way that each branch point of T falls on one of these lines. With this
assumption, each part of T corresponding to one of these strips is formed of
one or more separate trapezoidal pieces. The contribution to [ %% dT of one
of these surface strips, cutting off an element dy of the y axis, will obviously

be
dy/—d:z

Here the integration is taken over the (one or more) straight lines belonging to
the surface T that fall on a normal issuing from some point of this element
dy. Now let the lower endpoints of these lines be O1,0,,Oj, ..., (that is,
corresponding to the smallest value of z); the upper points O, 0® O,
and denote by X1, Xo, ..., XM, X®  the values of X at these points. Let
dsy,dss,...,dsV ds®, ... be the corresponding elements cut off from the
boundary of the surface strips, and £;,&,,...,6W, €3 .. the values of £ at
these elements. Then

0X
x
The angles £ are evidently acute at the lower endpoints, obtuse at the upper
endpoints; consequently
dy = cos€1ds; = cos€adsy =

c=—cosEWMdsH = —cos£Pds? ..

10
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Substituting these values yields

dy/—drv ZXCosfds,

the summation extending over all boundary elements whose projection onto
the y-axis is dy.

By integration over all the elements dy that occur, it is clear that all
vlements of the surface T and all elements of the boundary will be exhausted.
Accordingly we obtain, with the integration taken over the perimeter,

f——dT = /Xcosgds.

By entirely analogous reasoning, we obtain

a—YdT— /Ycosnds
Oy

0X oY
/ (ax 8y) dT" = /(X cos€ +Y cosn)ds,

ns we wished to prove.

s0 that

8.

On the boundary line, we denote by s the distance of a general point
(),, from a fixed initial point, in a direction to be fixed below. On the normal
- O,, let p denote the distance of an indeterminate point O from O,; the
istance is taken to be positive for interior points of the normal. The values
of x and y at the point O can clearly be considered as functions of s and p.
Al the points of the boundary line we then have the partial derivatives

@ = Fcosé.

x
— =+ cosn,
K 0s

0s

— =cos¢, 9 _ cos 1,
op Op
Ilere we take the upper sign if the direction in which s increases makes the
siine angle with p as the x-axis with the y-axis. In the opposite case, we
tnke the lower sign. We take the direction of increasing s throughout the
houndary in such a way that

Qif*_aﬂ and so — %y _ @
ds  Op’ ds  Op

11
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This does not essentially restrict the generality of our results.

Obviously we can extend this rule to lines interior to 7". Here, in deter-
mining the signs of dp and ds, if their mutual dependence is fixed as above,
we must still indicate how to fix the sign of dp or of ds. For a closed line, we
shall indicate one of the two parts into which it cuts the surface, and take
the line as its boundary, which determines the sign of dp. For a line that is
not closed, we indicate instead the origin of the line, that is, the endpoint
where s takes the least value.

Substituting the values obtained for cosé and cosn into the equation
proved in the previous section, with the domains of integration as before, we

have
0X 9Y ox oy
/(%‘*a—y)”—‘/(){%”a—p)“

We apply the result at the end of the previous section to the case where,

throughout the surface,
ox oy

o oy
This yields the following theorems.

0.

I. Let X and Y be two functions finite and continuous throughout 7T
satisfying
ox oy

3z oy

Then, integrating over the entire boundary of T,

or oy B

Consider an arbitrary surface T spread over A and divide it in arbitrary
fashion into two pieces T5, T3. The integral

ox oy
x 27 79
/( ap”ap) o

12
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over the boundary of Ty can be regarded as the difference between the in-
legrals over the boundaries of T} and T5. For where T35 borders 77 the two
integrals cancel out; every other element corresponds to an element of the
houndary of 7T5.

Using this transformation, we deduce from I:

II. The value of the integral

or oy
X—+Y—=1d
/( 8p+ Gp) ’

taken over the boundary of a surface spread over A, remains constant when
the surface is increased or diminished in size in a manner that does not cross
any part of the surface where the hypotheses of Theorem I are violated.

When the functions X, Y satisfy the above differential equation through-
out the surface T', but have discontinuities at isolated lines or points, we
can surround each of these lines or points with an arbitrarily small region of
surface. Applying Theorem II, we obtain:

Or Oy
xZ iy
/( o " @)5

over the boundary of T is equal to the sum of the integrals

Or Ay
v g
/(X@+Y%)S

taken around all discontinuities. The contribution to the integral from each
discontinuity is constant, however narrow the boundary that encloses it.
The contribution from a point of discontinuity is necessarily zero if, p
denoting distance of O from the discontinuity, pX and pY become infinitely
small with p. Take such a point, as origin, and an arbitrary direction as
initial line, for polar coordinates p, ¢; choose as the boundary curve a circle
of radius p and center at this point. Then the integral in question is expressed

by
2 ox 8y>
X—+Y —|pdo.
/0 ( op Op ?

'This cannot take a nonzero value y, since whatever the value of x, we can
laken p so small that the absolute value of (X %% +Y %%) p is smaller than

III. The integral

13
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o for every ¢, giving

ox oy
X—+4+Y d
/0 ( 3p+ 3>p¢<x

IV. Suppose that for a simply connected surface spread over A, we have

8:13 oy
/ (X 7 ap) 5=0

when we integrate around an arbitrary part of the surface; or

or oy
Y ——- X = 0.
/( Js 83) ds =0

Then this integral, taken between any two fixed points O, and O, has the
same value for any line from O, to O.

Any two paths s; and sy joining O, to O, taken together, form a closed
line s3. Either this line itself passes through no point more than once, or
one can divide it into several simple closed lines as follows. Start from an
arbitrary point and describe the contour. Each time we meet a point already
traversed, separate off the intermediate part, and consider the following part
as the immediate extension of the preceding portion of the curve. Each such
line divides the surface into a simply connected piece and a doubly connected
piece, and forms the entire boundary of one of these pieces. The integral

ox Oy
/ <Y N X 83) ds
corresponding to the simply connected piece will be 0 by hypothesis. Conse-
quently the same property holds for this integral taken over the whole path
s3, with the quantity s treated as increasing in the same direction through-
out. It follows that the integrals along the lines s; and s, cancel out, if there
is no change in this direction; that is, one line passes from O, to O and the
other from O to O,. If we alter the sense of the latter integral, they become

equal.
Consider any surface T in which, generally speaking,

oX 9y

or LI .
5z | 3y

14
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We remove the discontinuities if necessary, so that for any portion of the
remaining pieces of the surface

ox 8y

and reduce the remaining surface via transverse cuts to a simply connected
surface T™*. For each path in the interior of 7%, from a point O, to another
point O, the above integral has the same value, which for brevity we denote

hy
ox oy
./o (Y 35 X 83) ds.

The integral, where O, is fixed and O is arbitrary, is independent for each
() of the path joining the points; so it can be treated as a function of z,y.
'T'he variation of this function when O moves along an arbitrary line element

s 1s 5 5
iy Y
Y — - X
( 7y a>d’

Lhis is continuous everywhere in 7* and equal on both sides of a transverse
cut of T'.

V. The integral

ox oy
= ——-X
z /0 (Yas 8s)d

thus represents for fixed O, a function of z,y continuous throughout 7*, but
varies by a constant on crossing anywhere along a transverse cut of 1" from
one branch point to another. The function has partial derivatives

0z 0z

The variations on crossing transverse cuts depend on certain quantities,
indlependent of each other, equal in number to the number of transverse cuts.
I'or when one runs over the system of transverse cuts in a retrograde sense—
the later parts first—this variation is everywhere determined if its value at
(he start of each cut is known. However, the latter values are independent
ol cach other.

15
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10.
For the functions so far denoted by X and Y, take

ou’ , Ou ou’ , Ou
J— /IL —_—

ox ox Oy Oy

respectively. Then
0X 8Y o 0% L [(0%u  Ou
+— |-z + 5
or 8y or?  oy? or? = Oy?
Thus if u, v’ satisfy the equations

*u  O%u 0% B*

— +—=0, — =0
ox? + oy? T Ox? * Ay? ’
we have
oX oY
— +—=—=0.
or Oy

We can apply the results of the previous section to
or oy
X—+Y ds
/ ( " 819) >
/ U o _ u , u ds.
op op

Suppose now that u and its first order partial derivatives never have dis-
continuities along a line. Suppose further that at each point of discontinuity,
p denoting distance from O to the discontinuity, p 3% % and p 8" become in-
finitely small with p. According to the remark on III of the previous section,
the discontinuities of u can be disregarded.

For, given a straight line from one of these discontinuities, take a value
R of p such that

which is equal to

Ou  Ou Oz N ou 8y
'08,0 P oz p p@y ap
remains finite for p < R. Let w = U for p = R, let M be the largest

absolute value of p 1n the interval of the line with 0 < p < R. Then, again

disregarding sign,
u—U < M(logp —log R),

16
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so that p(u — U), and indeed pu become infinitely small with p. By hy-
pothesis, this holds also for p &% 3 , P a . Consequently, if ' does not become
discontinuous, the same holds for

8—u~u’in and %— Qu
P\"3r ~ " Bz P\"8y " By

so that the case considered in the previous paragraph applies here.

Suppose now that the surface T formed from the positions of O is simple
wherever it covers A. Take an arbitrary fixed point O, of T' where u = uy,
r = x9, Yy = yo. The quantity

1
5 log((z — z0)? + (y — yo)?) = log r,

considered as a function of  and y, has the property that

logr  O?logr

Ox? 0y? =0

and has a discontinuity only for z = xq, ¥ = yo; and so in our case for only
one point of the surface T.
Consequently, from Section 9, III with v’ = logr, the integral

dlogr ou
—logr —
/(u 3 ograp) ds

has the same value for the whole boundary of T' as it does for an arbitrary
vircuit around the point O,. Take for this circuit the circumference of a circle
on which r is constant, and denote by ¢ the angle of a radius with endpoint
(), measured from an arbitrary point of the circumference in some definite
direction. The integral is

2 1
—/ 0 Ogrrdqb logr/——ds
0 or

%ds-O

_/02”ud¢.

17
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This value becomes —uy27 for infinitely small r if « is continuous at O,.
Under the above hypotheses on v and T, then, we have, for an arbitrary
point O, interior to the surface, where u is continuous,

U —i lo T@_ualogr ds
7 o & op op

with the integral taken over the boundary; and

1 2
Uyg = — ’Ud(]b
2m J,
with the integral taken over a circle around O,. The first of these expressions
yields the following

Theorem Suppose that, in general, the function u satisfies

*u  O%u

o2 T =0

inside a simple surface 1" spread over the plane A. Suppose further that

1) the points where this differential equation is violated do not fill a region
of the surface,

2) the points in which u, g—‘;, % are discontinuous do not fill any line,

3) for each discontinuity the quantities p g—:, P g—;‘ become infinitely small

along with the distance p of O from the discontinuity, and
4) a discontinuity of u, that can be removed by modifying the value of u
at isolated points, is excluded.

Then u and all its partial derivatives are continuous and finite at all points
interior to the surface.
For consider O, as a variable point. The only quantities that vary in the

expression
0 ol
/(logra—Z—u 8057“) ds

are logr, a—l(;’zgl, Bl_g:;; However, these quantities, along with their partial

derivatives, are finite and continuous functions of zg,yo at every point of

18
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the boundary while O, remains in the interior of T'; the partial derivatives
may be expressed as rational functions of these quantities, containing only
powers of r in the denominator. The continuity property persists for the
value of our integral and consequently for the function ug. Now u, by the
carlier hypotheses, can only differ in value from our integral at isolated points
where u is discontinuous. This possibility is excluded by hypothesis 4) of our
theorem.

11.

Under the hypotheses on u and T" at the end of the previous paragraph,
we have the following theorems:

I. If u=0and g—;‘ = 0 along a line, then u = 0 everywhere.

We show first of all that a line A where u = 0 and %;—ﬁ = ( cannot be the
houndary of a region a of the surface, where u > 0.

For suppose that this did take place. From a take a piece bounded on
one side by A and on the other side by a circle; the center of the circle O,
heing excluded from this piece. This construction is always possible. With
(he integral taken over the boundary of this piece, and with 7, ¢ denoting
polar coordinates of O with respect to O,, we have

/lo T@d8~/u810gr
* o op

By hypothesis it follows that, with the integral taken only over the circle,

/ud¢+logr/a—ud3:o.
dp

" Ou
M s =0
Op s ’

/.ud¢=0,

which is incompatible with the hypothesis that « > 0 in the interior of a.
In a similar way we show that the equations v = 0 and g—’; = 0 cannot
hold on the boundary line of a region of the surface b, where u is negative.

ds = 0.

Since

w obtain

19
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Suppose now that » and %’i are 0 on a line in the surface T, and there is
a region of T where u # 0. Clearly such a region is bounded either by this
line or by a region of the surface where u = 0. Consequently, it is always
bounded by a line where v and g—z are 0, which leads necessarily to one of

the hypotheses rejected above.

IT. If w and g—z have given values along a line, then u is determined through-
out 7T'.

Let u; and uy be any two functions that satisfy the above conditions on
u. These conditions also apply to the difference u; — uy. Suppose that u, us
are identical, along with their first order partial derivatives with respect to
p, on a line, but differ in some region of the surface. Then along this line
u; —uy = 0 and a% (u; —ug) = 0, while u; — uy is not 0 everywhere, contrary
to Theorem 1.

III. If w is not a constant in 7', then the points in 7" where u takes a
constant value are necessarily lines which divide regions where v is larger
from regions where v is smaller.

This theorem is obtained by combining the following:

u cannot have a minimum or maximum at an interior point of T

u cannot be a constant in just a part of T,

the lines in which © = a cannot bound portions of the surface on both
sides where u — a has the same sign.

These are all propositions whose negation, as we readily see, would lead
a violation of the equation

1 2m
Uy = — ude

T on 0
or
2m
/ (u—ug)dp =0
0

proved in the previous section. The negation is consequently impossible.

12.

We now turn back to the treatment of a complex variable w = u + vi
which, generally speaking (that is, excluding isolated lines and points) has a

20



Riemanmn, Collected Papers

unique value for each point O of the surface T' that varies continuously with
the position of O. Moreover we suppose that the equation

ou B ov ou ov

oxr oy = Oy Oz
hold except at the excluded values. As indicated earlier, we say that w is a
[unction of z = x +4y. To simplify the following, we suppose that a function
of z has no discontinuity that can be removed by changing its value at an
isolated point.
The surface T" will at first be supposed to be simply connected, and to be
spread out simply over the plane A.

Theorem Suppose that the set of discontinuities of the function w of z do
not contain a line. Further suppose that at an arbitrary point O’ of the
surface, where z = 2/, (2 — 2/)w becomes infinitely small as O tends to O'.
Then w, along with all its derivatives, is finite and continuous at all points
interior to the surface.

Let z — 2’ = pe?’. The hypotheses on the variations of the quantity w
have the following consequences for u and v.

ou Ov
1) — -2 =
) or Oy 0
nnd
ou Ov

throughout T
3) the functions u and v are not discontinuous along a line;

4) for every point O, the quantities pu and pv become infinitely small
with the distance p of O from O’;

5) neither u nor v has discontinuities that can be removed by changing

the value at an isolated point.

As a consequence of the hypotheses 2), 3), 4), for any portion of the
surface 1" we obtain
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the integral being taken over the boundary, from III, Section 9. Further the
integral

(by 1V, Section 9) has the same value along every line from O, to O, and
for fixed O, forms a continuous function U of z,y except for isolated points.
Recalling 5), the partial derivatives satisfy %% = u and %(Z/]' = —v at every
point. By substituting these values for v and v, the hypotheses 1), 3), 4)
become the conditions of the theorem at the end of Section 10. Accordingly
the function U is finite and continuous, along with all its partial derivatives,
at every point of T. Thus the same holds for the complex function w =
U _ U ;

iy and its derivatives with respect to z.

13.

We now investigate what transpires when, retaining the other hypotheses
of Section 12, we suppose that, for a specific point O’ interior to the surface,

(z — 2w = pe*w

does not become infinitely small when O tends to O'. In this case w becomes
infinitely large when O tends to O’. We suppose that, if the quantity w is not
of order of magnitude %, that is, their quotient does not have a finite bound,
then at least the order of the two quantities is in finite ratio. That is, there
is a power of p whose product with w either becomes infinitely small with p,
or remains finite. If y is the exponent of such a power and n is the smallest
integer with n > u, then the quantity (z—2')"w = p"e™”w becomes infinitely
small with p. Now (z — /)" 'w is a function of z (since & ((z — 2/)"'w) is
independent of dz). This function satisfies, in this region of the surface, the
hypotheses of Section 12, and consequently is finite and continuous at the
point . Denote its value O’ by a,_;. Then (2 — 2/)"w — a,_, is a func-
tion that is continuous at O’ and vanishes there, and consequently becomes
infinitely small with p. By Section 12, (z — 2/)" 2w — 2=} is continuous at
the point O’. Continuing this procedure, it is obvious that on subtracting an

expression of the form

a a2 ap—1
z—z’+(z—z’)2+ +(z—z/)"—1’

w becomes a function that remains finite and continuous at O’.
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Accordingly, if we vary the hypotheses of Section 12, by permitting w to
hecome infinitely large as O tends to a point O in the interior of T, then the
order of this infinite quantity, if finite, is necessarily an integer. (A quantity
inversely proportional to the distance from O to O’ is considered to have
order 1.) If this integer is m, then on attaching to it a function containing
2mn arbitrary constants, w becomes a function continuous at O'.

Remark. We consider a function to contain one arbitrary constant, when the
possible determinations of the constant comprise a continuous one-dimensional
domain.

14.

The restrictions on the surface T of Sections 12 and 13 are not essential
[or the validity of the results obtained. Obviously one can surround each
point interior to an arbitrary surface with a piece of the surface which has
the properties assumed there. The only exception is the case where this point
is a branch point of the surface.
To investigate this case, consider the surface T, or an arbitrary piece of
i, containing a branch point O’ of order n — 1, where z = 2/ = 2’ + /i, and
mapped by the function ¢ = (z — 2/)'/™ onto another plane A. That is, we
represent, the value of the function ( = £ 4 ni at the point O as a point ©
of A with rectangular coordinates £, 7, and treat © as the image of O. The
image of the region T obtained in this way is a connected surface spread over
A, without a branch point at the image ©’ of O, as we now show.
To fix ideas, draw a circle of radius R around the point O in the plane
A and draw a diameter parallel to the z-axis, so that z — 2’ is real on this
iameter. The piece of the surface T, around the branch point, cut off by
this circle, is divided on both sides of this diameter into n separate pieces of
semicircular form, provided R is sufficiently small. The surface portions on
the side of the diameter where y — v/’ is positive will be denoted by ay, ..., ay;
those on the opposite side by aj, ..., a;. We suppose further that for negative
values of 2 — 2/, ay,. .., a, are connected respectively to al, ..., al, while for
positive values they are connected respectively to al,a},...,a,_;. Then a
point O, encircling the branch point in the appropriate direction, runs in
sticcession over the surfaces ay, al, as,ab, ..., an,a, and from a;, back to ay;
(his hypothesis is obviously permissible. We introduce polar coordinates on
both planes, writing z — 2/ = pe®, ( = oe¥, and choose as the image of
n pl/ne%i‘

the surface portion a; the value (2 — 2/) Here we suppose
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that 0 < ¢ < . Then 0 < RY™ 0 < 4 < 7/n for all points of a;; its
image in A lies in a sector from ¥ = 0 to ¢ = Z of a circle around ©’ of
radius R'/". Indeed, to each point of @, corresponds a point of this sector,
varying continuously along with it, and vice versa. Thus the image of a;

is a connected surface spread out simply over this sector. Analogously, the

images of a}, as, ..., a;, are respectively sectors from ) = = to ¢ = 27”, from
Y = —27-173 to @ = 37“, ..., from o = Q"T“lﬂ to ¢ = 2m. Here ¢ is successively to
run from 7 to 27, from 27 to 3m,... from (2n — 1)7 to 2n7 for the points of

these surfaces, which is possible in exactly one way.

These sectors follow one another in the same manner as the surfaces a
and a’, in such a way that coincident points correspond to coincident points.
The sectors can thus be joined together to give the connected image of a
portion of T' surrounding O’, and this image is obviously a surface spread
out simply over the plane A.

A variable that has a definite value for each point O likewise has a definite
value for each point ® and conversely, since each O corresponds to only one
O and each O to only one O. If the variable is a function of z, then it is
a function of (. For if % is independent of dz, then %%” is independent of
d(, and conversely. We conclude that the results of Section 12 and 13 are
applicable to all functions w of z at branch points O’, if they are treated as
functions of (z — 2/)!/". This yields the following result:

If a function w of z becomes infinite as O tends to a branch point O’ of
order n — 1, then this infinite quantity is necessarily of the same order as a

power of the distance from O to O’ whose exponent is a multiple of % If this

exponent is —*, then on attaching an expression of the form
a; as m
(z = 2/)l/n + (z — 2/)2/n Tt (z = 2/)ym/n’
where ay,aq,...,a, are arbitrary complex numbers, the function becomes

continuous at O'.
This theorem has the corollary that the function w is continuous at O’ if
(z — 2')Y/™w becomes infinitely small as O tends to O'.

15.

Now consider a function of z with a definite value for each point of an
arbitrary surface T" spread over A, not everywhere constant. If we represent
the value w = u + v at O geometrically as a point @ of the plane B with
rectangular coordinates u, v, we have the following consequence.

24



Riemann, Collected Papers

[. the totality of points ) can be considered as forming a surface S, in
which each point corresponds to one point O in T' that varies continuously
with @.

To prove this, obviously we only need to show that the position of the
point ) always changes along with that of O (and, generally speaking,
changes continuously). This is contained in the following results:

A function w = u + vi of z cannot be constant along a line, unless w is
cverywhere constant.

Proof. If w takes the constant value a + bi along a line, then u — a and

i—)%;a—) = —% vanish not only on this line but everywhere, along with

0?(u—a) N 9?*(u— a)
Ox2 oy?

By Section 11, I, w — a = 0. Since

_ow o
or oy = oy Oz’

we also have v — b = 0 everywhere, contrary to hypothesis.

II. By the hypothesis made in I, two parts of S cannot be connected
logether unless the corresponding parts of 7' are connected together. Con-
versely, whenever a connection occurs in 7" and w is continuous, a corre-
sponding connection holds in S.

Assuming this, the boundary of S corresponds in part to the boundary
of T and in part to the discontinuities. The interior of S, however, excluding
isolated points, is spread over B smoothly. That is, the surface never splits
into superimposed surfaces or folds back on itself.

The first could only happen, since T is connected in the corresponding
[agshion, if 7" splits in this way—contrary to hypothesis. The latter case is
lreated next.

We show firstly, that a point Q" where % is finite, cannot lie in a fold of
the surface S.

To see this, we surround the point O’ corresponding to @, with a piece
of the surface T' of any shape and unspecified size. According to Section 3,
Lhis size can be taken so small that the shape of the corresponding piece
on S differs as little as we wish from that of the piece on T'. Consequently
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its boundary cuts out a portion of B that surrounds . However, this is
impossible if ()’ lies on a fold of the surface S.

By I, ‘fi’”, as a function of z, can only vanish at isolated points. Since w
is continuous at the points of T considered here, d“’ can only become infinite

at the branch points of the surface. This yields the desired result.

III. Consequently, S is a surface obeying the hypotheses that were im-
posed on T in Section 5. In this surface, the variable quantity z has one
definite value for each point (), which varies continuously with the position
of ) in such a way that dij]— is independent of the direction of variation. Ac-
cordingly z, in the sense of the term specified earlier, is a continuous function
of the complex quantity w over the domain represented by S.

From this, we further obtain:

Let O and @' be corresponding interior points of the surfaces T and S,
at which z = 2/, w = w'. If neither of them is a branch point, “’:’z",' tends to
a finite limit as O tends to O, and the image of an infinitely small portion
is similar to that portion. However, if @)’ is a branch point of order n — 1

and O’ is a branch point of order m — 1, then (—w—“—,’ﬁ/—m has a finite limit as

O tends to O'. For the adjacent regions we have a form of mapping, readily
obtained from Section 14.

16.

Theorem Let a and 3 be arbitrary functions of x,y for which the integral

da  AB\® [da P
/ (823 ay) N (8:11 " ax)
taken over the arbitrary surface T" spread over A, is finite. If we vary a by
functions vanishing on the boundary that are continuous, or only discontin-
uous at isolated points, the integral takes a minimum value for one of these
functions. If we exclude discontinuities that can be removed by changing the
function at isolated points, the minimum is obtained for only one function.

Let A be an unspecified function vanishing on the boundary, either con-
tinuous or possessing only discontinuities at isolated points, for which the

integral
DN )\
= — T,
k /((823) +(8y) )d
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taken over the whole surface, is finite. Denote by w an unspecified member
of the set of functions a + A, and finally denote by 2 the integral

0w 98\ fow 9B\’
/ (a:c ay> ' (ay ! a:c)
over the whole surface. The family of functions A forms a closed connected
domain, in that any function passes continuously into any other, while no
limit of the functions is discontinuous along a line unless L simultaneously
becomes infinite (Section 17). For each A, writing w = a + A, the integral
has a finite value, that tends to infinity with L and varies continuously with
the form of A, but can never be less than 0. Consequently €2 has a minimum
value for at least one form of the function w.
To prove the second part of our theorem, denote by u one of the functions
w for which Q attains its minimum value. Let h be an unspecified constant
function, so that u + h\ satisfies the required conditions for the function w.
For w = u + h\, we write the value of € as

ou  93\° ou  9B\?*

G2+ (32 )
ou OB\ O\ [Ou 8B\ OA

”h/[(éz‘a—y) w(a—ym) a—y]‘”“

2 2
+h2/ oA + oA dT = M + 2Nh + Lh?,
or oy

say. This must be at least M for every A (by definition of the minimum),
provided h is sufficiently small. Now it follows that N = 0 for each A.
Otherwise,

dr

dr

9 9 2N

2Nh + Lh* = Lh <1+ Lh)

would be negative if h is opposite in sign to N and of absolute value < %

'The value of € for w = u + A, a form which obviously contains all possible

values of w, is thus M + L. Since L is essentially positive, €2 can attain for
ino form of the function w a smaller value than it attains for w = w.

Now suppose that for another v’ the functions w yield a minimum value

M’ of Q. The same deductions give M’ < M and M < M’, consequently

M = M’. Write u in the form u + )’; then we obtain for M’ the expression

27



[. Foundations for a general theory of functions of a complex variable.

M + L', where L’ denotes the value of L for A = X. The equation M = M’
yields L' = 0. This is only possible if, throughout the surface,

oN oN
— O —

FZR T

Wherever X' is continuous, it is necessarily a constant. Since X vanishes at
the boundary and is not discontinuous along a line, it can only be nonzero
at isolated points. Thus two functions w for which 2 attains a minimum,
differ only at isolated points. If all discontinuities of u that can be removed by
changing its value at isolated points are discarded, the function is completely
determined.

17.

We now need to supply the proof of the fact that A, if L is to remain
finite, cannot tend to a function v discontinuous along a line. That is, if X is
supposed to coincide with = outside a portion of surface 7’ that surrounds
the line of discontinuity, and 7" is taken sufficiently small, then L exceeds an
arbitrary given number C.

We assign s and p their usual meanings with respect to the line of dis-
continuity. For indeterminate s, denote by x the curvature, with a convex
curvature on the side of positive p taken to be positive. Let p; denote the
value of p on the boundary of 7" on the side where p > 0, and p» the value
on the side where p < 0. Denote the corresponding values of v by v, and
v2. Consider any portion of this line with continuous curvature. The part
of T" between the normals at its endpoints, taken only up to the center of
curvature, contributes to L the quantity

fo [0 |(5)'+ (3) 5r)

The smallest value of the expression

[ (5 0-m

for fixed boundary values v, and ~; of A, by known procedures, is

(’Yl - ’Y2)2X
log(1 — xp2) — log(1 — xp1)
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(‘onsequently the above contribution is necessarily

/ (’Yl - 72)2Xd5
>
log(1 — xp2) — log(1 — xp1)

however we choose A in the interior of 7”.

The function v will be continuous for p = 0 if the greatest value of
(11 — 72)?, for m; > p; > 0 and m < py < 0, becomes infinitely small with
m — my. Consequently, for each value of s we can choose a finite quantity m
such that, however small m; — m, is taken, there are values of p; and p, with
my > p1 > 0, my > ps > 0 (the equality signs mutually exclusive) for which

(71— 7)* > m.

Consider an arbitrary form of 7" consistent with the earlier restrictions.
l.et P, and P, be the values of p; and p, for this form, and denote by a the
value of the integral

/ myds
log(1 — x %) — log(1 — xP1)

over the part of the discontinuity line in question. Obviously we can obtain

. 2
/ (M1 — 12)°xds SO
log(1 — xp2) — log(1 — xp1)

hy choosing p; and p, for each value of s so that the inequalities

1—(1—-xP)¥¢ 1— (1 - xP)¥¢
p1 < ( xX ) , P2> ( XXQ)

and

(m~7)?>m

are satisfied. It follows that, however A is defined in the interior of 7", the
contribution to L from the piece of T' in question exceeds C. Thus L itself
exceeds C, as we wished to prove.
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18.

By Section 16, for the function u fixed there and for any function A, we
have N = 0. Here

du oN  [(u OB
G5 E (s El

the integral extends over T. We now draw further consequences from this
equation.

Cut from T a piece T’ surrounding the discontinuities of u, 3, A\. The
contribution to N from the remaining part T” of T is

o*u 82 ou aﬁ
= . dT —
[ (G 5e) - [ (G 3) 2
by Sections 7 and 8 with X = (-—;‘ — —) Aand Y = (g—: + %g) A
By the boundary condition imposed on A, the contribution to

0
[ 2pe
Op 0Os
from the part of the boundary of T”, common with that of T, is 0. So one
can regard N as the combination of

Pu %
— /A dTl’
/ (8:52 oy? )
taken over 7", and

Oou 0B\ OA ou 0f ou 0f
——— | = — d Ads,
/ K(% 3y) gz (3y N &T) 3y] T /(31) 35)
where the mtegrations are respectively taken over T” and its boundary.

Clearly, if 8;2‘ + 2 differs from 0 in some part of T, N would take a
NONZzero value prov1ded that A, as is permissible, takes the value 0 in T ', and

A ( = + 2 7 ) has the same sign throughout T”. However if g %+ ay =0

throughout T, then the contribution to N from T” is 0 for every A. Now the
condition N = 0 yields the result that the contribution from the discontinu-
ities must be 0.
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Now the functions X = g—;‘ — ’25 , Y = g—z + g—g, do not merely, generally
speaking, satisfy

0X N oy

or Oy

or oy
XZ vy ) gs=
/( ap 819) ds =0,

the integral being taken over any part of the boundary of T, at least when
this integral has a definite value.

If T is multiply connected, we reduce T via transverse cuts (by V of
Section 9) to a simply connected surface T*, and we see that the integral

o)
ou 0O
— / (— + —ﬁ> ds
O, 829 88
has the same value for every line from O, to O in the interior of T*. Taking
0, fixed, the integral is a function of z,y that is continuous throughout T*

and has the same variation along either side of a transverse cut. Attaching
to A this function v yields a function v = 8 + v for which

0,

hut also

v ou Ov B ou

dr Oy By oz
We obtain the following

Theorem Suppose that a complex function a+ i of z, y is given throughout
u connected surface T that reduces by transverse cuts to a simply connected

surface T*, and
2 2
/ Oa _OB\" (0o OB
or Oy oy Oz

taken over the whole surface, is finite. Then there is one and only one choice
of function p + vi of z, y with the following properties, that can be adjoined
Lo a + Bi to give a function of z:

drT,

1) p vanishes on the boundary, or at least only differs from 0 in isolated
points; v is given arbitrarily at one point;
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2) wvariations of p in 7" and of v in 7™ are discontinuous only at isolated
points, and the discontinuities are restricted by the finiteness of the integrals

o\’ op\” o\’ o\’
hal g e i dT - el
/K&v) +(ay &) &
over the surface. Further, v has the same variations on either side of the
transverse cuts.

dr

These conditions suffice to determine g and v. For u, from which v
is determined up to an additive constant, always yields a minimum of the
integral €); since if u = a + p, then clearly N = 0 for every A. By Section
16, this property is possessed by only one function.

19.

The principles that underlie the result at the end of the previous section
open the way for the investigation of specific functions of a complex variable,
independently of expressions for the functions.

For orientation in this field, we consider the extent of the conditions
needed to determine such a function in a given domain.

We restrict ourselves initially to a particular case. When the surface
spread over A that represents the domain is simply connected, the function
w = u + t of z can be determined from the following conditions:

1. the values of u on the boundary are given, and vary, with infinitely
small changes of position, by infinitely small quantities of the same order.
Elsewhere, the variation of u is unrestricted?®;

2. the value of v is given arbitrarily at one point;

3. the function is finite and continuous at all points.

The function is determined completely by these conditions. Indeed, this
follows from the theorem in the previous section; we define o + (i, as we
may, so that o takes the given value on the boundary and, throughout the
surface, o + @i varies, with infinitely small changes of position, by infinitely
small quantities of the same order.

5The variations of this value need only be restricted by not being discontinuous along
any part of the boundary. A further restriction is made here simply to avoid unnecessary
complications.
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Thus, generally speaking, u can be given as an arbitrary function of s
on the boundary, and thereby v is determined everywhere. Conversely v
can be chosen arbitrarily at the boundary points, and the value of u fol-
lows. Consequently, the field of play for the choice of the value of w on the
houndary encompasses a one-dimensional manifold for each boundary point,
and the complete determination of these values requires one equation for each
boundary point. All the equations need not necessarily give one specific term
n value, at one specific boundary point. We can also arrange our determining
conditions so that at each point of the boundary there is one equation con-
taining both terms, varying in form continuously with the position of that
point. Alternatively, dividing the boundary into several parts, we associate
to each point of one part, n — 1 specific points, one in each of the other parts,
and set up n equations for these n points, varying in form continuously as
the points vary. However, these conditions, whose totality forms a continuous
manifold, and which are expressed as equations between arbitrary functions,
must be subject to a certain restriction in order to be necessary and sufficient
to determine a single function continuous in the interior of the domain. The
restriction is given by particular conditions (equations containing arbitrary
constants), since the exactitude of our determination clearly does not extend
as far as these.

For the case where the domain of the variable z is represented by a mul-
Liply connected surface, our treatment needs no essential modification. Ap-
plying the theorem of Section 18 gives a function with the above properties,
np to the variation across the transverse cuts. These variations can be made
equal to 0, provided that the boundary conditions contain as many available
constants as there are cuts.

The case where continuity is interrupted along a line can be reduced to
the foregoing by regarding this line as a cut of the surface.

Finally, suppose that we relax continuity at certain isolated points, that
is, by Section 12, allow points where the function becomes infinite. Leaving
unchanged the other hypotheses of the case initially studied, we can give
arbitrarily a function of z, whose subtraction makes the function we must
determine a continuous function. The original function is completely deter-
mined by this. Take the quantity o + §i equal to the given function in a
circle, as small as we wish, with center at the point of discontinuity, and
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elsewhere conforming to the previous specification. The integral

. o\ 2 N
J(8)2)
oxr Oy Oy  Ox
over the interior of the circle is 0, and is finite over the remainder of the sur-
face. One can apply the theorem of the previous section to obtain a function
with the required properties. We deduce with the help of the theorem of
Section 13, that in general, if the function becomes infinite of order n at an
isolated discontinuity, we have 2n constants at our disposal.

We represent geometrically (by Section 15) a function w of a complex
quantity z varying over the interior of a given two-dimensional domain. To
a given surface 7', covering A, corresponds an image S, covering B, which
after excluding isolated points is similar to 7" in its smallest parts. The con-
ditions found previously, necessary and sufficient to determine the function,
are relative to the values on the contour and at the points of discontinuity.
They thus arise (according to Section 15) as conditions on the position of
the boundary of S, giving a single equation to be satisfied for each bound-
ary point. If each of these equations concerns just one boundary point the
conditions are represented geometrically by a family of curves, one of which
gives the location of each boundary point. When two boundary points, one
varying continuously with the other, appear in a pair of these equations, it
follows that between two parts of the contour there is a dependence which
fixes one part once the position of the other part is arbitrarily assigned. In
a similar way one obtains, for other forms of these equations, a geometrical
interpretation, which we shall not pursue here.

20.

The introduction of complex quantities into mathematics has its origin
and immediate purpose in the theory of simple ¢ laws of dependence between
variables arising from algebraic operations. For if the field of these laws of
dependence is extended by permitting the variable quantities to have complex
values, a formerly hidden harmony and regularity emerges. The cases where
this extension has been made are admittedly of limited scope, and reduce

6Here we consider the elementary operations to be addition, subtraction, multiplica-
tion, division, integration and differentiation: and simpler dependence indicates that fewer
elementary operations are required. In fact, all functions used up to now in analysis can
be defined via a finite number of these operations.
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almost entirely to the laws of dependence between two variable quantities
of which one is either an algebraic function of the other”; or, a function
whose derivative is algebraic. Nearly all writings on the subject not only
gave simpler, more effective form to results established without the help of
complex quantities, but opened the way to new results, as witnessed by the
history of the study of algebraic functions, circle or exponential functions,
elliptic and Abelian functions.

We indicate briefly the progress which the present study yields for the
theory of the above functions.

Previous methods of treating these functions always based the definition
of the function on an expression that yields its value for each value of the
argument. Our study shows that, because of the general nature of a function
of a complex variable, a part of the determination through a definition of
this kind yields the rest. Indeed, we reduce this part of the determination
to that which is necessary for complete determination of the function. This
essentially simplifies the discussion. For example, to show the equality of two
expressions for the same function, one formerly needed to transform one into
the other: that is, show that the expressions coincide for every value of the
variable. Now it suffices to prove the expressions coincide in a much more
restricted domain.

A theory of these functions based on the principles introduced here would
fix the form of the function (that is, its value for every value of the argu-
iuent) independently of a means of determining the function via operations
on quantities. We determine the function by appending to the general idea of
a function of a complex variable just those features that are necessary for the
determination. Only at this stage do we pass to the various representations
that the function permits. The common character of a class of functions
formed in a similar way by operations on quantities, is then represented in
the form of boundary conditions and discontinuity conditions imposed on
them. Suppose for example that the domain of a complex variable extends
over the plane in either simple or multiple fashion, that the function has only
isolated points of discontinuity interior to the domain, and only has infinities
of finite order. (For infinite z, the quantity z itself; for finite 2’, the order of
l—_l—z—,, is an infinite quantity of first order.) Then the function is necessarily
algebraic, and conversely each algebraic function fulfills these conditions.

We leave aside for the present the development of this theory which, as

"That is, an algebraic equation holds that connects the two quantities.
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observed above, will shed light on the simple laws of dependence arising from
operations on quantities, since we exclude for the present the discussion of
expressions for a function.

On the same grounds we do not consider here the utility of our results as
the basis of a general theory of the laws of dependence. For this, one would
need to show that the concept of a function of a complex variable, taken
as fundamental here, coincides fully with that of a dependence® that can be
expressed in terms of operations on quantities.

21.

In order to clarify our general results, it is useful to give an example of
their application.

The application mentioned in the previous section, while its discussion
attains the immediate objective, nevertheless is somewhat special. When
dependence is regulated by a finite number of operations of elementary type,
the function contains only a finite number of parameters. As for the form
of a system of mutually independent boundary conditions and discontinuity
conditions, sufficient to determine the function, this implies that they cannot
include arbitrary conditions at each point of a line. For our present objective
it is more appropriate to take an example not of this type, but rather an
example where the function of a complex variable depends on an arbitrary
function.

For a clear and convenient framework, we present this example in the
geometric form used at the end of Section 19. It then appears as a study
of the possibility of forming a connected image of a given surface, similar to
the surface in the smallest parts, whose form is specified. That is, all points
of the boundary should be located on particular curve; moreover, recalling
Section 5, the sense of the boundary, along with the branch points, are given.
We restrict ourselves to the solution of this problem in the case where every
point of one surface corresponds to only one point of the other, and the
surfaces are simply connected. For this case, the solution is contained in the
following theorem.

Two given simply connected plane surfaces can always be related in such

8The dependence expressed here denotes dependence via a finite or infinite number
of the four simplest operations, addition, subtraction, multiplication and division. The
expression ‘operations on quantities’ (by contrast to ‘operations on numbers’) indicates
operations in which the rationality of the quantities does not play a role.
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i way that each point of one surface corresponds to a point of the other,
varying continuously with that point, with the corresponding siallest parts
similar. One interior point, and one boundary point, can be assigned arbi-
trary corresponding points; however, this determines the correspondence for
nll points.

When two surfaces 7" and R both correspond to a third surface S in such
n way that similarity holds between corresponding smallest parts, this yields
n correspondence between T and R that clearly has the same property. The
problem of producing a correspondence between two arbitrary surfaces with
similarity between the smallest corresponding parts now reduces to mapping
atl arbitrary surface onto a specific surface, with similarity in the smallest
parts. To prove our result, draw a circle K in the plane B with radius 1 and
center w = 0. We need only show that an arbitrary simply connected surface
I' spread over A can be mapped in a connected way throughout the circle
I\, with similarity of the smallest parts; and this in a unique way once the
center corresponds to an arbitrary given interior point O,, while an arbitrary
given point of the circumference corresponds to an arbitrary given boundary
point O’ of the surface T

We denote the particular values of z, @ for the points O,, O" by corre-
sponding indices, and describe in 71" an arbitrary circle © with midpoint O,
hat does not reach the boundary of 1" and contains no branch point. We
introduce polar coordinates: let z — zy = re'?, then log(z — 2) = logr + ¢i.
‘I'he real part is continuous in the entire circle except at the point O,, where
it becomes infinite. Among the possible values of ¢, we take the smallest
positive values, so that along the radius where z — zj is real and positive, the
imaginary part is 0 on one side, and 27 on the other side, of this radius, while
varying continuously elsewhere. Clearly we can replace this radius by an ar-
bitrary line £ from the center to the boundary in such a way that log(z — 2p)
has a jump of 27i where O crosses this line from the negative side (that is,
according to Section 8, the side of negative p) to the positive side; otherwise,
log(z — 20) varies continuously in the whole circle 6.

We now take the complex function o + 5i of z,y equal to log(z — 2p) in
Lhe circle, while, outside the circle, having extended ¢ in any fashion up to
the boundary 7', the function is specified as follows:

1) on the circumference of O, the function is log(z — 2¢); on the boundary
ol T, it is purely imaginary.

2) on crossing from the negative side of £ to the positive side the function
varies by —2mi, while otherwise it varies with an infinitely small change of
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location by an infinitely small quantity of the same order;
this is always possible. The integral

oo O8\° [(da OB\’
/((55“87) *(@*%))‘”’

taken over ©, has the value 0; and over the remainder of the surface, a finite
value. Consequently, o + i can be transformed, by adjoining a continuous
function, defined up to an imaginary constant, that has imaginary values on
the boundary, into a function ¢ = m-+ni of z. The real part m of this function
will be 0 on the boundary, —oc at O,, and vary continuously throughout the
remainder of T'. For each value of a of m between —oo and 0, the surface T
is divided by a line, on which m = a, into a part where m < a, containing
Oy in its interior, and parts where m > a whose boundary is made up of the
boundary of T" and of lines where m = a. Either the connectivity of T, which
is —1, is unchanged by this decomposition, or 7T is divided into two pieces
with connectivity 0 and —1, or into more than two pieces. However the last
case is impossible, since in at least one of these pieces m is finite, continuous,
and constant on all parts of the boundary. It is then either constant in a
portion of the surface; or has a maximum or minimum value at a single point
or along a line, which contradicts Section 11, III.

Thus the points where m takes a constant value form simple closed lines.
One of these lines bounds a region that surrounds Oy, and m must decrease
towards the interior: consequently, with a positive circuit of the boundary
(where by Section 8, s increases) the quantity n, while continuous, is increas-
ing. Now the function has a jump® of —27 only with a crossing from the
negative to the positive side of the line ¢, and so it must take each value
between 0 and 27, excluding multiples of 27, exactly once. Write e' = w,
then €™ and n are polar coordinates of ) with respect to the center of the
circle K. The totality of points () clearly forms a surface S spread out simply
over the whole of K; the point ), falls at the center of the circle. However,
the point )’ can be placed at an arbitrary given point of the circumference
by means of the constant still at our disposal in n. This completes the proof.

9The line ¢ joins one point interior to this piece to another; and so, if it cuts the
boundary several times, it must pass from inside to outside one more time than from
outside to inside. Thus the sum of the jumps of n throughout a positive circuit is always
—27.
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In the case where the point O, is a branch point of order n — 1, we reach
our goal by replacing log(z — z) by % log(z — zp); the reasoning is analogous,
and the treatment is easily completed with the help of Section 14.

22,

The complete extension of the investigation in the previous section to
the general case, where a point of one surface corresponds to several points
on the other, and simple connectedness is not assumed for the surfaces, is left
aside here. Above all this is because, from the geometrical point of view, our
entire study would need to be put in a more general form. Our restriction to
plane surfaces, smooth except for isolated points, is not essential: rather, the
problem of mapping one arbitrary given surface onto another with similarity
in the smallest parts, can be treated in a wholly analogous way. We content
ourselves with a reference to two of Gauss’s works; that cited in Section 3,
and Disquisitiones generales circa superficies curvas, §13.
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/ da 8P 2+ da 0B 2
or Oy or Oy
taken over the surface, is finite. The function becomes, in one and only one way, a
function of z by adding a function p + vi restricted by: 1) 1 = 0 on the boundary, v

is given at one point; 2) the variations of g in T, v in T* are discontinuous only at
isolated points and only to the extent that the integrals
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II.

On the laws of distribution of electric charge in a ponderable
body that is neither a perfect conductor nor insulator, but may
be viewed as resisting the holding of electric charge with finite

power.

(Official report of the 81st assembly of German scientific researchers and
physicians, Géttingen, September 1854.)

The formation of residual charge in the Leyden jar and the formation of
static electricity in other apparatus has been examined using the ingenious
instruments for static electricity, mentioned by Prof. Kohlrausch in the pre-
vious session of this section. The phenomenon is essentially the following:
If we let a Leyden jar stand for a long time while charged, discharge it and
than let it stand isolated for a while, then a noticeable charge reappears.
This leads to the assumption that in the first discharge only a part of the
distinct types of electricity reunites; a part, however, remains in the jar. The
lirst part is called the disposable charge, the second the residual charge. The
precision of the measurements made by Prof. Kohlrausch, of the loss of the
disposable charge and the return of the residual charge, allows me to test a
law which was believed on other grounds, which fills a gap in the previous
theory of static electricity.

As is well known, the mathematical investigations of static electricity are
in reference to its distribution for complete and totally insulated conductors.
We consider a ponderable body as either a perfect conductor or insulator. As
n consequence, this theory says that when in equilibrium, the aggregate of
the electric charge accumulates only at the boundary surface of the conduc-
tors and insulators. Admittedly, however, this is a mere fiction. In nature
there are neither bodies which cannot be penetrated by electric charge, nor
hodies for which the total electric charge collects on a a mathematical sur-
face. Rather we should assume that a ponderable body resists the absorption
or holding of the electric charge with finite strength. We should assume the
hypothesis, whose consequences seem to agree with reality, that it does not
resist becoming electrified or taking an electric charge, but resists being elec-
trified or holding electric charge. The law of this resistance is, depending
on the dual or unitary conception, the following. By the dual conception,
under which which the electric charge is the excess of the positive electricity
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II. On the laws of distribution of electric charge etc.

over the negative, at each point of the ponderable body, this is caused by
the intensity of the density of the electric charge trying to decrease in pro-
portion to the density of the excess, with the same sign as the excess (or,
trying to increase with a negative excess). From the unitary point of view,
by which the electric charge is the excess of electricity in the body over what
is natural for it, we must assume this is caused at each point of the body by
the intensity of the electric density trying to decrease in proportion to the
density of the excess (or increase, in the case of a negative excess).

Besides these reasons for flow, if no noticeable thermal or magnetic or
inductive effects or influences take place and if the ponderable bodies rest
against one another, the electromotive force is brought into the calculation in
conformity with Coulomb’s Law. Under the same circumstances we can as-
sume the independence of the consequential current from the current caused
by the proportionality between the electromotive force and the current in-
tensity.

In order to express these rules for flow in a formula, let z,y, 2 be rect-
angular coordinates, and at (z,y,2) when the time is ¢, let the density of
the electric charge be p. Let u be the 4wth part of the potential of the to-
tal charge using Gauss’s definition (by which the potential at a particular
point is equal to the integral over the quantity of electric charge at each
point divided by its distance from the point). Then the electromotive force
attributable to Coulomb’s Law, when decomposed into the direction of the
three axes, is proportional to

ou ou ou
or’ oy’ 0z
That arising from the reaction of the ponderable body is proportional to

_9e 0o 0o
or’ oy’ 0z

Hence the components of the electromotive force can be set equal to

ou  ,00 ou  _,0p Ou 00
Ox ﬂ@x’ Ay ﬁ@y’ 0z ﬁ@z’

where 32 depends only on the nature of the ponderable body. These com-
ponents are now equal to quantities proportional to the components of the
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current intensity, a&, an, a( say. Here one designates by &, 1, ( the compo-
nents of the current intensity and by « a constant that depends on the nature
of the ponderable body.
We combine this with the phoronomic equation

0 o on 0

_Q + _é + _} + _C = (],

ot Ox Oy 0z
which is obtained by expressing in two ways the incoming electricity in the
time element dt into the space element drdydz, and the equation

0%y N 0%u N O%*u
or?  oy? 022

= -0

which follows from the concept of potential. We obtain

a%+g—ﬂ2{7+——2+——} =
after first multiplying by a and then replacing &, 7, ( by their values.

This gives a partial differential equation for u, which is of the first degree
in ¢ and of the fourth degree with respect to the space coordinates. In
order to determine u completely, from a particular time onwards, inside the
ponderable body, we need, besides this equation, one condition for each point
of the ponderable body at the starting time, and for the following times two
conditions at each point on the surface.

I will now compare the implications of this law with experience in some
particular cases.

For equilibrium (in a system of insulated conductors) we have

Ou 2 0o ou 2 00 Ou 2 00
ge e 5y T Y
or
u + (%o = Const.,
or, since

o o%u N 0%u N o%u
°= o2 oy? = 022’
0’y 0’u  O%u
— 2 fraeed 3
u—p (8:32 + 397 + (9z2) Const.
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For current equilibrium or the steady state distribution (in the closed loops
in a constant circuit) we have

do
E—O
o 0° O? 0°
0 0 0
Q*ﬁ2(@+a—y2+@> = 0.

Now if the length 3 is very small compared to the dimensions of the
ponderable body, then u—Const., in the first case, and p, in the second,
decreases very rapidly off the surface and is very small in the interior, and
these quantities indeed change with respect to distance p from the surface
approximately like e™?/#. This must be the case for a metallic conductor. If
we set § = 0, then the known formula for a perfect conductor is obtained.

When applying this rule to the formation of the residual change in the
Leyden jar, I must assume that its dimensions can be considered infinitely
large compared to the distance of the condensor plates, since information
concerning the dimensions of the apparatus is lacking. 1 will not bore this
distinguished audience by carrying out the calculation, but content myself
with stating its result.

The measurements of Professor Kohlrausch show that the disposable
charge is closely represented by a parabola, when considered as a function
of time. Indeed, the parameter of the parabola, which matches the charge
curve most closely, slowly decreases, so that if we denote the initial charge by
Ly and the charge at time ¢ by L;, then QQ\% is a quantity which gradually
decreases with increasing t.

The same results from the calculation, if it was assumed that both «
and 3? are very large for glass, as was to be expected here, and may be
regarded as infinitely large, while their quotient remains finite. I have not
made a close comparison of the calculation with experimental data, since
I lack information about the dimensions of the apparatus and, in general,
the methods used, in order to determine the necessary corrections in the
calculations on account of the differences from the hypotheses. In particular,
the determination of the electrical constant for glass is to be desired. But
I regard the law derived here for the distribution of electric charge as being
fully confirmed by the measurements of Professor Kohlrausch.

I will speak briefly about the application of this rule in a different setting.

The propagation of an electric current in a metallic conductor is well
known, as is its consequence, the steady state current caused by the static
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clectricity arising from a constant, or slowly changing, electromotive force.
This process, because of its extremely short duration, and the thermal and
magnetic effects, is accessible to experimental research only in its effects.
The only experimental results available are the measurements of the speed
of propagation in telegraph wires, and Ohm’s laws of current equilibrium. A
more careful analysis of Ohm’s laws lead us to the assumptions made here,
and, indeed, I was led to them in that way.

Ohm determined the current distribution for current equilibrium by the
following two conditions.

1) In order to actually obtain the current intensity as proportional to
the electromotive force, we must introduce forces other than the external
clectromotive force that are derivatives of a function of position, the voltage.

2) For current equilibrium, at each point of the ponderable body, the
same amount of electricity flows in as out.

Ohm believed that the voltage, that function of position of which the
inner electromotive forces are the derivatives, was dependent on the static
clectric charge, in proportion to its density. That assumption, in fact, turns
out to explain both conditions. However, Professors Weber! and Kirchoff?
have noted, almost simultaneously, that the electricity would have to be in
cquilibrium when it filled the ponderable body with uniform density, which
is indeed the experience under equilibrium after the electricity is distributed
on the surface. The voltage must be a function that is constant in the entire
conductor when in equilibrium, and thus rather proportional to the potential
of the electric charge. These internal electromotive forces are identical with
those that follow from Coulomb’s Law.

These views about voltage were also assumed by most investigators. How-
cver, the cause of the second condition for current equilibrium, that each part
of a ponderable body has a constant electrical charge, has not been investi-
gated.

By the dual concept the quantity of negative electricity must remain
constant, as well as the positive. [t seems that we can explain that no
noticeable excess of one of the electricities forms, by Coulomb’s Law, from
the attraction of the opposite electricities (at least so long as we do not enter
into the proportionalities more precisely). We must still assume a reason that
the neutral electricity remains constant at each part of the body, and thus

! Abhandlungen d. k. sichs. Ges. d. W., 1852, 1, p. 293.
2 Poggendorff’s Annalen, vol. 79, p. 506.
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assume an influence of the ponderable on it. On the suggestion of Professor
Weber, 1 have tried, for several years, to make this assumption the object of
calculations, without obtaining satisfactory results.

By the unitary concept only one mechanism is needed, which tries to keep
the quantity of electricity contained in a ponderable body constant. We are
led immediately to the assumption above, that every ponderable body tries
to possess electricity of a certain density, and resists being filled by either a
larger or a smaller quantity. This law of resistance can be assumed to take
the form that has been confirmed by experiment for glass.

These considerations lead to the acceptance of Franklin’s original view
about electrical phenomena. In order to lay a foundation for the deeper
understanding of these phenomena, either by themselves or with other phe-
nomena, and as a basis for further development and modification, we must
subject them to the demands and hints of experiment.

I hope that the distinguished circle of scientists, before whom I have the
honor of developing this topic, will find it worthwhile to subject it to closer
scrutiny.
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ITI.
On the theory of Nobili’s color rings.

(Poggendorff’s Annalen der Physik und Chemie, vol. 95, March 28, 1855.)

Nobili’s color rings represent a valuable tool for the experimental study
of the laws of current flow in a body made conducting by decomposition.
The way to produce these rings is the following. We pour a solution of lead
oxide in concentrated potassium hydroxide over a plate of platinum, gold
plated silver, or German silver and let the current from a strong battery
flow, through the tip of a fine platinum wire melted in a glass tube, into the
fluid layer and exit through the plate. The anion, lead peroxide according
to Beetz, is deposited on the metal plate in a delicate transparent layer
which has varying thickness depending on the distance from the cathode, so
that the plate after removal of the fluid shows Newton’s color rings. The
relative thickness of the layer at different distances can be determined from
the color-rings. Using Faraday’s Law (by which the amount deposited must
he everywhere proportional to the amount of electricity that passed through),
we derive the distribution of the current leaving the fluid.

The first attempt to determine the current flow by calculation and com-
pare the result obtained with experiment was made by E. Becquerel. He
nssumed that the length and width of the liquid layer as compared to its
thickness could be considered as infinitely large, that the current entered
al a point on its upper surface, and that it spread out by Ohm’s law in
that surface. He now believed that using these assumptions the flow curves
could be considered as straight lines (with insignificant error). From that
nssumption he derived the law that the thickness of the deposited layer is
inversely proportional to the distance from the cathode. He corroborated the
law experimentally.

On the other hand, Mr. Du-Bois-Reymond has shown in a talk to the
Berlin Physical Society, that the assumption of straight flow lines resulted in
(he thickness of the deposited substance at the endpoint being proportional
to the inverse cube of the distance. This caused Mr. Beetz to conduct a
scries of confirming experiments, described in vol. 71, p. 71 of Poggendorff’s
Annalen, that inspire much confidence.

Precise calculation meanwhile shows that the hypothesis of straight lines
[or current flow is inadmissible and leads to incorrect results. Indeed, the flow
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lines, at least for large distances to the exit point (since they lie between two
very close parallel lines and have at most one inflection poiut) in the middle
part of their path, bend hardly at all. By no means, however, can we conclude
that there is not a significant error by replacing them by straight lines running
from the cathode to the exit point. I will first develop by exact calculation
the consequences ensuing from the assumptions of Mr. E. Becquerel and Mr.
Du-Bois-Reymond, and finally come back to the experiments of Mr. Beetz.

I assume that the cathode is in the fluid layer, which is bounded by two
horizontal planes, and is restricted to a point. For a point of the fluid layer,
denote its horizontal distance from the cathode by r, the height over the
lower boundary surface by z. We denote the elevation of its voltage from
voltage at the upper side of this boundary layer by u. Furthermore, let S
be the strength of the current, w the resistivity of the fluid, 2 = « at the
cathode, and z = [ at the upper surface. Now u must be determined as a
function of r and 2. The flow intensity at the point (r,0), which by Faraday’s
law must be proportional to the thickness that we seek of the layer deposited
there, is then equal to the value of i}— g—’z‘ at this point.

If it is initially assumed that the expanse of the fluid layer as compared
to its thickness may be considered as infinitely large, then the conditions for
determining u are:

(1) for —oco<r<oo, 0<z<f,

Pu  10u O*u

i tan =0
(2) for —oo<r<o00, 2=0, u = 0;
(3) for —oo<r<oo, z=0, a—uzo;
0z
(4) for r =400, 0<z<pf, wuisfinite;
(5) for =0, z=a,
wS 1
u=—-—
dr /1?2 + (2 — a)?
wS 1 +
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a continuous function of r and z, depending on whether the cathode lies
in the interior or on the upper surface.

These conditions are satisfied by

Sw m 1 — !
u=r 2 (D (\/r2+(z+2mﬁ—a)2 ¢r2+<z+2mﬂ+a)2>

or, if we take S = 4 for simplicity:

00 " 1 1
U= Z (=1) (\/T2+(z+2mﬁ——0z)2_ \/7“2+(Z+2m5+a)2).

m=-—0o0

If we set u = a; sin % + ao sin 2“ + a3 sin 3”; + ---, then for even n the
coefficient a,, is 0, and for odd n,

28 Tt —
ﬂanz/o sinn% Z

1y ( dt - dt )
V2t ({t+2mB—a)?  \/r2+ (t+2mB +a)?
> .o dt
:/ (smn (t-l—(l) —Slnn—2—ﬂ—(t—a)> ﬁ
= 2811171 5 / Tr_tL
B "B VEe

o g2ty
o VIt

In the last integral we can also write 2 fsm instead of [ _. If we substitute
I for the variable tri, we obtain

= 2s1nn

dsinn gza [ g a "y

16} 1 \/t2—1,

a, =

thus

4smn Lo [ e Tty

& -
u= smn ,
Z ﬁ 1 ,/t2_1
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summed over all positive odd values of n.

Assume the fluid is bounded by r = ¢ and indeed, for instance, by a
nonconductor. Then we must have g;‘ = 0 when r = ¢. Hence a function u”,
satisfying conditions (1)-—(4) below, will be added to the function u obtained

above, which we now write as /.

(1) for —c<r<e, 0<z<p,

82UH 1 au// 82u1/

a7 i T Y
(2) for —c<r<e 2=0, u’ = 0;
(3) for —c<r<e 2z=40, aaLzll:O;
(4) for r=+c, 0<z<p, %:i: %’f,

and u” is continuous everywhere.
As a consequence of conditions (1) through (3), it must be possible to
represent u” in the form

by sin 2—;-z+b3sin32ﬂz+b5sm5%z+

and indeed it follows from (1) that b, satisfies the condition

d*b, 1db, n’n?
TR L —)
dr?2  r dr 432

A particular solution of this equation is, as already known, fl #

Another is obtained if the same integral is taken from —1 to 1. Thus the
general solution is
/ n2ﬁ T‘tdt 1 e—n%’l‘tdt
-1 V1 —1t?

where ¢, and 7, are constants. If we denote

0 o—2qt It 1 e 24t Jt
b , ——= b ;
| = w0 [ == o)
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then

b, =cnf (rz —B7> + Yn (TLEF>'

The expansion by increasing powers of g gives

Z q — log q),

00
qu

=0

Hence f(q) is infinite for ¢ = 0 and, since u” remains continuous for r = 0,
¢, must be 0. From (4) we obtain

4sinn%af’ (nm )
Yn = — ; -
B (nzgc)

llence

. 4 T T f’(nfﬁc)
= Z(Slﬂﬂ—Z)BSIIln% f(nﬁr>—gb(nﬁr>m ,

where the sum is over the positive odd values of n.
We may use the half -convergent series

P o (13- (2m —1))?
- \/‘m<4q+1 ml(le)m ,
- (2m —1))?
\/7m<4q+1 !(16(])"‘

lo calculate f(q) and ¢(q) for large values of ¢, which only gives the value up
Lo a fraction of the order of e™%4. If this is not sufficiently accurate, then it is
probably most expedient to apply the expansion by increasing powers of q.
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Hence for sufficiently large values of 5 neglecting quantities of the order

. —3xr .
of magnitude e “25 | we obtain

12 4sin O = (1-3-(2m —1))? BA\"
u=sings 52[3\/:{6 3 ml <—47rr>
(1-3- 2m—1)) B\" xr—20
-3 (i)

(1-3--~(2m—1))2(2m+1) gA\"
Z ml(2m — 1) (_47rc>

(1-3---2m—-1))*2m+1) [ B \"
Z m!(2m — 1) (4#0)

and the thickness of the layer is proportional to (%)o’ or proportional to

e ”Z (om — 1) (—f >’"

_?—”Z Qm_l (47r7")
S
Z if@g?ﬁf”‘“ (m)

This result also holds in general if instead of the cathode being a point, we
assume it is an arbitrary surface of revolution. Then for values of 7 between
¢ and those values up to which conditions (1) to (3) remain valid, u can be
represented by a series of the form

f'(n 58

An exception would occur only if K, were 0.

The special hypothesis made by Mr. E. Becquerel and essentially retained
by Mr. Du-Bois-Reymond is that the cathode is a point of the upper surface,
thus @ = 3. In this case, according to the calculation, the thickness of the
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layer for large values of Z is inversely proportional neither to the distance
lrom the cathode (according to Mr. Becquerel), nor its cube (according
to Mr. Du-Bois-Reymond). Rather, the thickness diminishes with growing

alog(ﬁ—“)

/v, as a power with the exponent 7/, such that ——;&—Q approaches a
fixed limit —7 /2, to any degree of accuracy. On the other hand the law of
Ihi-Bois-Reymond is not only approximately true for large values of r/a, but
in strictly true if 4 = oo, since then

[oe) . 1 1

m=-—0o0

reduces to ‘
1 1
V2 +(z —a) 2+ (z +«)?

au , 2
™ i reduces to (7"2—+02_)-3/_2.

lHowever the assumption from which the result is derived, namely, that the

llow lines may be considered as straight, is by no means confirmed. The
equation for the flow lines is

ou ou
/(TEdT-TEdZ) = v = const.

Indeed, the constant multiplied by 27 /w, if one takes the integral so that it
vanishes for r = 0, is equal to the part of the flow within a surface of rotation

nnd consequently

v = const.

Mo in our case the flow lines are the lines obtained from the equation

z2 4+« Z—
=2 = const.

\/r2 (z + a)? \/r2 (z —a)?

T'hese lines vary considerably from a straight line for large values of the
vonstant. Mr. Du-Bois-Reymond, indeed, made the assumption that the
enthode is on the upper surface, but his later conclusions were not essen-
tinlly dependent on this assumption. This suggests the conjecture that the
experiments of Mr. Beetz, which yielded results not too far from the law of
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the cube, would not depend on the demand of Mr. Du-Bois-Reymond that
the cathode is on the upper surface of the fluid. Rather, Mr. Beetz, for

greater convenience, used more fluid, so that in the series for (%)0,

> m 2mfB + « B 2mf — «
Z(_l) ((,,.2 + 2mB+ )22 (r2+ (2mfB — a)2)3/2> )

m=0

the later terms, or indeed their sum, can be neglected as compared to the
first. In this case the elegant experiments of Mr. Beetz could actually be
viewed as a proof that the current flow almost follows from the assumed laws.
However, should this conjecture be false, then from Mr. Beetz’s experiments
we would draw the conclusion that still other conditions must be considered
when calculating the current flow, whose determination would require a new
experimental investigation.
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IV.

Contributions to the theory of the functions represented by the
Gauss series F(a, 3,7, x).

(Abhandlungen der Koniglichen Gesellschaft der Wissenschaften zu
Gottingen, VII, 1857.)

The Gauss series F(a, 3,7, x), as a function of the fourth component z,
represents this function only when the modulus of x does not exceed unity. In
order to study this function in its whole domain, with unrestricted variability
of x, two methods have been presented in previous works. One can either
proceed from a linear differential equation which it satisfies, or from the rep-
resentation of the function as a definite integral. Each of these methods has
its own advantages. However, up to now, in the comprehensive treatment of
Kummer in Crelle’s Journal, Vol. XV, and in the yet unpublished researches
of Gauss!, only the first method is used. The reason for this may well be that
calculation with definite integrals between complex limits was insufficiently
developed, or could not be assumed familiar to a wide readership.

In the present work I have treated these transcendental functions by a
new method, which essentially applies to any function that satisfies a linear
differential equation with algebraic coefficients. The method yields results
almost directly from the definition, that were formerly obtained only after
somewhat troublesome calculations. This has been done in the part of the
work presented here, mainly in order to give a summary of the possible repre-
sentations of the functions, in view of their numerous applications in physics
and astronomy. It is necessary to make some general preliminary remarks on
the treatment of a function whose argument varies without restriction.

For ease of visualization, consider the value of an independent variable
x =y + zi as a point of an infinite plane with rectangular coordinates y, z.
Suppose the function w is given in one part of the plane. By an easily proved
theorem, one can extend the function continuously outside this domain, so
that it satisfies the equation %—‘;’ = i%—‘:, in only one way. Evidently this
extension should not take place merely along lines where a partial differential
equation could not apply, but must be made along strips of finite width.

For ‘multivalued’ functions like those studied here, in other words, func-
tions that can take different values for the same value of z, according to the

1Gauss, Collected Works vol. III, 1886, p.207. W.
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way in which the extension is carried out, there are certain points of the
xz-plane around which the function extends into another. For example, a is
such a point in the case of /2 — a, log(z — a), (z — a)#, where y is not an
integer.

Consider an arbitrary line drawn from the point a. The value of the
function in a neighborhood of a can be chosen so that it is continuous outside
the line; however, the function takes different values on opposite sides of the
line. Thus the extension of the function across the line yields a function
different from the existing one.

For simplicity, the different extensions of a single function defined in the
same part of the z-plane will be called branches of this function. A point z
around which one branch of the function extends into another will be called
a branch point. At a value where no branching occurs, the function will be
called single-valued or monodromic.

1.
I denote by
a b ¢
Pia B v 2
a/ /6/ ,y/

a function of z satisfying the following conditions:

1) It is finite and single-valued for all z except a, b, c.
2) Any three branches P’, P”, P"” of the function are connected by a linear
homogeneous equation with constant coeflicients:

CIPI + CI/P” + c///P/// — O
3) The function can be written in the forms
caP@ 4 ¢ P csPO § ¢y PO, c. PO 4 ¢, P

with constants c,, ¢a/, ..., cy. Here

/

PO (z —a)™® P (g —a)™™

remains single valued, and does not become zero or infinite, at x = a; likewise
for PB)(z—b)8 PB)(x—b)~" at 2 = b, and PO (z—c)™7, PO (z—c)™ at
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& = c¢. For the six numbers «, ¢, ..., ', suppose that none of the differences
w—ao, 8=, v—+"is an integer, and that

a+d +8+8 +v++ =1

We leave undecided for now the question of how diverse are the functions
that satisfy these conditions. The answer will emerge in the course of our
investigation (Section 4). For convenience, I refer to = as the variable; a,b, ¢
as the first, second and third branch points; and o, o'; 3, 3’; v, ' as the first,
second and third exponent pairs of the P-function.

2.

There are some immediate consequences of the definition.
In the function

P

/ /

~

e o

T o
2 0O
8

L
2

the three columns can be permuted arbitrarily, and a, o’ can be interchanged,
as can 3, and ~,~'. Further,

a b ¢ a b
Pla [ ~v zp=Pla (B v o
a/ /6/ ,yl a/ /B/ ,7/

Here x’ is a rational expression of first degree in x that takes the values
a' b, c for x = a,b,c.
The function

0 oo 1
Pea [ v zo,
a/ / ,‘)//
o which any P-function with the same «, ¢/, ..., can be reduced, will be

denoted briefly by
a By
P(a’ B~ a:)

In such a function each pair «a,o’; 3,0’; =, can be interchanged, and
the three pairs can be permuted arbitrarily, provided we substitute for x a
rational expression of first degree that takes the values 0, 1, oo for the values
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of x corresponding to the first, second and third exponent pairs respectively.
In this way we express the function

P(% b ?z&
o 3y

via P-functions with the variables z,1 — z, %, 1— %,
exponents in a different order.
From the definition, we also have

x

=, Ti?’ and the same

a b c —a\? a b c
Pla [ v «x ( b) =Pla+dé B-0 v zp,
o § o T o +6 §=6 A

~
<

and consequently

S(1 _ e a B v - a+d B—-0—€ v+e
z°(1 — x) P(a - I)—P(a,+5 B ’y'—}—ex .

By this transformation, two exponents from different pairs can take arbitrary
given values. Since a+a'+ 3+ ' +v++" = 1, one can introduce any set of
values for which the differences o — o, 8 — 3, v — ' are the same as before.
Consequently I will write later, for convenience,

P(Q—CX’,/B—/B,”Y—-’)/,{IZ)

for all the functions that can be given the form

zé(l—z)EP(s, g, :yy,z)

3.

Before all else, it is now necessary to study the behavior of the function
somewhat more closely. To this end, consider a closed line ¢ passing through
the branch points of the function, that divides the complex numbers into
two regions. In each region, a given branch of the function is continuous
and distinct from the other branches. Along the different portions of the
boundary, different relations hold between the branches belonging to the
two domains. To represent these conveniently, denote the linear expression
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pt + qu, rt + su, formed from ¢, u via the system of coeflicients S = (f Z) ,

by

(S)(t,w).
By analogy with Gauss’s proposed name ‘positive lateral unit’ for +i, the
positive side of a line with given direction denotes the side that lies in relation
to the line as +i lies with respect to 1 (the left side, in the usual representation
of the complex numbers). Thus z makes a positive circuit around the branch
point a when it travels around a contour that encloses a region containing
a and no other branch point, in the positive direction with respect to the
direction from inside to outside the region.

Suppose now that the line ¢ passes through ¢, b,a in that order. In the
region on the positive side of ¢, let P, P” be two branches of the function,
not in constant ratio. For another branch P’ the coefficient ¢” in the
hypothesized relation

C/P/ + C//P// + C///P/// — O
cannot vanish. Hence P is a linear combination of P’, P” with constant
coefficients. Now suppose that P’, P” pass into (A)(P', P"), (B)(P', P"),
(C)(P', P") when z makes a positive circuit around a, b, ¢ respectively. Then
the periodicity of the function is fully determined by the coefficients of
(4),(B), (C). |

There are, however, further relations between these coefficients. Let  run
along the negative side of the line £. The functions P’, P” must recover their
original values, since the path describes in a negative sense the entire bound-
ary of a region, inside which the functions are single valued. This amounts to
moving x from one of the values ¢, b, a to the next along the positive side, mak-
ing each time a positive circuit around this value. In this way (P’, P”) passes
successively into (C)(P', P"), (C)(B)(P', P"), (C)(B)(A)(P',P"). Conse-
(uently

10
() B -y 1)
This equation gives four conditions to be satisfied by the twelve coefficients

of A, B,C.
For the discussion of the above conditions I restrict myself, to fix ideas,

{0 the function
a B v
P (a, R :v);
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and so to the case a = 0, b = oo, ¢ = 1. This does not essentially re-
strict the generality of the result. For the line ¢ through 1, oo, 0, take the
real axis. This must run from —oco to +oo in order to pass successively
through ¢, b,a. Within the region on the positive side of this line, which
comprises the complex numbers with positive imaginary parts, the compo-
nents P2, P> PP PP PY PY of P, characterized above, are single valued.
These components are determined up to constant factors depending on the
choice of ¢4, cy,...,cy, once P is given. The functions P>, P® become
Paee?m po’ea’2mi on g positive circuit of z around 0. Likewise PP, P% be-
come PBef2mi phef2m gand PY, PY become PYe2™ PY Y2 on a positive
circuit of z around oo and 1 respectively. Denote by P’ the value taken by
P after a positive circuit around 0. If P = ¢, P* + ¢ P, then

P/ =c ea?m’Pa +e /ea’QwiPa’
= Cq o .

This pair of expressions has nonzero determinant, since by hypothesis, & — o’
is not an integer. Hence P, P® can be expressed as a linear combination
with constant coefficients of P, P’; and thus as a linear combination of P?,
PP or P7,PY. Now let
P*=agP’ + ayP? = a,P" + a,P7,
o _  pB ! pB o ) pY 1 pY
P% = ayP” + oy P7 = P’ +a, P,

and write briefly

O Opg . a7 ay _
o o {3 0)-e

Denote the inverse substitution of (b), (c) respectively by (b)~1,(c)~!. We
obtain for the functions (P, P*') the substitutions

W={7 ot @=0{7 Sfor

=7 e

From the equation (C)(B)(A) = (1) (1)

composite substitution is the product of the determinants of its components,

, since the determinant of a
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we have

1 = Det(A)Det(B)Det(C)
_ e(a+a’+ﬁ+ﬁ’+7+7’)2mDet(b)Det(b)_lDet(C)Det(C)Al'

Since Det(b)Det(b) ™! = 1, Det(c)Det(c)™! = 1, we have
(2) a+d + 3+ 5 +v++ = integer,

which agrees with the above hypothesis that this sum is 1.
The three remaining relations contained in the equation

= )

pive three conditions for (b), (¢). This can be seen more easily in the following
way.
If z passes around 0 and then around oo in a negative sense, the combined
path yields a positive circuit around 1. The resulting value of P® is therefore
(176727”'137 + ay eV 2™ pY’
= (aﬁe_m“Pﬁ + aﬁfe_ﬁ/Q’TiPﬁl) e,
Multiply this equation by an arbitrary factor e ™, and the equation
oy P+ oy PY = agP? + ag P?
by e’™ and subtract. Canceling a common factor, we obtain

a, sin(a — y)me?™ PY + oy sin(o — 4 )me? ™ PY

= agsin(o + a + B)me” @A™ PE | o5 sin(o + o + [ )me @I pE
Analogously, replacing a by o', we have

o, sin(o — y)me?™ P7 + o, sin(o — v \me? ™ PY

= ajsin{o +ad + B)me~ (@' +Bm pB o sin(o 4o + [ )yme (& +8)mi ph’

for arbitrary o. Eliminating one of the functions, for example P, from both
equations by a suitable choice of o, the resulting equations differ only by a
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constant factor, since P?/P? is not constant. Hence this elimination of P’
gives

3) oy ogsin(a+f+y)me ™ agsin(a+ 5 +5)me o™
of,  dysin(a’ + B+ )me " oy sin(af + B+ )me—e'm’
Rl B8 B 3

The analogous elimination of P? gives

ay  agsin(a+f+y)me ™™ agsin(a+ G +y)me ™
N a’ﬂ sin(o + 0+ vy)me='m n a’ﬁ, sin(a + ' + y)me—'mi

W

These are the four relations sought. From these we obtain the ratios of the

quotients 22, 22 % 2 The equality of the two values of Z—? . 22 obtained
ﬂ /

a'ﬁ’a,’@,’g’;’a;, A
from the second and fourth relations is readily seen to be a consequence of
a+ao' + B+ +v++" = 1, with the help of the identity sin sm = sin(1 — s)=.

Thus each of the numbers %,Z—, %’ %,:—, %“’,j is determined by any one
of them, for example =£. Now the three numbers a’ﬂ,, «

!
g

% Qi are deter-
mined by the five numbers ag,a'ﬁ,ag/,ay,ay. However, these five num-
bers depend, when P is given, on the factors that are still arbitrary in
P, P~ P8 PS5 PY PY; or rather, on their ratios. By an appropriate choice
of these factors, these five numbers can take any finite values.

4.

The remark just made opens the way to the theorem that, in two P-functions
with the same exponents, the corresponding components differ only by a
constant factor.

In fact, if P, is a function with the same exponents as P, the five numbers
Qg, Qupr, Qty, Qyr, g can be given the same values for both functions. Now
o, o, oz, are also the same for both functions. Hence one has simultaneously

(P, P*) = (b)(P?, P?) = (¢)(P", P"),
(Pe, PY) = (0)(PY, Pl = (o)(P, PY).

I
Il

Consequently,

PoPY — P P — Det(b)(PP PP — P PP)
— Det(c)(P"P}) — PYP}).
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Of these three expressions the first, after multiplication by =", obviously

remains single-valued and finite at = 0. So does the second, multiplied by
LPH8 = prae’=r=2"+1 gt 1 — 50; and the third, multiplied by (1 —z)™7,
at £ = 1. This holds for all three expressions when z has a value other than
0,1, 00. Consequently, the function

!

(POPY — PY Pz (1 — )Y

is everywhere continuous and single-valued, and is thus a constant. Moreover,
this function is 0 for £ = oo, and must therefore be 0 everywhere.
It follows that
Py P
PP
Pl Pl Pl +agPl PP
P8 P8 agPf+agPf P
Pl P a,P+a,P] Pf
P P’ o P ta,PY P

The function PP/ P* is accordingly single-valued. Moreover, the function
must be finite everywhere-hence, as we wish to prove, a constant — if we can
show that P® and P cannot vanish together for a value of z distinct from
0, 1 and oc.

To this end, we observe that

dpP® , dP° dP? , dP?
P —-p = # - PP —
dz dz Det(b) (P dz F dz )
' Y
— Det(c) | P dPr _ pr a7
dx dzx

Consequently this function becomes infinitely small at 0, 00, 1 of orders o +
o —-1,08+0+1=2—a—a —v—7, v+~ — 1 respectively. Elsewhere
the function is finite and single valued. Thus

_ pe
dz dz

< po dP° : dPa) Ry ——

is an everywhere finite and single-valued function, and is thus a constant.
A . . . N
['his constant is necessarily nonzero, for otherwise log P* —log P* is constant
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and a = o/, contrary to hypothesis. However, the constant would obviously
. / . . . .

be 0 if P* and P* vanished simultaneously for an x distinct from 0, 1, 0o,
/

. dP> P>
since -, S
become infinite.
Thus P, P* cannot vanish simultaneously for a value of 2 distinct from

0,1, 00. Now the single-valued functions

as derivatives of single-valued continuous functions, cannot

I
pe  pd ps ps o py Py

are finite everywhere, and indeed constant, as was to be proved.

Suppose that two branches of a given P-function are not in constant
ratio. From the above theorem, it follows that every P-function with the
same exponents is a linear combination with constant coeflicients of these
branches. By the properties assumed in Section 1, the latter P-function is
completely determined up to two constants linearly contained in it. These
constants can easily be found from the values of the function for special
values of the variable, most conveniently by taking the variable equal to one
of the branch points.

The question of whether a function exists, satisfying these conditions,
admittedly remains unanswered. Since this will be resolved later through
explicit representations of the function via definite integrals and hypergeo-
metric series, no special investigation is called for.

5.

Besides the possible transformations for all values of the exponents in Section
2, the following transformations follow readily from the definition:

0 oo 1 -1 oo 1
(A) PSO B v zp=P¢ vy 28 v vz,
% ﬁl ,)// ,)// 26/ ,)//

where by the foregoing we must have 5+ 3 +~v++' = -12-;

2

0 oo 1 1 p p
(B) PLO 0 v zp=Psy v v ¥z,
_;_ % ,Y/ ,Y/ ,Y/ ,Y/

where v ++' = % and p is an imaginary cube root of unity.
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To get a convenient overview of all the functions that reduce to one an-
other with the help of these transformations, it is useful to introduce, in-
stead of the exponents, their differences. As proposed earlier, we denote by
Pla— o', 60— 3,7 —+,z) all the functions of form

x‘s(l—x)éP(s, g, 3,x>

Here o — o', 8 — (3, v — 4/ may be called the first, second and third exponent
differences.
From the formulae in Section 2, it follows that in the function

P()\7 #7 1/7 $)
the quantities A, u, v may be arbitrarily changed in sign and permuted. The
variable then takes one of the six values z,1—=,1,1— 1, 4 -2 Of the 48

P-functions obtained in this way, any group of 8 obtained by changing signs
of A\, i, v has the same variable.

Of the transformations A and B given in this section, the first is applicable
if one of the exponent differences is %, or two of them are equal. The second
is applicable when two exponent differences are %, or all three of them are
cqual. By successive application of these transformations one obtains, each
expressible in terms of the other, the functions:

1
. P (M,v, 5,:162), P(u,2v, p,z,) and P(v,2u,v, x3), where

/ 1
VI—2y=1-2x, /1 — — =1-—2zx3,
Hp)

1
T9 = 41‘1(1 — .Z'l) = m

so that
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where

hence

1 3(p—p*)z3(1 — 33)

Ty (p? + z3)3 ’
C(ptx)} (PP +x3)® (1 —x3(l—x5))°
1'4(1 - 1‘4) = 2 2 - 2 2
271'3(1 — 1'3) 271'3(1 — 1'3)

Further, by I,

1
4x6(1 — z¢)’
o
4z (1 —xz)

41’4(1 — 1'4) = Iy =

4z3(1 — x3) = T4

1
Im1. P (l/, v, 5,@) , P(v,2v,v,27),

1 1 1 1
P (Z)V)§)$3) )P (ZaQV? Z7$4)

where

All these functions can be further transformed by the general transforma-
tions, and in this way their exponent-differences can be permuted arbitrarily
and given arbitrary signs.

Apart from the two transcendental functions II and III, if one exponent-
difference remains arbitrary, only the function P (V, %, %) = P(v, 1,v) admits
a further repetition of transformations A and B. However, this leads to en-
tirely elementary formulae, since
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P (0 00 1) = const. ¥ + const.’
v —uv 1

In fact, transformation B only applies to P(v, v, v) or P (%, v, %), that is,
only to the transcendental function II. However, transformation A can be
repeated more often than in I, when one of the numbers u, v, 2u, 2v is %, or
one of the equations p = v, p = 2v, v = 2u holds. Of these hypotheses,
jt = 2v or v = 2u leads to transcendental functions IT; = v, or 2 = %, or
2v = 3, leads to transcendental functions III. Finally p = § or v = % leads
to the function P (v, 1,1).

To obtain the number of different expressions given by these transfor-
mations for each of the transcendental functions I-III, recall that in the
P-functions above, we can admit as variables all roots of their defining equa-
tions. Each root belongs to a system of 6 values, which can be introduced as

variables in place of one another by means of the general transformation.

However, in Case I, the two values of z; and z3, corresponding to a
given o, belong to the same set of 6 values. Hence each function I can be
represented by P-functions via 6.3 = 18 different variables.

In Case II, among the values of the variables corresponding to a given
value of x5, the two values of zg and x4, the 6 values of 23 and the 6 values of
&1, combined in pairs, lead to the same set of 6 values. The three values of
ry lead to three different systems of 6 values. So z; and x4 each yield three
systems, and z3, Z4, s, g each yield one system, of six values. Altogether
Lhere are 6.10 = 60 values through which each function II can be expressed
via. P-functions.

Finally, in Case III, z3, the two values of x5, the two values of x4, and
cach pair of the four values of z;, give a system of 6 values. Hence each
of the functions III can be represented via P-functions of 6.5 = 30 different
variables.

In each P function, we can assign arbitrary signs to the exponent differ-
ences, without changing the variable, via the general transformation. Since
no exponent difference is 0, a given function occurs in 8 distinct ways as a
P-function of the same variable. The total number of these expressions is
8.6.3 = 144 in Case I, 8.6.10 = 480 in Case II, and 8.6.5 = 240 in Case III.
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6.
If we change all the exponents of a P-function by integer amounts, the quan-
tities
sin(a + B+ v )re ™ sin(a+ 8+ )re ™
sin(a/ + B+« )we=®" sin(a + B + v )we= ¥ ™’

sin(a + B+ v)me™*™  sin(a + § + v)me o™
sin(a/ + B + y)me=™ sin(a’ + B + y)we='™

in the equations (3), Section 3, are unchanged.
If in the functions

a (B v a; B om
P(a’ B x) b (a’l B " x)

the corresponding exponents «a; and «a, and so on, differ by integers, one can
take the eight numbers (ag)i, (@)1, (ag)1, ... equal to the eight numbers
ag,ag,ap, . ... For, from the equality of any five, the equality of the three
others follows.

By the reasoning used in Section 4, we deduce that

PPt — P P2t — Det(b)(PP Pt — PP P
= Det(c)(P"P)i — PV P]).

Among the quantities a + o} and a1 + o', f+ B and By + ', ¥ +; and
~v1 + 7, denote by @, 3,5 the members of the pairs, which are smaller by a
positive integer than the others. Then

(PoPM — P par)p (1 — z)77

is a function of x that is single valued and finite at z = 0, z = 1 and all other
finite values of z. However, this function becomes infinite at £ = oo of order
—& — 7 — [3, so that it is a polynomial F' of degree —a — 3 — 7.

As before, denote the exponent differences o —ao/, 3—03', v—+' by A\, u, v.
In regard to these, we see firstly that their sum varies by an even integer,
if all exponents vary by an integer. For the sum exceeds the sum of the
exponents, which remains equal to 1, by

—2(a’ + '+ '),
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aquantity that changes by an even integer. However, the exponent differences
can vary by any integers whose sum is even. Denote now oy — o, 51 — 01,
i — Yy by A1, py, vy and write AN, Ap, Av for the absolute values of the
differences A — Ay, p— p1, v — vy In the pair of numbers a+ ] and o/ + a,
the one that is the positive amount AX smaller than the other is equal to

a+a)+ao +a;  AX

2 2
Hence
AN a+ajt+d + o
—_— = — —
2 2 ’
and likewise
5 Bu_ BB+ 6
2 2 ’
. Av v+ Y+
B N E—

The degree of the polynomial F', which is equal to the sum of these numbers,

Is thus
AN+ Ap+ Av

2

- 1.

Now let

Pod 2e)or(l o) n( e

a B v ay By m ay By s

he three functions in which the corresponding exponents differ by integers.
I'rom the above theorem, via the identity

PP Py — PYUPS) + P (P32 P — Py P)
+Pg2 (PPt — P PRty = 0,

we obtain the important result that between their corresponding terms, a

linear homogeneous equation holds whose coefficients are polynomials in z.
'I'hus
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“For a family of P-functions whose corresponding exponents differ by
integers, any one may be expressed as a linear combination of any given pair,
with rational functions of x as coefficients.”

A particular consequence of the method of proof of this result is that the
second derivative of a P-function can be expressed as a linear combination
with rational coefficients of the function and its first derivative. Thus the
function satisfies a second order linear homogeneous differential equation.

To simplify the derivation, we restrict ourselves to the case v = 0: by
Section 2, the general case easily reduced to this case. We set P = y,
P =y, P¥ = 4" Then the functions

y dy’ ) dy’

dlog dlogz’

d2y, " d2y,’ /
d(logz2 Y~ d(logz)2 ¥

dy’ d2 y// d y// d2 y/
dlogz d(logz)? dlogz d(logz)?’

multiplied by 27 (1 —2)~"*2, are finite and single valued for finite z, and
infinite of order 1 for x = oo. Moreover, the first product vanishes of order
1 at z = 1. Hence for

n_n

y = const.yy’ + const.”y

we have an equation of form

2

dy dy
l-z)———-(A+ B "~ B't)y=0.
(1-1) d(log x)? (A+ Bz) dlogz +A )y =0

Here A, B, A’, B’ are constants yet to be determined.
By the method of undetermined coefficients, one can expand the solution
of this differential equation, up to z = 1, in increasing or decreasing powers,

as a series
E a,x".

The exponent p of the first term in the first case, where it is the lowest
exponent, is determined by the equation

©r—Ap+ A =0.
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[n the second case, where it is the highest exponent, u is determined by the
cquation
12+ Bu+ B =0.
The roots of the first equation must be a and ', and those of the second
equation —( and —f3’. Consequently
A=a+d A =ad
B=p+4,B =p80,

a [ 0 _
P(CM' ,8' ,)// $)*y

satisfies the differential equation

and the function

d2

<1—x)d(lo—gi)2—<a+a'+w+ﬁ')x)

Jlogz + (ad' — fF'z)y = 0.

Now the coefficients can successively be determined via the recursion

formula
any1 _ (n+B)(n+f)

an (n+1l—-a)(n+1—o)

which is satisfied by

const.

Thus the series

1y = const. Z [I(n — a)lI(n — o/)I(—n — B)II(—n — 3)

where the exponents commence with « or o and increase by unity; or when
the exponents commence with — (3 or —(3’ and decrease by unity, are solutions
of the differential equation. Indeed they are the particular solutions denoted
above by P* P PP PF# respectively.

Gauss denoted by F(a, b, ¢, z) a series in which the quotient of term num-
ber n + 2 by the preceding term is (nta)(nth) z, and the first term is 1. Fol-

n+1)(n+c)
lowing Gauss, our result in the simplest case & = 0 can be expressed as

pPe (2, g, 3, a:) = const. F(3,3,1 — o, )
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or

o 0 a 0
F(a,b,c,z) =P (1—0 b oc—a—b x)

From this result we easily obtain an expression for the P-function as a
definite integral, on reptacing the II-functions by an Euler integral of second
type in the general term of the series. We then interchange the order of
summation and integration. In this way we find that the integral

(1 — z)7/s_°‘/_'6/_7/(1 — s)_"‘/—ﬂ_7(1 — zs)_"‘_ﬁ’”ds,

taken from one of the four values 0, 1, %, oo to another of these values, along
an arbitrary path, gives a function

P (2, g, fy, z) .
Y
Moreover, by a suitable choice of the limits of integration and the path be-
tween them, the integral represents each of the six functions P>, P8, ... PY.
However, one can show directly that this integral has the characteristic prop-
erties of such a function. This will be seen in the sequel, where this expression
for the P-function as a definite integral will be used to determine the factors
that still remain arbitrary in P*, P*,.... Here I remark only that to make
this expression applicable in general, we need to modify the path of integra-
tion when the integrand becomes infinite for one of the values 0, 1, %, 00, in

a manner that precludes integration up to this value.

8.
Recall the equation obtained in Sections 2 and 7,
af B % N_ oy _ovypaf 0O BHat+y 0
P(a/ ﬁ/ ,y/ l)_l(l l)P (a/_a ﬁ/+a+’7 ,Y/__,yx
= Const. z%(1 — z)"F(B+a+v,0 +a+v,a—d +1,z).
We see from this that any function represented via the P-function likewise has
an expansion as a hypergeometric series in ascending powers of the variable.
From Section 5, there are 8 representations of a function via P-functions with

the same variable, obtained by permuting its exponents. Thus, for example,
there are 8 representations with the variable z. Among these, however, any
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two obtained by interchanging the second pair, # and ', yield the samne
expansion. Hence, we obtain four expansions in increasing powers of . Two
of these, obtained from one another by interchanging ~,’, represent the
[unction P?; the other two represent P* . These four expansions converge as
long as z has modulus < 1, and diverge when the modulus exceeds 1. The
four series in decreasing powers of z, representing P? and P?, behave in the
opposite way.

In the case when the modulus of z is 1, it follows from the Fourier series,
that these series cease to converge at x = 1, if the function becomes infinite
at x = 1 or order higher than 1. On the other hand, the series remains
convergent at x = 1 when the function becomes infinite there of lower order
than 1, or remains finite. In this case, then, only half of the 8 expansions in
powers of z converge if the real part of 4 — v does not lie between —1 and
|. In the contrary case, all these expansions converge.

Thus in general one has 24 different hypergeometric series that represent
a P-function, that contain ascending or descending powers of three different
variables. For a given value of z half of these, that is 12, converge. In Case
| of Section 5, all these numbers are to be multiplied by 3; in Case II, by
10; in Case III, by 5. For numerical calculation, the most convenient choice
from these series is usually the one for which the fourth element has least
modulus.

Regarding the expressions of a P-function via definite integrals that can
e derived from the integrals of Section 7 using the transformation of Section
h, these expressions are all distinct. Hence one obtains in general 48, in Case
I, 144, in Case 11, 480 and in Case III, 240 definite integrals which represent
lhe same term of a P-function, and therefore have ratios that are indepen-
dent of z. Among these integrals, groups of 24, which are obtained from
one another by an even number of interchanges of exponents, can also be
transformed into each other as follows. We employ a substitution of degree
[, chosen so that for three given values among 0, 1, oo,% of the integration
variable s, the new variable takes the values 0,1, 00. The remaining equa-
tions, as far as I have investigated them, require transformations of multiple
integrals, if they are to be established by the methods of integral calculus.
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V.
Author’s announcement of the preceding paper.

(Géttinger Nachrichten, 1857, no. 1)

On 6th November, 1856 a mathematical memoir entitled “Contributions
to the theory of functions represented by the Gauss series F(«, 3,v,z)” was
submitted to the Royal Society, by its assessor, Dr. Riemann.

This memoir deals with a class of functions which are used for solving
many of the problems of mathematical physics. The series formed from them
perform the same roles in the more difficult problems as are served in the
casier ones by the trigonometrical series, now so frequently employed, which
proceed in terms of sines and cosines of multiples of a variable.

These applications, particularly in astronomy, appear to have led Gauss—
following FEuler who had already frequently concerned himself with these
functions because of their theoretical interest—to undertake his researches
into the series which he denoted by F(a, 3,7, z). A part of these researches
was published in the form of a memoir in the 1812 Journal of the Royal
Society.

The series is one in which the quotient of term number n + 2 by the
preceding term is equal to

(n+a)(n+B)z
(n+1)(n+7)

and the first term is 1. The name hypergeometric series now usual was
carlier proposed by Johann Friedrich Pfaff for a more general type of series
in which the above quotient is a rational function of the index; whereas Euler,
following Wallis, understood by this name a series in which this quotient is
n polynomial of degree 1 in the index.

The unpublished part of Gauss’s researches on this series, which were
found among his posthumous papers, had meanwhile already been supple-
mented in 1835 by the work of Kummer in Vol. 15 of Crelle’s Journal. This
work relates to expressions of the series by similar ones in which the vari-
nble z is replaced by an algebraic function thereof. A special case of such
n transformation had already been discovered by Euler and had been han-
dled in his treatise on integral calculus as well as several of his papers (in
the simplest form in the N. Acta Acad. Petr., XII, p. 58). This relation
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was later proved in different ways by Pfaft (Disquis. anal. Helmstadii 1797),
Gudermann (Crelle’s J., vol.7, p. 306) and Jacobi. Kummer succeeded in
devising a procedure based on Euler’'s method by means of which all the
transformations could be found, but the detailed implementation required
such lengthy discussion that he refrained from considering transformations
of third degree, confining himself to a complete treatment of first and second
degree transformations and their compositions.

In the memoir announced here, the author studies these transcendental
functions by a method whose principle was described in his inaugural dis-
sertation (Section 20) and which yields all the earlier results almost without
calculation. He hopes soon to be able to submit to the Royal Society some
further results found by the same methods.
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VL
The Theory of Abelian Functions.

(Borchardt’s Journal fir reine und angewandte Mathematik, vol. 54, 1857.)

1.

General assumptions, and methods for the study of functions of
unbounded variables.

My aim is to present to the readers of the Journal fir Mathematik the
results of some investigations into various transcendental functions, in par-
ticular Abelian functions. To avoid repetition, it is worthwhile to summarize,
in a separate section, the general assumptions from which my treatment pro-
ceeds.

To represent the independent variable, I always use the now well-known
peometrical representation of Gauss, in which a complex number z = z+yi is
represented by the point on an infinite plane, whose rectangular coordinates
are z and y. I denote the complex numbers and the points representing them
by the same letters. I regard as a function of x + yi every complex quantity
w which satisfies the equation

Ow  Ow

I = —,
oxr Oy
without assuming an expression for w in terms of z and y. It follows from

(his differential equation, by a known theorem, that the quantity w can be
expressed as the sum of a series in increasing integer powers of z — a, of the

o0
[orm Z a,(z —a)", as long as w, in the neighborhood of z = a, has a single
n=0

determinate value which varies continuously with z. This representation
extends up to a distance, measured by |z—al, at which a point of discontinuity
ix encountered.

It ensues from the considerations, which constitute the basis of the method
ol undetermined coefficients, that the coefficients a,, are completely defined
olice w has been given along a finite segment of a line emanating from a, no
matter how small.
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By combining these two ideas, one can easgily convince oneself of the truth
of the following proposition:

A function of x+yi given in one part of the (x,y) plane can be continued
beyond the boundaries of this region in a continuous fashion in only one way.

Let us now immagine that the function to be studied is defined, not by
any analytical expressions or equations containing z, but rather through its
value being given in a limited region of the z-plane and that w is extended
continuously while satisfying the partial differential equation:

Ow  Ow

Za_([;_a_y

This extension is, thanks to the above-mentioned theorems, completely de-
terminate, on the assumption that the prolongation is carried out along a
strip of finite width rather than a mere line (where a partial differential
equation could not apply). Depending on the nature of the function con-
cerned, either the function will always assume the same value for a given
value of z, irrespective of the path along which the prolongation is effected,
or else it will not. In the former case I shall call the function single-valued;
it is then a function which, for every value of z, has a well-defined value and
is never discontinuous along a line. In the latter case the function may be
said to be multi-valued, and here to understand its behaviour it is necessary
above all to focus attention on certain points of the z-plane around which
one function changes into another. An example of such a point is the point
a for the function log(z — a). Suppose an arbitrary line be drawn from this
point a, then in the neighborhood of a the value of this function can always
be chosen so that it varies continuously except on the line itself. On either
side of the line, however, the function assumes different values, its value on
the negative! side being 27i greater than its value on the positive side. The
prolongation of the function across the line, for example from the negative
side, then obviously results in a function different from the initial one, and
in this case one whose value is everywhere 27 greater.

To simplify the description of these relationships, the different prolonga-
tions of a given function in a given region of the z-plane will be called branches
of the original function and a point around which one branch continues into

1Following the example of Gauss, who has proposed the name of positive lateral unit
for +i, I shall designate a sideways direction as positive, in relation to a given forward
direction, if it bears the same relation to it as +i does to 1. .
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another a branch-point of the function. Where no branching occurs, the
function is said to be single-valued or monodromic.

A branch of a function of several independent variables, z, s,t, ... is said
to be single-valued in the neighborhood of a system of values z = a,s = b,
t =c¢,..., if for all the combinations of values up to a finite distance from
these (or in other words if |z —al, [s —b|, [t —¢|, ... are all less than a definite
finite number), the branch concerned has a well-defined value which varies
continuously with the variables. A branch point or point around which one
branch continues into another is defined, in the case of a function of several
variables, by a set of particular values of the independent variables.

By one of the theorems quoted above, this property of single-valuedness in
a function is equivalent to that of its developability in a series of ascending
or descending integral powers of the incremental changes in value of the
variables. However, it seems inappropriate to express properties independent,
of the mode of representation, by criteria based on a particular expression
for the function.

In many investigations, notably in the study of algebraic and Abelian
functions, it is advantageous to represent the branching of a multi-valued
function geometrically in the following way. Over the (z,y) plane, we spread
another surface like an infinitely thin membrane covering only that region
of the plane in which the function has been defined. When the domain of
existence of the function is extended, the surface is likewise extended. In a
region of the plane where there are two or more different prolongations of
the function, the surface will have two or more layers; it will be composed of
superimposed sheets, one sheet for each branch. Around a branch point one
sheet of the surface continues into the next, and in the neighborhood of the
branch point the surface may be considered as a helicoidal surface whose axis
goes through the point perpendicular to the (z,y) plane and whose pitch is
infinitely small. If the function resumes its original value after completing
a number of turns around the branch point (as for example in the case of
(z — a)™™, with m and n relatively prime natural numbers, after n circuits
of z around a), then admittedly we must assume that the uppermost sheet
of the surface passes into the lowest sheet through the others.

The multi-valued function has, for every point on such a surface that rep-
resents its branching, one well-defined value, and can therefore be regarded
as a completely determined function of position on this surface.
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2.

Theorems of analysis situs for the theory of the integral of a
complete differential with two terms.

In the study of functions arising from the integration of total differentials,
a few theorems belonging to analysis situs are almost indispensable. The
name analysis situs was given by Leibnitz to a branch of knowledge—perhaps
with not quite the same meaning as here—concerned with that part of the
theory of continuous quantities not based on their existence independently
of position and on measurement of one quantity against another, but on
positional and situational relationships that are independent of relative size.

I reserve for the future a treatment of this subject that avoids measure-
ment entirely. Here I restrict myself to an exposition in a geometrical guise
of theorems necessary for the integration of a complete differential with two
terms.

Let T be a given surface spread simply or multiply over the (z, %) plane?,
and let X,Y be continuous functions of position on this surface, such that
Xdx + Ydy is a complete differential. Thus

dX AY

oy Or

It is well-known that the contour integral

/MM+Y@L

is zero when taken in a positive or negative sense around part of 7. That is,
the integral is taken over the entire boundary in the same direction (positive
or negative) in relation to the outward normal (see the footnote on p. ). For
this integral is equal, in the former case, to the integral

oY 0X
— - — |dT
L/(am 5y>
over this part of T. In the latter case, the sign changes. The integral

/am+Y@)

2See abave, p.
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therefore has the same value when evaluated over two different paths leading
from one fixed point to another, if these two paths together form the complete
boundary of a piece of the surface T. Accordingly, if every closed curve
interior to T forms the complete boundary of a piece of T, then the integral
from a fixed initial point to one and the same end-point always has the same
value and represents a function of the position of the endpoint, everywhere
continuous in 7', independent of the path of integration. This gives rise to a
classification of surfaces into simply connected surfaces, in which every closed
curve forms the complete boundary of a part of the surface (for example a
disc), and multiply connected surfaces for which this is not true (for example
the annular surface bounded by two concentric circles). A multiply connected
surface can always be cut up into simply connected pieces (see the illustrated
examples at the end of this section). As this operation is very useful in the
study of integrals of algebraic functions, we shall give a brief summary of the
relevant theorems, which hold for arbitrary surfaces in space.

Suppose that two systems of curves a and b in a surface F', taken together,
form the complete boundary of a part of this surface. Then any other system
of curves which, together with a, forms the complete boundary of a part of
F' has the property that, together with b, it forms the complete boundary of
a part of the surface which is composed of the two former portions of surface
joined together along a (their sum or difference, depending on whether they
lie along the opposite or the same sides of a). The two systems of curves
therefore both play the same role in providing a complete boundary for a
part of F, and for this purpose either system can be substituted for the
other.

If n closed curves ay, as, . . ., a, can be drawn in a surface F' which neither
separately nor in combination form the complete boundary of this surface,
but which taken in combination with any other closed curve constitute the
complete boundary of a part of F, then the surface F is said to be n+1 times
connected.

This character of the surface does not depend on the choice of the system
of curves ay, as,...,a,. For any n other closed curves by, bs, ..., b, which are
insufficient to form the complete boundary of a part of this surface, when
taken together with any other closed curve, will form the complete boundary
of a part of F.

Indeed, since b, together with the lines a form the complete boundary of
n part of F', one of the curves a can be replaced by b; and the remaining
1n—1 left unchanged. These new n lines together with another, say by, suffice
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to form the complete boundary of a part of F. We can replace the n — 1
curves a, and by, by by, by and n — 2 of the remaining curves a. When, as is
here supposed, the curves b do not form the complete boundary of a part of
F. then clearly the process can be repeated until all the curves a have been
replaced by the curves b.

An n + 1 times connected surface F' can be converted into an n times
connected surface F' by a transverse cut, that is a line starting from a point
on the boundary of the surface, ending on another point of the boundary, and
lying interior to the surface. The new edges of the pieces of surface which
result from the operation of cutting count as a part of the boundary during
any further dissection. Accordingly, a transverse cut can never cross a point
of the surface more than once, though it may end in one of its earlier points.

As the lines aq, as, . . ., a, do not suffice to form the complete boundary of
a part of F, it necessarily follows that if we visualize F' as being cut up into
pieces by these lines, the portion of the surface F' lying on the left hand side
of a,, likewise the portion on the right, must have boundary lines different
from those of a and hence belonging to the boundary of F'. We can therefore
draw a line in either of these parts of the surface from a point on the curve
a, to the boundary of F', which does not intersect any of the curves a. These
two lines ¢’ and ¢” together form a transverse cut ¢ in the surface F' which
fulfills our objective.

In fact the lines a1, as, ..., a,_, are closed curves lying within the interior
of F', the surface resulting from the operation of making the transverse cut.
Taken together, they are insufficient to form the complete boundary of a part
of F, or indeed of F'. Every other closed curve /¢ interior to F', however,
forms in conjunction with these n — 1 lines the complete boundary of a
part of F’. For the line £ together with the complex consisting of the lines
ay, as, .. .,a, forms the complete boundary of a part f of F'. Now it can be
shown that the line a,, cannot be a part of this boundary because, if it were,
q or ¢", depending on whether f were on the left or right of a,, would cross
the interior of f to reach a point of the boundary of F, which is a point
outside f. Thus it cuts the boundary of f, contrary to the hypothesis that
¢ and the complex a of lines (with the exception of the point of intersection
of a, and ¢) always remain interior to F”.

Accordingly, the surface F” into which F' is converted by the transverse
cut ¢ is, as the theorem requires, n times connected.

It will now be proved that the surface F' is converted into an n times
connected surface F’ by any transverse cut p which does not cut F' into two
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separate pieces. If the two portions of surface on either side of the transverse
cut are still connected together, then we can draw a line b interior to the
surface which starts from a point on the transverse cut and returus to this
starting point from the other side of the cut. This line b is a closed curve
interior to F which cannot be the complete boundary of either of the two
pieces of surface into which it divides F'. For the transverse cut leads from
b, on either side, to a boundary point. We can therefore replace oue of the
curves a by the curve b and each of the remaining n — 1 curves a by a curve
interior to F’ and, if necessary, by the curve b. We can thus show by the
reasoning used earlier that F’ is n times connected.

Hence an n + 1 times connected surface is transformed into an n times
connected surface by any transverse cut which does not cut the surface into
separate pieces.

The surface obtained by making a transverse cut can be further cut up by
making a new transverse cut. By repeating the operation n times, an n + 1
times connected surface can be transformed, by n successive transverse cuts
that do not cut off a piece, into a simply connected surface.

To apply this treatment to a surface which has no boundary, in other
words a closed surface, it must first be transformed into one with a bound-
ary by excluding an arbitrary point, so that the first cross-cut is a closed
curve which begins and ends in this point. The outer surface of a torus,
for example, which is a triply connected surface, can be transformed into
a simply connected surface by a closed curve drawn on the surface and a
transverse cut.

We now apply this decomposition of multiply connected surfaces into
simply connected surfaces to the integration of the complete differentials
of the form Xdx + Ydy, discussed at the start of the section. Suppose
that the surface T, spread over the (z,y)-plane, throughout which X,Y are
everywhere continuous functions of position satisfying the equation

X oY

oy or

is n times connected. Then it can be transformed into a simply connected
surface 7" by making n transverse cuts. The value of the line-integral of
Xdz + Ydy calculated from any initial fixed point, along a curve interior to
T’, then depends only on the position of the end-point and may be regarded
as a function of its coordinates. If we substitute z,y for these coordinates,
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we obtain a function
z = /(Xd:l: + Ydy)

of x and y which has a definite value for every point of 77, and is everywhere
continuous within 77, but in general will change in value by a constant across
a line leading from one nodal point of the system of cuts to another. The
variations across the transverse cuts depend on independent variables equal
in number to the number of cuts. For if we run through the system of cuts
backwards—the later parts first—the variations are everywhere well-defined
once the value at the beginning of each transverse cut is given; the latter
values are however independent of each other.

In order to elucidate what is meant by the n times connected surfaces
defined above (p. , ), the following illustrations give examples of simply,
doubly and triply connected surfaces.

Figure 1: a simply connected surface

The surface in Figure 1 is separated into two pieces by any transverse
cut, and any closed curve in the surface forms the complete boundary of a
part of the surface.

The surface in Figure 2 is transformed into a simply connected surface by
any transverse cut ¢ which does not cut off a piece. Any closed curve, with
the curve a adjoined, forms the complete boundary of a part of the surface.

In Figure 3, every closed curve, with the adjunction of the curves a, and
as, forms the complete boundary of a part of this surface. Every transverse
cut which does not cut off a piece of the surface transforms the surface into a
doubly connected surface, and two such transverse cuts ¢; and g transform
it into a simply connected surface.
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Figure 2: a doubly connected surface

Figure 3: a triply connected surface

In the regions «, 3, v, 6 of the plane the surface in Figure 4 has two sheets.
The sheet containing the curve a; is to be regarded as passing underneath
the other sheet, as indicated by the dotted lines.

3.

Determination of a function of a complex variable by boundary
conditions and discontinuity conditions.

If, in a plane in which the rectangular coordinates of a point are x,y, the
value of a function of z + ¢ is given for the points of a finite line, then the
function can be extended continuously beyond this line in only one way and
consequently the function is determined throughout its domain (see above,
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Figure 4: a triply connected surface

p. ). It cannot, even on this line, be assigned arbitrary values if it is to
be capable of continuation on both sides of the line into the adjacent parts
of the surface. For its values on any segment of this line, no matter how
small, define the function on the rest of the line. Thus, in this method of
determining a function, the conditions which serve to determine it are not
independent.

A fundamental requirement in studying a transcendental function is,
above all, a set of independent conditions sufficient to define the function. In
many cases, notably integrals of algebraic functions and their inverse func-
tions, there is a principle which Dirichlet employed for this purpose. Probably
inspired by a similar idea of Gauss, he applied this principle to a function of
three variables satisfying Laplace’s partial differential equation in his lectures
over several years on forces obeying an inverse square law.

For our application to the theory of transcendental functions, one partic-
ular case is needed, to which the principle in its simplest form is inapplicable.
In Dirichlet’s context this case can be neglected as one of lesser importance.
This is the case where the function, at certain places in the domain where
it must be determined, has prescribed discontinuities. This means that at
every such place, the function must satisfy the condition that it becomes dis-
continuous in the same manner as a given discontinuous function, differing
from it by a function continuous there. I shall state the principle in the form
required for the application envisaged. Perhaps I may refer, in regard to some
related researches, to the account in my doctoral dissertation (Foundations
for a general theory of functions of a complex variable, Géttingen 1851).
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Let us suppose that an arbitrarily bounded surface T is spread over the
(z,y) plane simply or multiply, and let two real functions of z, y, denoted by
a and , be given uniquely at each point of T'. Denote by Q(«) the integral

. 2 . oA 2
3G

or 0Oy oy Ox
extended over T, where the functions a and ( can have arbitrary disconti-
nuities provided that the integral does not become infinite. Now Q(a — A)
remains finite if A is everywhere continuous with finite partial derivatives. If
this continuous function A is subjected to the condition that it differ from a
discontinuous function « only in an infinitely small part of the surface 7', then

Q(a — \) tends to infinity if «y is discontinuous along a line, or discontinuous
at a point in such a way that

o\ (07\’
— — dT
/ { <3$> ' (321
becomes infinite (my inaugural dissertation, Section 17). However, Q(a — X)
remains finite if -y is discontinuous only at isolated points and so that

2 N 2
[+ (&)}
or oy
taken over 7T, remains finite, for example, when in the neighborhood of a
point, at a distance r from it, v = (—logr)¢,0 < € < 1/2. For brevity, we
say that a function permitted for A\, not affecting the finiteness of Q(a —
A), is discontinuous of the first kind. A function without this property is
discontinuous of the second kind. Consider now the expression Q(a — p),
where p is a function which vanishes at the boundary and is continuous,
or discontinuous of the first kind. This integral is always finite but, by its
nature, can never be negative; and it must therefore at least once, say for
a — pu = u, assume a minimum value. Hence (), for every function o — p
differing infinitely little from u, must be greater than Q(u).

If therefore o denotes an arbitrary function of position in the surface T,
continuous or discontinuous of the first kind, which vanishes everywhere on
the boundary, and h denotes a quantity independent of z, y, then Q(u + ho)
is greater than Q(u) for all small enough positive and negative values of
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h. Consequently the coefficient of h, in the expansion of this expression in
powers of h, is 0. If this coeflicient is 0, then

Qu + ho) = Q(u) +h2/{(g—‘;)2+ (%‘;)2}&

and hence () is always a minimum. This minimum occurs only for one func-
tion u; because if there were another minimum for u+ o, then Q(u+ o) could
not exceed Q(u), otherwise

Qu+ho) < Qu+ o)

with an h < 1. If, however, Q(u+ o) = Q(u) then o must be a constant and,
since it vanishes on the boundary, must be zero. Thus the integral 2 has a
minimum only for one function u. As for the variation of the first order, the
term in Q(u + ho) proportional to h, we have

Oou Op\ Oo Ou OB\ 0o _
2h/dT{(ax“ay)a—z+(sa+55)a—y}*“

It follows from this equation that the integral

0B Ou 08 Ou
/((%*%)d“(sa‘%)dy)’

taken over the whole boundary of a part of T', vanishes. If we now convert T,
if it is multiply connected, into a simply connected surface 7" (in the above
manner), then by integrating from a fixed point to the point (x,y) along a
path interior to 7", we obtain a function of z,y,

V:/{(g—f+g—2) da:+(-a£—a—u)dy}+const.

oy O
Now v is either continuous in 7" or discontinuous of the first kind, and changes
in value across a transverse cut by finite amounts which are constant between
the nodes of the network of cuts. The function v = 8 — v now satisfies the
equations

ov ou Ov _ ou

dr By dy oz
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Consequently u + vi is a solution of the differential equation

aiy(u%—iv) Ai%(uﬁ—iv) =0
and is a function of z + yi.

We thus obtain the following theorem, stated in Section 18 of my disser-
tation:

Let T be a surface which is transformed into a simply connected surface
T by transverse cuts, and let a + (i be a given complex function of x,y on
" such that the integral

da  88\° [Ba 88\°
—— = — + — dTr
/{(835 8@/) +(3y+8a:
catended over the whole surface has a finite value. Then this function can be

transformed, in only one way, into a function of x + yi, by subtraction of a
function p + vi of x,y having the following properties:

1. = 0 on the boundary except possibly at isolated points; v 1s given
arbitrarily at a single point;

2. The variations of p in T and of v in T are discontinuous only in
isolated points and such that

J{E) ()}
T (&)

laken over T, remain fimite. The variations of v are the same on each edge
of the transverse cuts.

When the function a + Ji, at those points where its derivatives become
infinite, is discontinuous in the same manner as a given discontinuous func-
tion of x + i, and has no discontinuity which can be removed by altering its
value at isolated points, then Q(«) remains finite and p + vi is everywhere
continuous in 7”. This is because a function of z + i can never have certain
kinds of discontinuity (for example, discontinuities of the first kind) at such
points (my dissertation, Section 12) and so the difference between two such

and
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functions must be continuous, provided that it is not discontinuous of the
second kind.

Thus, by the theorem which has just been proved, a function of z + ¥z
can always be found which, ignoring the discontinuities of the imaginary
part across the transverse cuts, has prescribed discontinuities interior to 7,
and whose real part has arbitrarily prescribed values along the boundary;
always assuming that at any points where the derivatives become infinite
the prescribed discontinuity must be the same as that of a given function of
x + yi. The conditions at the boundary could, as is easily seen, be put into
various other forms without essentially affecting the conclusions which have
been drawn.

4.
The theory of Abelian functions.

In the work which follows, I have treated the Abelian functions by a method
whose principles were laid down in my inaugural dissertation, and in a some-
what altered form described in the three sections above. To provide an overall
view, I begin by briefly summarizing the material.

The first part contains the theory of a system of equivalently branching
algebraic functions and their integrals in so far as this can be developed with-
out the theory of f-series. In Sections 1 to 5, we consider the determination
of these functions by means of their branching type and discontinuities. In
Sections 6 to 10, we study their representations as ratios of functions of two
variables connected by an algebraic equation. In Sections 11 to 13, we dis-
cuss the transformation of such expressions by rational substitutions. This
study leads to the concept of a class of algebraic equations whose members
can be transformed into one another by rational substitutions, which may
be important in other researches. The transformation of an equation of this
kind into an equation of its class of lowest possible degree (Section 13) may
likewise be useful in other circumstances. Lastly, in Sections 14 to 16, in
preparation for Part 2, we deal with the application of Abel’s addition the-
orem for an arbitrary system of everywhere finite integrals of equivalently
branching algebraic functions to the integration of a system of differential
equations.

In the second part, we study a system of everywhere finite integrals of
equivalently branching, 2p + 1 times connected algebraic functions. We ex-
press the inverse functions of Jacobi in p variables by means of p-fold infinite
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{)-series of the form:

50 0o PP P

o0 / _ %:%:a“a“/m“mu/+221:vum“

(v1,v2,...,0,) = € )
—00 —0o0

Here the summation in the exponent is taken over p and y'; the outer sum-
mation is taken over my,..., my.

It turns out that for the general solution of this problem, when p > 3, a
special class of f-series suffices, in which there are 3 (p — 2)(p — 3) relations
between the £ p(p + 1) numbers a, so that only 3p — 3 of them are arbitrary.
"This part of the memoir constitutes at the same time a theory of this special
class of f-functions. We exclude general theta functions, but they can be
treated by an entirely similar method.

Jacobi’s inversion problem, of which a solution is given here, has already
heen solved in several different ways for hyperelliptic integrals through the
persistent efforts of Weierstrass, which have been crowned with such success.
A survey of his work has appeared in Crelle’s Journal (vol. 47, p. 289).
However, until now the only parts of that investigation which have been
worked out fully are those mentioned in Sections 1 and 2 and the first half of
Section 3 relating to elliptic functions (vol. 52, p. 285 of Crelle’s Journal).
The extent to which there is agreement between the later stages of that work
and mine presented here, not only in the results but in the methods used to
derive them, will to a large extent emerge only when the promised exposition
appears.

The present work, with the exception of the last two sections, 26 and
27, whose subject-matter could be touched upon only briefly in my lectures,
is based on a part of my lectures in Gottingen from Michaelmas 1855 to
Michaelmas 1856. As regards the discovery of particular results, those in
Sections 1 to 5, 9 and 12, and the necessary preliminary theorems which I
had to elaborate for my lectures in the manner explained in this memoir, were
found in autumn 1851 and the beginning of 1852 in the course of researches
into the conformal representation of multiply connected surfaces. I was,
however, diverted from these investigations by another matter. It was not
until Easter 1855 that I resumed my research, and during the Easter and
Michaelmas vacations progressed as far as Section 21; the remaining sections
were added by Michaelmas 1856. Some complementary results were added
in various places while writing up the work.
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Part 1.

1.

If s is the root of an irreducible equation of degree n, whose coeflicients
are polynomials of degree m in z, then to every value of 2 correspond n
different values of s which vary continuously with z everywhere except when
they become infinite. If, therefore, the branching of this algebraic function is
represented by an unbounded surface T' (as on p. ) spread over the z-plane,
this surface will have n sheets in every part of the plane, and s will be a
single-valued function of position on this surface. An unbounded surface can
be regarded either as one whose boundary is infinitely far away or as a closed
surface. We shall look on T as closed, so that there will be one point on
each of the n sheets corresponding to the value z = oo, except when oo is a
branch point.

Every rational function of s and z is obviously likewise a single-valued
function of position on 7" and is of the same branching type as the function
s. As we shall see later, the converse is also true.

Integration of such a function yields a function whose different prolonga-
tions for the same part of T differ only by constants, because their derivatives
at the same point of the surface all have the same value.

Such a system of equivalently branching algebraic functions and their in-
tegrals constitutes the first object of our study. Instead of proceeding from
the above expression for these functions, we define them via their disconti-
nuities, using Dirichlet’s principle (p. ).

2.

For simplicity, we say that a function is infinitely small of first order, for
a point on T, if its logarithm is increased by 27i by a positive circuit of the
boundary of a piece of surface surrounding the point, in which the function
remains finite and nonzero. Thus, for a point around which the surface winds
(1 times, at which z has the finite value a, (z — a)/#, and therefore (dz)/*,
is infinitely small of first order. If z = oo, then (1/2)/# is infinitely small of
first order. The case where a function becomes infinitely great or infinitely
small of the vth order at a point of T' can be treated as though the function
became infinitely small or infinitely great of first order at v coincident (or
infinitely close) points; we shall occasionally do this later.

The precise manner, in which the functions considered here become dis-
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continuous, can now be expressed as follows. If one of the functions becomes
imfinite at a point on 7', and if » denotes an arbitrary function which becomes
ifinitely small of the first order at this point, then the function can always
he transformed into one which is continuous at this point by subtracting a
linite expression of the form

Alogr+ Br ' +Cr 2 +.. ..

'This ensues from known theorems on the expansion of functions in power
sceries due to Cauchy, which can also be proved via Fourier series.

3.

Consider an unbounded, connected, everywhere n-sheeted surface T spread
over the z-plane. As above we regard T as closed. Let T be cut up into a
simply connected surface 7’. The boundary of a simply connected surface
consists of a single piece, and a closed surface breaks up into an even number
of boundary pieces after making an odd number of cuts, and an odd number
nfter an even number of cuts. Hence an even number of cuts is needed. Let
the number of transverse cuts required be 2p. To simplify what follows, we
shall suppose that after the first cut, each subsequent cut is made from a
point on an earlier cut to the adjacent point on its opposite edge. Now con-
sider a quantity which varies continuously along the boundary of 7", with the
same variations on both sides of each cut in the system. Then the difference
hhetween its values on the two sides, at a point of a transverse cut, is constant
along that cut.

We now write z = 2 + yi and consider a function « + 57 of z,y in T as
lollows:

In the neighborhood of the points €y, €3, . .. specify an arbitrary function
1, of z that is infinitely small of first order at ¢,, and take the function at €,
1o be a finite sum

Aylogr, + Byt 4+ Cory? -+ = ¢u(1).

llere A,, B,,C,,... are arbitrary constants. We then draw to an arbitrary
point, from each of the points ¢, for which A, # 0, non-intersecting lines
interior to 77, the line from ¢, being denoted by £,. Lastly we define the
[unction in the remaining part of 7" so that, except on the transverse cuts
and the lines ¢, it is continuous, while on the positive (left-hand) side of the
line ¢, its value is greater by —2m¢A, than its value on the opposite side of
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the line, whereas on the positive side of the vth transverse cut, the value is
greater than that on the opposite side by the given constant h*). Further,

the integral
oa  9B\® [(Ba IB8\°
/{(55‘@) (5 5) [

taken over T, has a finite value. It is easily seen that this is always possible
provided that the sum of the constants A is zero. This condition is also
necessary, because only then is it possible for the function to resume its
original value after a circuit of the system of lines ¢.

We call the constants AV, A .. h(®) by which the values of this func-
tion on the positive edges of the transverse cuts exceed the values on the
negative edges, the moduli of periodicity of the function.

By Dirichlet’s principle the function a+ 3i can now be transformed into a
function w of z+yi, determined apart from an additive constant, by subtract-
ing a similar function of z, y continuous in 7" whose moduli of periodicity are
purely imaginary. The function w has the same discontinuities as o + i in
the interior of 7", and the real parts of the moduli of periodicity of the two
functions coincide. Thus w can be assigned the functions ¢,, and the real
parts of the moduli of periodicity, arbitrarily. These conditions determine w
within an additive constant, and the same holds for the imaginary parts of
its moduli of periodicity.

It will be seen that this function w includes, as special cases, the functions
indicated in Section 1.

4.
Functions w that are everywhere finite. (Integrals of the first kind).

We now consider the simplest of these functions, beginning with those
which are always finite and therefore continuous throughout the interior of
T'. Let wy,ws, ..., w, be such functions, then so is

w = aqw; + Wy + - -+ + W, + const.,

where ay,as,...,q, are arbitrary constants. Let kgy),kg’), . .,kg’) be the
moduli of periodicity of the functions w,,ws, ..., w, for the vth transverse
cut. The modulus of periodicity of w for this transverse cut is

alkgl') + a2kgy) cee apk](,") = kW,
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[f the variables « are expressed in the form v + &i, the real parts of the 2p
numbers £ k3 k@) are linear functions of 7, . .. s Vps 015 .., 0, Now
if wy, wy, ... w, are connected by no linear equation with constant coefficients,
the determinant of these linear expressions cannot vanish. For otherwise the
ratios of the a could be given values such that the moduli of periodicity of
the real parts of the function w were all zero, and consequently the real part
of w and therefore also w itself would have to be constant, by Dirichlet’s
principle. The 2p numbers 7 and 4 can therefore be determined in such
a way that the real parts of the moduli of periodicity take given values.
Consequently w can represent any function w which always remains finite,
provided that w;, ws, ..., wp, do not satisfy any linear equation with constant
coefficients. These functions, however, can always be chosen so that they
satisfy this condition because, as long as p < p, there are always linear
equations between the moduli of periodicity of the real part of

oWy + dows + -+ - + W, + const.

'Thus w4, is not a function expressible in this form, if the moduli of peri-
odicity of the real part of the function are determined (as is always possible
in view of the foregoing) in such a way that these linear equations are not
satisfied.

Functions w, which become infinite of first order at a single point of the
surface T. (Integrals of the second kind.)

Suppose that w becomes infinite at only one point € of the surface T,
and that for this point all the coefficients in ¢ other than B vanish. Such
a function is then defined up to an additive constant by the number B and
the real parts of its moduli of periodicity. If we denote any such function by
1°(€), then the constants 3, ay, o, .. ., @, in the expression

t(e) = Bt°(e) + cqwy + apwz + - -+ + W, + const.

can always be determined so that B and the real parts of the moduli of peri-
odicity are given specified values. Thus every such function can be expressed
in the above form.

lFunctions w which become logarithmically infinite at two points of the surface
1". (Integrals of the third kind.)

Thirdly, consider the case where the function w has only logarithmic
infinities. Since the sum of the numbers A must be zero, there must be at
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least two such points on the surface T', say €; and €5, and we must have
Ay = —A;. Denote by @€, €5) any one of the functions with this property
for which A, = 1. By similar reasoning to that above, all other such functions
are of the form

(€1, €2) = @%ey, €3) + arwy + agwy + - - - + apw, + const.

In the following remarks, we assume for simplicity that the points € are
neither branch points nor at infinity. We can then set r, = z — z,, where z,
denotes the value of z at the point €,. If we now differentiate w(e;, €2) with
respect to z; in such a way that the real parts of the moduli of periodicity
(or p of the moduli themselves) and the value of &(e;, €5) remain constant
for any point of the surface T, we obtain a function t{e;) which becomes
discontinuous at €; in the same way as 2_121. Conversely if t(e;) is such a
function,

23
/ t(e1)dz,

taken over an arbitrary line in 7" from €5 to €3, is a function @(es, €3). Simi-
larly, by differentiating t(e;) n times with respect to z; we obtain a function
w which is discontinuous at the point €; in the same way as nl(z — z;)™"!
but is elsewhere finite.

For the positions of the point € which we excluded, these theorems require
a slight modification.

Obviously it is always possible to construct a linear expression with con-
stant coefficients in functions w, and functions @ and their derivatives with
respect to the discontinuity values, which have in the interior of 7" arbitrary
given discontinuities of the same type as those of w, and whose moduli of
periodicity have real parts with arbitrary given values. Thus every given
function w can be represented by such an expression.

5.
The general expression for a function w which becomes infinite of first
order at m points €1, ..., €, of the surface T is, as shown above,

s=Pit1 + otz + -+ + Butm + 11 + aaws + -+ - + apw), + const.,

where t,, is an arbitrary function t(e,) and the numbers o and 3 are constants.
If p of the m points € coincide at the point 7 of the surface 7', the functions
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I corresponding to these p points must be replaced by a function ¢(n) and its
p - 1 first derivatives with respect to the discontinuity value (Section 2).

The 2p imoduli of periodicity of this function s are homogeneous linear
lunctions of the p + m numbers a and 3. If m > p + 1, then among these
p+m numbers «, § there are 2p which can be expressed as linear forms in the
remainder in such a way that all the moduli of periodicity become zero. The
function then contains m — p + 1 arbitrary constants of which it is a linear
homogeneous function, and it may be regarded as a linear form in m — p
[unctions, each of which has only p + 1 infinities of first order.

If m = p+ 1, the ratios of the 2p + 1 numbers o and 3 are completely
dletermined for every position of the p 4+ 1 points e. However, for particular
positions of these points, some of the 3 may be zero. Suppose there are
m — p such points; the function will be infinite of first order at only u points.
‘The positions of these p points must therefore be such that among the 2p
vquations which hold between the other p + p numbers # and «, there are
p+ 1 — p equations which are identical consequences of the others, and
consequently only 2y — p — 1 points can be chosen arbitrarily. Moreover, the
lunction still contains two arbitrary constants.

Let us now determine s so that u is as small as possible. If s becomes
infinite of first order u times, then this will also be the case for every rational
[unction of first degree in s. In solving this problem, then, one of the p
points can be chosen arbitrarily. The position of the other points must then
he determined in such a way that p + 1 — u of the equations between the «
and 3 are identical consequences of the others. This implies, in the absence
ol certain equations relating the branch points of the surface T, that

1
p+l—p<p-1, or u2§p+1-
The number of arbitrary constants in a function s, which has m infinities
on the surface T of first order and is continuous everywhere else, is 2m —p+1
i all cases.

Such a function is the root of an equation of degree n, whose coefficients
are polynomials of degree m in z.

If s1,89,...,8, are the n values of the function s for given z, and if
o denotes a variable, then (0 — s1)(0 — s2)...(0 — s,) is a single-valued
function of z which becomes infinite only at those points of the z-plane
which coincide with a point €, with an order of infinity equal to the number
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of points € that coincide there. In fact, to every point € that falls there, that
is not a branch point, only one factor of this product is infinite of order higher
than 1. However, if € is a point around which the surface T" winds p times,
there are p infinite factors of order higher than 1/u. If we now denote the
values of z for those points ¢ at which z is not infinite, by (i, (s, ...,(,, and
(2= (1) (z—C2) ... (z— () by ag, then ag(0— 1) ... (0 — 8,) is a single-valued
function of z which is finite for all finite values of z and is infinite of order
m for z = oo; and thus is a polynomial of degree m in z. It is equally a
polynomial of degree n in o which vanishes for ¢ = s. Let us denote it by
F and from now on use the notation F' (3,7;) for a polynomial function of
degree n in o and m in z. Thus s is a root of the equation

n m

F(s,z)=0.

The function F' is a power of an irreducible polynomial, that is, one
which cannot be expressed as the product of two polynomials in ¢ and z.
This is because every rational polynomial factor of F(o,2), since it has to
vanish for some of the roots s;,s,,...,s,, must, when o = s, be a function
of z which vanishes in some part of the surface T. As T is connected, the
function must vanish everywhere. Two irreducible factors of F(o,z) could
only vanish together for a finite number of pairs of values if one factor were
a constant multiple of the other. It follows that F must be a power of an
irreducible polynomial.

If the exponent v of this power exceeds 1, then the branching type of the
function s is not represented by the surface T but by a surface 7, everywhere
of n /v sheets, spread over the z-plane and itself covered v times by the surface
T. Although we could regard s as a function which branches in the same
way as 7', it would not be true to say that 7" branches in the same way as s.

Another function which, like s, is discontinuous only at certain points
of T, is the function dw/dz. For this function has the same value at the
contiguous points on each edge of the transverse cuts and the lines ¢, because
the differences between the corresponding values of w are constant along these
curves. Hence the function can become infinite only where w does so or at
branch points of the surface. It is continuous elsewhere, since the derivative
of a single-valued finite function is necessarily single-valued and finite.

All the functions w are therefore algebraic functions of z that branch like
T, or integrals of such functions. This system of functions is determined by
the given surface T' and depends only on the position of the branch points.
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6.
Let us now suppose that the irreducible equation
F(5,%)=0

has been given and that we have to determine the branching of the function s
or the surface T representing it. If, for a value 3 of z, there are y branches of
the function which connect so that after u circuits of the variable z around
this branch point 3, the branch first changes back into itself, then the u
branches of the function can easily be proved (by Cauchy’s theorem or using
l‘ourier series) to be represented by a power series in ascending rational
powers of z — (3 with exponents which have least common denominator yu,
and the converse is true.

A point of the surface T at which only two branches are connected, so
that one branch continues into the other and vice versa around this point, is
called a simple branch point.

A point of the surface around which it winds x + 1 times can then be
regarded as the equivalent of u coincident (or infinitely near) simple branch
points.

To show this, suppose that s;,s9,...,5,41 are single-valued branches of
the function s in a piece of the z-plane surrounding one such point and
suppose that a;,as, ..., a, are simple branch points following one another on
n positive circuit of the boundary of this piece. A circuit around a; has the
cffect of interchanging s; and s,, one around a, interchanges s; and ss, ...,
nnd one around a, interchanges s; and s,;;. A circuit enclosing all these
hranch points, but no others, transforms

81,82,..., Spy S,u+1
into

89,83,..., Sp+1, S1
and when all the simple branch points coincide, a branch point of order u
Clsues.

The properties of the functions w depend essentially on the connectivity

of the surface T. To determine this, we first need to count the simple branch
points of the function s.

At a branch point, the branches of the function which connect there all
assume the same value, and the equation

F(s) =aps" +a;s" '+ +a,=0
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therefore has two or more equal roots. This can only happen if
F'(s)=aons” ' +ai(n—1)s" >+ +a, , =0
or equivalently, if the single-valued function of z,
F'(s))F'(s3) ... F'(s,),

vanishes. This latter function becomes infinite for finite values of z only when
s = 00, and thus when a¢y = 0, and to remain finite needs to be multiplied
by ap™2. It is then a single-valued function of z which has a finite value for
all finite z, which becomes infinite of order 2m(n — 1) when z = oo and is
therefore a polynomial of degree 2m(n — 1). The values of z for which F(s)
and F'(s) simultaneously vanish are therefore the roots of the equation of

degree 2m(n — 1),
=a; H F'(s

or since F'(s;) = ag H

i
the equation which is the result of eliminating s from the equations
F'(s) =0 and F(s) = 0.

If F(s,2) =0 for s = a, 2 = (3, then

oOF oF
F(Saz)=§(3—0)+5‘z—(z—ﬂ)
1 (6?2 0? ?
o e L F S R Y R
OF O*F O*F
Fis) = 0s  0s? (s )+8382 (z=8)+

Hence if for (s = o,z = f3), %’: =0 and 31; 2E {4 not vanish, it must follow

that s — o tends to zero like (z — 3)!/2, and we have a simple branch point.
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In the product HF '(s;), two factors become infinitely small of the order of

magnitude of (z — B)l/z, which shows that ((z) has z — [ as a factor. In
the case where %F and d Sz never vanish when F' and %—f are both zero, each
linear factor of Q(z) corresponds to one simple branch point and the number
of such points is accordingly 2m(n — 1).

The position of the branch points depends on the coefficients of the powers
of z in the functions @ and varies continuously with them.

If these coefficients take values such that two simple branch points be-
longing to the same pair of branches coincide, the two branch points cancel
and F'(s) has two equal roots, without giving rise to a branch point. If each
of s1, 89 continues into the other, the effect of making a circuit around a
piece of the z-plane containing the two points is that s; changes into s; and
sy into 85, so that the two branches are single-valued functions when they

coincide. Their derivative 2 is likewise single-valued and finite and hence

UE _ _ds OF _ dz

Az dz Bs_
If FF= 3{: = %—f = 0 for s = a,z = [, the next three terms in the
ds

expansion of F(s, z) give two values for the ratio (s — a)/(z — ) = £ when
s = a, z = (3. If these values are distinct and finite, the two branches of
the function s to which they belong cannot connect and therefore are not
Irranches of one another. Thus %% is infinitely small of order z — 3 for each
ol the two branches, and consequently Q(z) has the factor (z — 3)%. So only
two simple branch points coincide.

In order to decide, in every case where, for z = 3, the equation F(s) =0
lias more than one root equal to a, how many simple branch points coincide
lor s = @, z = # and how many of these cancel each other out, we must
cxpress these roots in the form of a power-series in ascending powers of
: — [ by Lagrange’s method3, taking the expansion far enough to ensure
that the individual expansions all become different, and thereby determining
the true number of distinct branches. We also need to find the order of
vanishing of F’(s) for each of these roots, in order to determine the number
of the corresponding linear factors of ((2) or, in other words, the number of
voincident simple branch points for which s = «, 2 = 3.

If we denote by p the number of times the surface 7" winds around the
point (s, z), then F’(s) will be infinitely small of first order as often as simple

3Lagrange, Nouvelle méthode pour résoudre les équations littérales par le moyen des
séries. Mémoires de I’Académie de Berlin XXIV, 1780, Oeuvres de Lagrange, Tome I1II p.
h WL
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branch points coincide at the points z; dz'~'/? will be infinitely small of first
order as often as there are truly existing branch points, and consequently
F'(2)dz"/#~1 as often as there are pairs of simple branch points which cancel.

It follows therefore that if w denotes the number of actually existing
branches, and 27 the number of those which cancel each other,

w+2r =2(n—1)m.

If we suppose that the branch points coincide only in pairs which cancel each
other out, then for r pairs of values s = v,, 2 = 6,
OF OF
F = —_—— = — =
ds 0z

and

O*F O*F  ( O*F 2#)
022 Os? 050z ’

while for w pairs of values of s and z,

oF
Bs

We shall confine ourselves for the most part to the treatment of this
case because the results can easily be extended to the others as limiting
cases. We can do this the more readily since as we have based the theory of
these functions on principles which are independent of the form in which the
functions are expressed and which admit no exceptions.

O*F

OF
F—O, :O,E#O,ESE-‘;&O

7.

In a simply connected surface spread over a finite region of the z-plane,
there is a relationship between the number of simple branch points and the
number of rotations of direction made by the boundary line of the surface;
the latter exceeding the former by one. From this can be deduced a relation,
for a multiply connected surface, between these numbers and the number of
transverse cuts needed to transform it into a simply connected surface. This
relation, which does not depend on metrical considerations, and belongs to
analysis situs, can be derived in the following way for the surface T.

By Dirichlet’s principle, the function log ¢ of z can be defined as a single-
valued function of z in the simply connected surface T’ in such a manner
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that ¢ , at an arbitrary interior point 7", is infinitely small of first order and
log ¢, along an arbitrary simple line joining this point to the boundary, has
a value —27i greater on the positive edge of the line than the negative edge,
and elsewhere varies continuously; while its value at all boundary points of
1" is purely imaginary. The function { defined in this way assumes every
complex value once whose modulus is less than 1. The totality of its values
can therefore be represented by a surface spread simply over a circle in the (-
plane. To each point inside the circle corresponds a point of 7" and conversely.
Thus for an arbitrary point of the surface where z = 2/, { = {’, the function
¢ — (' is infinitely small of first order. Consequently for every finite z’, when
the surface 7" turns upon itself x4+ 1 times,

(z—2) _ dz
(¢ = dg(¢ =)

remains finite. However, for infinite 2/,

(n+1)

( +1) 271 B —dz
T =0y~ 24—y

remains finite. The integral [ dlog 3—2, taken around the circle in a positive

direction, is equal to the sum of the integrals around the points where d—z is
infinite or zero and its value is therefore 27mi(w — 2n).

If s denotes distance on the boundary of 7" from one and the same fixed
point to a variable point on the boundary, and ¢ the corresponding arc of
the circumference of the circle, then
log %C— log Z— + log 3— — log 5C

nnd, integrating over the whole boundary,

dz ds dC .
/dlog T (2p — 1)2mi, /dlog e —0,—/dlog Fri —2mi,

nnd therefore J
/dlog Eg’ = (2p — 2)2mi.

'I'his proves that
w—2n=2(p—1).
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Since
w=2((n~-1)m-—r),

we obtain
p=(n-—1(m-1)—r

8.

The general expression for a function s’ of z branching in the same way as
T, which becomes infinite of first order at m’ given points of 7" and remains
continuous elsewhere contains, as shown above, m’—p+1 arbitrary constants
and is a linear function of these (Section 5). If, therefore, it can be shown, as
we now intend, that rational functions of s and z can be constructed which
are infinite of first order for m’ arbitrarily given pairs of values of s and z
satisfying the equation F' = 0, and which are also linear functions of m’—p—+1
arbitrary constants, then every function s’ can be represented in this form.

The quotient of two polynomials x(s, z) and (s, z) can only take arbi-
trary finite values for s = co and z = co when both are of the same degree.

V(5,5),

The expression for s’ is thus of the form =222 moreover, v > n—1, u > m—1.
8,2

If two unconnected branches of the function s become equal so that at two
distinct points of the surface T we have z = « and s = 4, then, generally
speaking, s’ will have different values at these two points. Thus in order to
have ¥ — s’y identically zero, it is necessary that for two different values of
s, W(y,8) — s'x(7,0) = 0 and consequently x(7,6) = 0 and ¢(7,d) = 0. The
functions x and 1 must therefore vanish for the r pairs of values s = 7,
z=46, (p. ).*

The function y vanishes for a value of z for which the following single-
valued function K(z) (finite-valued for all finite z) vanishes:

K (z) = agx(s1)x(s2) - .- x(sn)-

This function K is infinite of order mv + nu for infinite z and is therefore
a polynomial of degree mu + nv. Since two factors of the product IIx(s;)
K3

4Here, as already mentioned, we consider only the case in which the branch points of
the function s coincide only in pairs canceling each other. In general, the functions x
and 7, at a point of T where, as envisaged in §6, there are branches which cancel each
other when T" winds p times around the point in question, become infinitely small in the
same way as F'(s)dz'/#~!, so that the first terms in the expansion of the function to be
represented, in powers of (Az)l/ . can take arbitrary values.
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become infinitely small of first order for the pairs (v, ), it follows that K(z)
Ihecomes infinitely small of second order, and hence y is also infinitely small
of the first order for

t=mv+nu—2r

pairs of values of s and z, or points of T.
If v >n—1, u>m—1, the value of the function x remains unchanged

if we take
v—-n p—m n m

(5,5 + ('S G D)
in place of X(g, g), where p is arbitrary. Consequently, among the coefficients
of this expression, there are
(v—n+1)(p—m+1)
which can be chosen arbitrarily. Now if among the remaining
(p+1)(v+1)—(v—-—n+1)(g—m+1)

constants, 7 of them are determined as linear functions of the others in such
a way that x vanishes for the r pairs of values (7, ¢), the function x still has

e=(u+Hr+)—(v-n+)p-—m+1)—r
=nu+mv—(n—1)m-1)—r+1

arbitrary constants. We therefore have
i—e=n—-1(m—-1)—-r—1=p—1.

If we now choose p and v so that € > m/, we can then determine x in
such a way that, for any m’ pairs of given values, it becomes infinitely small
of first order. Thus when m’ > p, one can fix 3 so that 3;—’ remains finite
for all other values. In fact 1 is likewise a homogeneous linear function of
« arbitrary constants, and therefore when € — 4 +m’ > 1 it is possible to
determine ¢ — m’ of them as linear combinations of the others so that 1 also
vanishes for the s —m’ pairs of values of s and z for which x becomes infinitely
small of first order. The function v thus contains ¢ — i +m' =m’' —p+ 1
arbitrary constants, and therefore 3;—’ can represent every function s'.
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9.

As the functions ‘fi‘“ are algebraic functions of z which branch in the same
manner as the function s (Section 5), they can, by the theorem which has
just been proved, be expressed rationally in terms of s and z, and all the
functions w can be expressed as integrals of rational functions of s and z.

If w is an everywhere finite function w, its derivative ‘fi—f is infinite of
first order at each simple branch point of the surface 7', because dw and
(dz)l/ 2 are both infinitely small of first order at these points. Everywhere
else, dw/dz remains continuous, and is infinitely small of the second order for
z = oo. Conversely, the integral of a function which exhibits this behaviour
is everywhere finite.

In order to express this function 42 <> as a quotient of two polynomials in s
and z we must (by Section 8) take as denominator a function which vanishes
at the branch points and for the r pairs of values (7y,d). The simplest way to
satisfy this requirement is to take a function which vanishes only for these

values. Now

oF
5. = agns”' +ay(n — 1)s" 2+ +a,_,
is such a function.
This function becomes infinite of order n — 2 when s is infinite (since aq is
then infinitely small of first order) and infinite of mth order for an infinite z.
Thus, to ensure that d“’ should be finite at all finite points other than branch

points, and infinitely small of second order for infinite z, the numerator has

m—2

to be a polynomial ¢(n§ z ") which vanishes for the r pairs of values (v, §)

(p. ). Thus
n 2 m 2 n 2 m 2
we [ [ R
where p =0 for s =7, 2=46,, p=1,2,...,r
The function ¢ contains (n — 1)(m — 1) constant coefficients, and if r of
them are determined as linear functions of the others so that ¢ = 0 for the

r pairs of values s = v, z = §, there still remain (m — 1)(n — 1) —r, or p
constants which can be chosen arbitrarily, and ¢ takes the form

a1 @y + arpa + - + apdp,
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in which ¢y, ¢2,..., ¢, are particular functions ¢, none of which is a linear
function of the others, and a;, a9, ..., o, are arbitrary constants. A more
general expression for w follows, already obtained in a different way, namely

1wy + apws + - - - + apw, + const.

The functions w which are not everywhere finite, and so the integrals of
the second and third kinds, can be expressed as rational functions of s and z
by using the same principles, but we shall not dwell on this now, because the
general rules of the preceding paragraphs do not call for any more detailed
explanations. Moreover, definite forms for such integrals arise in the theory
of f-functions.

10.
The function ¢, as well as for the r pairs of values (v, d), is also infinitely
small of first order for m(n — 2) + n(m — 2) — 2r, or 2(p — 1), pairs of values
of s and z satisfying the equation F' = 0. Now if

0V = g1 + 0l gy + -+ afg,
and
oY = a9y + 058y + -+ ol

are any two functions ¢, the numerator of the expression ¢® /¢1) can be
determined so that it is equal to zero for p — 1 arbitrarily given pairs of
values of s and z satisfying the equation F' = 0; and then the denominator so
that it vanishes for p — 2 of the other pairs of values for which ¢V = 0. The
expression so constructed is a linear function of two arbitrary constants and
is consequently a general expression of a function which can become infinite
of first order at only p points of the surface 7. A function which becomes
infinite at fewer than p points constitutes a special case of this function. Thus
every function which is infinite of the first order at fewer than p + 1 points
of the surface T' can be expressed in the form ¢ /¢! or in the form %ﬁ%,
where w() and w? are two everywhere finite integrals of rational functions

of s and z.

11.

A function z; of z that branches like T, and which becomes infinite of
first order at n; points of this surface is, by the foregoing (p. ), the root of
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an equation of the form
n ni

G(z,2z)=0
and therefore takes every value at n; points of the surface T'. If therefore we
imagine each point of T" to be mapped onto by a point on a plane representing
geometrically the value of z; at this point, the totality of these points forms
a surface T, covering the the z;-plane n; times. The image is known to be
similar to 7" in its smallest parts. To each point in the one surface corresponds
one and only one point in the other surface. Thus the functions w, that is
to say the integrals of functions of z that branch like T, transform into
functions which have a unique value throughout the surface 77 and which
have the same discontinuities as w in the corresponding points of 7', when z
is replaced by 2; as an independent variable. These functions are therefore
integrals of functions of 2z, branching like T7.

If we denote by s; any other function of z branching like 7', which for m,
points of T—and consequently also for m; points of 7;—becomes infinite of
first order, then (Section 5) an equation of the form

F 1(‘2}77;11 ) =0
holds, in which F} is a power of an irreducible polynomial in s; and z;. When
this power is the first, all functions of z; which branch like 7T}, and hence all
rational functions of s and z, can be expressed rationally in terms of s; and
2 (Section 8).

The equation
n m

F(s,z)=0
can therefore be transformed into
F(s1,21) =0

by a rational substitution, and conversely.

The domains (s, z) and (s;, 2;) have the same connectivity because to
each point of one corresponds one point of the other. Thus if r; denotes
the number of cases in which s; and z; both assume the same value for two

different points of the domain (s, 2;) and consequently F, %fll, % vanish

while

OF, 8*F) 2F \?
ds? 022 08102
does not, then it follows that

(np—=1)(m—1)—ri=p=(n—-1)(m-1)—r.
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12.

We shall now consider all irreducible algebraic equations between two
complex variables, which can be transformed into one another by rational
transformations, as belonging to the same class. Thus F(s,z) = 0 and
Fi(s1,21) = 0 belong to the same class, if rational functions of s; and z
can be found which, when substituted for s and z respectively, transform the
equation F'(s,z) = 0 into the equation Fj(s1,z;) = 0; while equally s; and
21 are rational functions of s and z.

The rational functions of s and z regarded as functions of any one of
them, say (, constitute a system of similarly branching algebraic functions.
In this way, every equation clearly gives rise to a class of systems of similarly
branching algebraic functions, which by introducing one of them as an inde-
pendent variable, can be rationally transformed into each other. Moreover,
all the equations of one class lead to the same class of systems of algebraic
functions, and conversely (Section 11) each class of such systems leads to one
class of equations.

If the (s, z) domain is 2p+ 1 times connected and the function ¢ becomes
infinite of first order at u points of this domain, the number of branch points
of equivalently branching functions of {, which can be formed by the other
rational functions of s and z, is 2(u — p + 1), and the number of arbitrary
constants in the function ( is therefore 2uu—p-+1 (Section 5). These constants
can always be chosen so that 2u — p + 1 branch points take arbitrarily as-
signed values, when these branch points are mutually independent functions
of the constants. This can be done in only a finite number of different ways
because the conditions are algebraic. In each class of of similarly branching
functions with connectivity 2p+ 1, there is consequently only a finite number
of p-valued functions such that 2u + p — 1 branch points have prescribed
values. If, on the other hand, the 2(x+ p— 1) branch points of a surface with
connectivity 2p + 1, covering the whole (-plane i times, are arbitrarily pre-
scribed, then (Sections 3-5) there is always a system of algebraic functions
of ¢ branching like the surface. The remaining 3p — 3 branch points in these
systems of similarly branching u-valued functions can therefore be assigned
any given values; and thus a class of systems of similarly branching functions
with connectivity 2p + 1, and the corresponding class of algebraic equations,
depends on 3p — 3 continuous variables, which we shall call the moduli of the
class.

This determination of the number of moduli of a class of algebraic func-
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tions with connectivity 2p 4+ 1 is, however, valid only with the proviso that
there are 24 — p + 1 branch points which are independent functions of the
arbitrary constants in the function (. This hypothesis implies that p > 1,
and in this case the number of moduli is 3p — 3. When p = 1, the number of
moduli is 1. A straightforward determination of this number is made difficult
by the precise way in which the arbitrary constants enter into (. Accordingly
in order to determine the number of moduli, we introduce into a system of
similarly branching functions with connectivity 2p + 1, as an independent
variable, not one of these functions, but rather an everywhere finite integral
of such a function.

The values which the function w of z takes in the surface 7" are repre-
sented geometrically by a surface which we shall call S, which covers simply
or multiply a finite portion of the w-plane and is similar to 7" in the smallest
parts. Since w, on the positive edge of the vth transverse cut, is greater by a
constant k) than on the negative edge, the boundary of S consists of pairs
of parallel curves each of which is the image of the same part of the network
of cuts forming the boundary of T7”. The difference in location of correspond-
ing points in the parallel portions of the boundary of S corresponding to the
vth transverse cut is expressed by the complex number k*). The number
of simple branch points of the surface S is 2p — 2, because dw becomes in-
finitely small of second order in 2p — 2 points of T". The rational functions
of s and 2 are thus functions of w, which, for every point of S at which they
do not become infinite, have a unique value which varies continuously with
s,z and is the same at corresponding points of parallel boundary portions.
They therefore constitute a system of similarly branching 2p-fold periodic
functions of w. It can now be shown (in the same way as in Sections 3 to 5)
that if the 2p — 2 branch points and the 2p differences of location of parallel
boundary portions of S are assigned arbitrarily, a system of functions exists
which branches similarly to the surface S, and which assumes the same value
in corresponding points of parallel boundary portions and is therefore 2p-fold
periodic. Further, this system of functions, regarded as a function of one of
them, constitutes a system of similarly branching algebraic functions with
connectivity 2p + 1 and consequently defines a class of algebraic functions
with connectivity 2p+ 1. In fact, by Dirichlet’s principle, a function of w can
be defined on the surface S, to within an additive constant, by the following
conditions: in the interior of S its arbitrarily prescribed discontinuities are
of the same form as those of w in 7”; and on the corresponding points of the
parallel boundary portions, it is assigned constant values whose real part is
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given. We can conclude from this, in the same way as in Section 5, the ex-
istence of functions which are discontinuous only at isolated points of S and
have the same value at corresponding points on parallel boundary portions.
If such a function z becomes infinite of first order at n points of S and is not
discontinuous elsewhere, it takes every complex value at n points of S. For
if @ is an arbitrary constant, then [ dlog(z —a) = 0 around the boundary
of S, because the contributions to the integral from the parallel boundary
portions cancel. Hence z —a is infinitely small as often as it is infinitely large
of first order. The values assumed by z are consequently represented by a
surface covering the z-plane n times everywhere. The other functions of w
which are similarly branching and periodic constitute a system of algebraic
functions of z, branching in the same way as the surface, with connectivity
2p + 1, as we wished to prove.

For any given class of algebraic functions with connectivity 2p + 1, we
introduce the quantity

w=aq\w) + awy+ - +oyw,+c¢

as an independent variable. We can determine the numbers a so that p
of the 2p moduli of periodicity have given values, and then choose ¢, when
p > 1, so that one of the 2p — 2 branch points of the periodic functions of
w has a given value. This completely determines w. Hence there are 3p — 3
remaining quantities, on which the form of branching and periodicity of these
functions of w depends. Since, to arbitrary values of these 3p — 3 quantities,
corresponds a class of algebraic functions with connectivity 2p + 1, such a
class depends on 3p — 3 independent variables.
When p = 1 there are no branch points, and in the expression

w = ow; +c¢

the number o, can be determined so that one of the moduli of periodicity has
a given value, and the value of the other modulus of periodicity is thereby
determined. Accordingly the number of moduli for a class is 1.

13.
In accordance with the principles of transformation developed in Section
11, it is clear that in order to transform any given equation F'(s,z) = 0 into
an equation

ny mi

F1(31, 21) =0,
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by a rational substitution, of the same class and of lowest possible degree,
we must first determine for z; an expression r(s, z) rational in s and z such
that n; shall be as small as possible. We then likewise determine for s;
another expression r/(s, z) such that m, shall be the smallest possible, while
the values of s; corresponding to an arbitrary value of z; do not split up into
groups equal to one another. This ensures that Fl(g},rgf ) is not a higher
power than the first of an irreducible polynomial.

If the domain of values (s, z) has connectivity 2p + 1, the smallest value
which can be taken by n, is, generally speaking, > £ +1 (Section 5) and the
number of cases in which s; and z; can both take the same values for two
different points in the domain is

(ny — 1)(my — 1) — p.

In a class of algebraic equations between two variables, the equations of
lowest degree are therefore, in the absence of any special relations between
the moduli, as follows:

for p=1, F(s5,2)=0, r=0,
p=2, F(3,2)=0, r=0

For p> 2,
p=2u—3, F(5%=0 r=(u—2)72
p=2u—2 F(5% =0 r=u—1)(u-23).

Of the coefficients of the powers of s and z in the polynomials F, r of
them must be determined as linear homogeneous functions of the others in
such a way that %—f and %—f simultaneously vanish for r pairs satisfying F' = 0.
The rational functions of s and z, regarded as functions of one of them, will
then represent all systems of algebraic functions with connectivity 2p + 1.

14.
I shall now, following Jacobi®, (Crelle’s Journal, vol.9, No. 32, Section
8) use Abel’s addition theorem for the integration of a system of differential
equations, confining myself to what will be required later in this memoir.
If, in an everywhere finite integral w of a rational function of s and z, we
introduce as an independent variable a rational function ¢ of s and z; which

5Jacobi, Gesammelte Werke, vol. II, p. 15. W.

114



Riemann, Collected Papers

becomes infinite of first order for m pairs of values of s and z, then ‘fi—’z” is an

mn-valued function of {. If we denote the m values of w for the same value of
¢ by w® w® . w™ then

dw®™  dw? duw'™
ic T Tac T

is a single-valued function of { whose integral is everywhere finite. Conse-
quently,

/d(w(l) +w® .t w(m))

is likewise everywhere finite and single-valued and therefore constant. Sim-
ilarly, if wM w® .. w™ are the values of an arbitrary integral w of a
rational function of s and z, corresponding to the same value of (, then

/d(w(l) +w® 4 W)

is, apart from an additive constant, a well-defined function whose value is
determined by the discontinuities of w. It is the sum of a rational function
of ¢ and a linear combination (with constant coefficients) of logarithms of
rational functions of (.

With the aid of this theorem, we shall now show that the following set of
p simultaneous differential equations between the p + 1 pairs of values of s

and z, (s1, 21), (82, 22), - - -, (Sp41, Zp41), for which F(s, z) = 0:
¢7r(81, 21) ¢7r(32» 22) ¢7r(8p+1, Zp+1) .
oGy P T e 2T Tl et =0
851 652 asp+1
for m=1,...,p, have a general (complete) solution.

Through these differential equations any p of the pairs of values (s, z,)
are well-defined functions of the remaining one pair if, when a value of the
latter is given, the values of the others follow. If therefore the p + 1 pairs
are determined as functions of a single variable (, in such a way that, for the
value 0 of this single variable, the pairs are assigned arbitrary initial values
(s9,20), (59,29),-..,(8),1,20,1), and by the requirement that they satisfy
the differential equations, this provides the complete general solution of the
differential equations. Now the quantity 1/{ can always be determined as
a single-valued and therefore rational function of (s, z) so that it becomes
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infinite only for some or all of the p+ 1 pairs of values (sg

infinite of the first order, because in the expression

z0), and then only

pt+l

P
Zﬁﬂt(sﬂ, Z) + Z a,w, + const.,
p=1

p=1

the ratios of the o and 3 can always be determined so that all the moduli of
periodicity are 0. If no 3 is 0, the p+ 1 branches of the (p+ 1)-valued equiva-

lently branching functions s and z of {, (s1,21), (82, 22), - - -, (Sp+1, Zp+1), that
take the values (s, 29), (s, 29),..., (89}, 20,,) for ¢ = 0, satisfy the required

differential equations. If, however, some of the 3 (say, the last p + 1 — m)
vanish, the differential equations are satisfied by the m branches of the m-
valued functions s and z of {, (81, 21), (82,22), - - ., (Sm, 2m ), which assume the

values

(S(l)’ Z(IJ)’ (3(2)7 Zg)a < (s(r)n7 an)

when ¢ = 0, and by constants whose values are the initial values of s;,11, Zmt1;
.3 8p+1, Zpt1: that is, sm+1, e zg+1. In the latter case, of the p linear ho-

mogeneous equations
DSy, 2
6F (84,2 H
=1 65“

with 7 = 1,...,p, which hold between the differentials dz,,/ QF—S%#’Q, p+1l—m
of them are consequences of the others. It follows therefore that p+1l—m
conditions must hold between the functions (si, 21), (s2,22), -, (Sm, 2m) and
hence also between their initial values (s?,2?),...,(s2,292) for this case to

occur. Accordingly only 2m—p—1 of the constants can have arbitrary values,
as established in Section 5.

15.
We now suppose that the integral
P (s, 2)

OF (s,z)
s

dz + const.,

over the interior of 7", is equal to w,r and that the modulus of periodicity of

w, for the vth transverse cut is 3 , so that the functions w, U)g, ..., wpof the
pairs of values (s, z) simultaneously increase by the amounts k‘l , k‘g/), cee k‘,(,y)
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when the point (s, z) crosses from the negative to the positive edge of the
rvth transverse cut. For brevity, we shall say that a system of p numbers
(b1, ba, ..., b,) is congruent to another such system (ay, as, . .., ap) with respect
to 2p systems of associated moduli when one can be derived from the other
by simultaneously changing the values of their components by multiples of
the associated moduli. Thus if the 7th component of the vth system is k;”),
then we write

(by, b, ...,by) = (a1,as,...,ap)

if
2p
v
b = a, + E ml,kfr)
rv=1
lor m=1,2,...,p, where m;, my, ..., my, are integers.
Now p arbitrary numbers ay, ao, . .., a, can always be uniquely expressed
in the form

2p
an = &k
rv=1

in such a way that the 2p numbers £ are real, and all congruent systems,
and only these, are obtained when the numbers £ are changed by integral
amounts. Hence, if in these expressions each number £ is allowed to increase
continuously by 1 from a given value, excluding one of the boundary values,
the above expressions run precisely once over representatives of congruent
systems.

This point having been established, it follows on integrating the above
differential equations or from the p equations

p+1

Zdwfr“) =0 (m=1,...,p)
p=1

Lhat
(Zw§“),2w§“),...,2w£")) = (c1,02,---,Cp)
where ¢y, ¢a, . . ., ¢, are constants depending on the values (s°, 2°).
16.
Expressing { as the quotient of two polynomials in s, 2z, say x /1, the pairs
(s1,21),(82,22), - -, (Sm, 2m) are the common roots of the equations F' = 0
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and % = (. Since the polynomial

X~ Cllﬂ = f(sv Z)
vanishes for all pairs of values for which y and v simultaneously vanish,
whatever the value of {, the pairs (s1,21),...,(Sm, 2m) can also be defined

as the common roots of the equation F' = 0 and of an equation f(s,z) =0
whose coefficients vary in such a manner that all the other common roots
remain constant. If m < p+ 1, { can be expressed in the form % (Section
10) and f in the form

¢(1) _ @5(2) — ¢(3)_
The most general pairs of functions (s1, 21), (82, 22), - . -, (8p, 2p) to satisfy the
p equations

P
Zdwﬁr“) =0 form=1,2,...,p
p=1
are therefore those which are formed from p common roots of those equations
F =0 and ¢ = 0 which vary in such a way that the remaining other common
roots remain constant. From this fact may easily be deduced the following
proposition, needed later. The problem of determining p — 1 of the 2p — 2
pairs of values (s1, 21), . .., (S2p—2, 22p—2) as functions of the other p — 1 pairs
so that the p equations

2p—2

Zdwﬁr") =0 form=1,...,p

p=1
are all satisfied, can be solved in full generality by taking, for the 2p — 2
quantities, common roots of the equations F = 0 and ¢ = 0 that differ
from the r roots s = 7,, z = J§, (Section 6). Alternatively we can take the
2p — 2 pairs of values for which dw is infinitely small of second order. Hence
. this problem has only one solution. Such pairs of values may be said to be
associated through the equation ¢ = 0. By virtue of the equations

2p—2

Z dwﬁr“) =0,
p=1
the p-tuple

2p—2 2p—2 2p—2
)
(Sub T )
1 1 1
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Lhe sum being taken over such pairs, is congruent to a system of constants
(¢1,¢2, ..., ¢p), Where ¢, depends only on the additive constant in the function
w5, that is, on the initial value of the integral which expresses this function.

Part 2.

17.

For further investigation of the integrals of algebraic functions with con-
nectivity 2p + 1, a certain p-fold infinite f-series is very useful. This is a
series in which the logarithm of the general term is a quadratic polynomial
in its indices. Suppose that, in this polynomial, the coefficient of the square
mi is a, ., the coeflicient of the product m,m, is a, . = a, ,, that of 2m,
is v,, and the constant term is 0. We denote by 8(v;,vs,...,vp,) the sum
of this series over all positive or negative integer values of the m; the sum
O(v1,...,v,) is regarded as a function of the p variables v. Thus

O(v1,vq, ... v Z Z exp ( Z Ay My My + 2 Z Uﬂ”u) .
Mp=-—00

mi=—00 sy’ =1
P
B . .
or this series to converge, the real part of ay,mym, must be essen-

pop'=1
tially negative. In other words, as a sum of positive or negative squares of

independent linear forms in the variables m, it is a sum of p negative squares.

The function # has the property that systems of simultaneous variations
in the p arguments v, vy, . . . , vy exist for which log 6 changes only by a linear
combination of the ». Indeed, there are 2p such systems, independent in
the sense that none is a linear combination of the others. For, leaving out

arguments which suffer no change, we have, for uy=1,2,... p,
(2) 0 = 0(v, + mi)

and

(3) 0 = et rf(v) + ay Vo + Qo py - .U+ App)

because when the index m, in the 6-series is changed to m, + 1, the sum
of the series is unaffected, and its value becomes the expression on the right
side.

119



VI. The Theory of Abelian Functions.

The function 6 is defined, apart from a constant factor, by these two
last relations and the property of being always finite. For by the finiteness
property and (2), it is a single-valued function of e*?,e*2, ... e*r that is
finite for finite v, and can therefore be developed in a p-fold infinite series of

the form
o0 o0 P
Z Z my,ma,...,Mp €xXp (2 Z Uumu)

- mp=—00

with constant coefficients A. The relations (3) imply, however, that

p
Amy,my+1,mp = Amy,my,.. my, €XP (2 E :au,vmu + av,v)
1

and consequently

p
Amy,....m, = const. exp( E aﬂ)ﬂfmﬂmﬂ/>

Hop'=1

as we wished to prove.

These properties of the function can thus be used to define it. The systems
of simultaneous variations of the v which cause logé to change by a linear
function of these quantities will be called systems of associated moduli of
periodicity of the independent variables for this 6-function.

18.

I now substitute for the p variables v;,...,v, a set u;, us, .. ., u, of every-
where finite integrals of rational functions of z and s. Here s is an algebraic
function of z with connectivity 2p + 1. For the associated moduli of period-
icity of the variables v, I assign the associated moduli of periodicity of these
integrals (that is, associated relative to the same transverse cuts). In this
way log € becomes a function of the variable z alone, which changes its value
by amounts that are linear functions of the u whenever s and z recover their
previous values after a continuous variation of z.

It will first be shown that a substitution of this kind is possible for every
function s with connectivity 2p+1. To this end the surface 7' must be decom-
posed by closed cuts a,,...,ap, bi,..., b, fulfilling the following conditions:
When u,;, us,...,u, are chosen so that the modulus of periodicity of u, at
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the cut a, is equal to m¢ and is equal to zero at the other cuts a, and if the
modulus of periodicity of u, at the cut b, is denoted by a,,,, we must have

Auy = Ay

and the real part of Zaﬂyﬂ,mumuf must be negative for all real (integer)

!
values of my, ..., mp.

19.

The dissection of the surface 1" will be accomplished, not as hitherto by
means of closed transverse cuts, but as follows.

We begin by making a cut a; that returns to its starting-point but does
not cut the surface into two pieces; we then make a transverse cut b; from a
point on the positive edge of a, to the corresponding point on the negative
edge; this yields the boundary as a single piece. If the cut surface is not
already simply connected, a third transverse cut (not splitting the surface)
can be made starting from an arbitrary point on this boundary and going to
nnother point on this boundary (an earlier point of this transverse cut). The
latter cut is done in such a way that it consists of a closed line as, followed
by a continuation part ¢; which links it to the preceding system of cuts. The
next transverse cut by is now made from a point on the positive edge of a,
along a line leading to the same point on the negative edge, so that again we
have the boundary consisting of one piece. Further cutting up of the surface,
if necessary, can then again be done by two cuts az and b3 with the same
initial point and endpoint, and a line ¢, linking them to the system of lines
ay and by. This procedure can be followed until the surface becomes simply
connected, and one obtains a network of cuts consisting of p pairs of lines
with the same initial point and endpoint, @, and by, a; and b, ..., a, and b,
and p—1 lines ¢, ¢y, . . ., ¢p—1, linking each pair with the succeeding one. The
line ¢, can go from a point of b, to a point of a,,;. The network of cuts can
be regarded as follows: the (2v —1)-th transverse cut consists of ¢,_; and the
line a, starting from the endpoint of ¢,_; and returning to this point. The
2v-th transverse cut consists of the line b,, starting from the positive edge of
a, and returning to the same point on the negative edge. The boundary of
the surface is made up of one single piece after an even number of cuts, and
of two pieces after an odd number.

An everywhere finite integral w of a rational function of s and z has the
same value on both sides of a line ¢. For the entire existing boundary consists
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of one piece. In an integration along the boundary starting on one side of
¢ and ending on the other, the integral [ dw is taken over each element of
the earlier cuts twice, in opposite directions. Such a function is accordingly
continuous throughout 7' outside the lines a and b. The surface resulting
from cutting up the surface T" with these lines may be denoted by T”.

20.
Now let w;,ws, ..., w, be p such functions, independent of each other,

and let the modulus of periodicity of w), at the transverse cut a, be A,(f) and
at the transverse cut b, be B,(f'). The integral f wydw, taken around the
boundary of the surface 7" in a positive direction, is 0, since the integrand
is everywhere finite. In the integration, each of the lines a and b is run
through twice, once in a positive direction and once in a negative direction.
Throughout the integration, where these lines serve as the boundary of the
domain traversed positively, we denote by w:[ the value of w, on the positive
side of the path and by w, the value on the negative side. Thus the integral
is equal to the sum of all the integrals [(w} — w; )dw,s taken over the lines
a and b. The lines b lead from the positive to the negative sides of the lines
a, and so the lines a lead from the negative to the positive sides of the lines
b. The integral along the line a,, is therefore

v) _ v) _ v) pv)
/ AW dw,, = Al / dw, = AV B,

and the integral along the line b, is
@) — _pWw @)
/Bﬂ dwy =—-B A,

Hence the integral | w,dw,s around the boundary of 7" in a positive direction

is
> (AvBY - BRAL)
and this sum is consequently zero. This equation is valid for every pair of
the functions w;, w, ..., w, and thus yields p(p — 1)/2 relations between the
moduli of periodicity.
If we take for the functions w the corresponding functions u, or choose
them so that A is zero whenever v # p, and AY) = 74, then the relations

W), W) -
become B mt — By 'mi =0 0r @y = ap p.
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21.

It still remains to show that the numbers a possess the second property
which we found above to be necessary.

We set w = p + vi and suppose that the modulus of periodicity of this
function at the cut a, is AV = o, + 4 and at the cut b, is BW) = 8, +4,i.

The integral
o\ > o\’
/ {(%) (%)

or

taken over the surface T”, is equal to the contour integral [ pdv taken over
the boundary of T" in a positive direction, and therefore is equal to the sum
of the integrals [(u*™ — p)dv taken over the lines a and b. The integral over
the line a, is o, [dv = @,0, and the integral along b, is 8, [dv = —(,7,.

Thus /((%) ( ))dT Za,, — Buw)-

Hence the last sum is always positive.
The required property of the numbers a can now be deduced by setting
w = wymy + uymy + - -+ + uym,. For we then have AV = m,mi, BY =

E a,my. Consequently «, is always zero and

/((%)2+ (gz) )dT— N B = -1y mub,

which is equal to the real part of -ﬂZa#,umumu, so that the latter is

1221
positive for all real values of the m.

6This integral represents the area of the surface in the w-plane occupied by the totality
of values assumed by w in T".
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22.
If, in the #-series (1) of Section 17, we take the number a, . to be the
modulus of periodicity of the function u, at the cut b, and, with e}, es,..., ¢,

denoting arbitrary constants, take v, to be u, —e,, we obtain the well-defined
single-valued function of z throughout T,

O(uy —e1,us —ea, ..., up — €,),

which is finite and continuous everywhere except on the lines b. On the
positive side of the line b, the function is exp(—2(u, — e,)) times greater
than on the negative side, if one regards the functions u as having on the line
b the arithmetic mean of the values on the two edges. The number of points
of 7", or pairs of values of s and z, for which the function becomes infinitely
small of first order, can be found by considering the contour integral f dlog6
taken in a positive direction around the boundary of 1”. For this integral is
equal to the number of such points multiplied by 27i. On the other hand,
this integral is also equal to the sum of the integrals

/(dlog()+ —dlog6™)

taken over all the lines a, b, c. The integrals over the lines a and ¢ are all 0,
while the integral along b, is —2fdu,, = 2mi and thus the sum is 27ip. It
follows that the function # becomes infinitely small of first order at p points
of the surface 1", which we may denote by 7y, m., ..., 1,.

The function log @ increases by 2w when the point (s, 2) makes a circuit
in a positive direction around one of these points and by —27¢ when a circuit
is made in a positive direction around the pair of cuts a, and b,. In order
to define the function log # uniquely throughout the domain, we make a cut
in the interior of the domain from each of the points n; the cut ¢, from 7,
going to a, and b,, indeed to their common starting- and ending-points. We
take the function continuous throughout the surface 7™ that we obtain. The
function then has a value on the positive side of the lines ¢,,, a,, b, exceeding
that on the negative side by the amounts —27i, g,2mi, —2(u, — e,) — h, 274,
respectively, where g, and h, are integers.

The positions of the points 7 and the values of the numbers g and h de-
pend on the constants e, and the dependence can be determined more closely
in the following way. The integral f log fdu,,, taken around the bound-
ary of T in the positive sense, vanishes because log @ remains continuous
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throughout 7*. This integral is, however, equal to the sums of the integrals
[(log 8t —log 0 )du, taken over all the cuts ¢, a, b, and ¢, and has the value,

when the value of v, at the point n, is denoted by a,(f/),

21 <Z CYLD) + h#ﬂ'i + Zgyav,p — ell + k#)

in which %, depends neither on the position of the points n nor on the e, g, h.
This expression must therefore be 0.

The number %, depends on the choice of the function u,,, which is defined
only to within an additive constant by the condition that the modulus of
periodicity must be mi at the cut a, and 0 at the other cuts a. If we choose
another function for u, greater by a constant ¢, and at the same time increase
ey by c,, the function 6 and consequently the points n and numbers g and
h would be unchanged. The value of the new function u, at the point 7, is,
however, aff/) + ¢,. Hence k, becomes k, — (p — 1)c,, which vanishes if we
take ¢, = ;k_bl.

We can therefore, as we shall do in what follows, determine the addi-
tive constants in the functions u, or the initial values in the expressions of
these functions as integrals, so that by substituting u, — Zaﬂy) for v, in
log O(vy, ... ,v,), a function is obtained which becomes logarithmically infi-
nite at the points n, and, extended in a continuous fashion throughout 7, has
values on the positive edges of the lines ¢,,a,, b, exceeding the correspond-

p
ing values on the negative edges by —27¢,0, -2 | u, — Z al(f‘) respectively.

1
Later we shall present a method of finding these initial values that is easier
than using the above integral expression for k,,.

23.
If we set,

(uy,us, ..., uy) = (a(f’>,a(2”),...,a§,1’>)

with respect to the 2p systems of moduli of the functions u (Section 15), so

that
p—1 p—1 p—1
(v1,v2,...,0,) = <_Za(lv),_zggv)"”’_Zag/)> ,
1 1 1
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then § = 0. Conversely if 8§ = 0 for v, = r,, then (r,72,...,7,) is congruent
to a system of numbers of the form

p—1 p—1
(~Zagy, Za('/)...,~2ag’)).
1 1

For if we set v, = u,, — a(p ) +1,, with 7, being chosen arbitrarily, the function
0 is infinitely small of first order at 7,, and at p — 1 other points. Denote
these by n1,m2,...,m,-1, then we have

p—
( Za(y) Za(y) Z ) (T, 72,y Tp)."

1

The function # remains unchanged if all its arguments v are replaced by
their negatives. For the sum of the series is not affected when the signs of
the indices m are replaced by their opposites, since the —m,, run through the
same set of values as m,,, and 0(v;,ve, ..., v,) becomes O(—vy, —va, ..., —Vp).

If the points 7,72, ..., 7,—1 are now chosen arbitrarily, then

p—1 p—1
9 <_Zagy),...,—zaz()y)) = O
1 1
and as this function is even (as just mentioned) it follows that
p—1
v) vl —
(Za ...,Za; )) = 0.
1
The p — 1 points 7y, Np41, - . - , M2p—2 can therefore be determined so that
p—1 p—1 2p—2 2p—2
V) v — v v
(Sor Sap) = (-t Sap)
1 1 p
and therefore

2p—-2 2p—2
(Za(y) ...,Zaé’”) = (0,...,0).
1

"See, in this connection, paper XI. W.
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The position of the last p — 1 points depends on that of the first p — 1 in
2p—2

such a manner that for arbitrary continuous variations, E dal”) = 0 for

1
m = 1,...,p. Therefore (Section 16) the points n are 2p — 2 points for

which one dw is infinitely small of second order; in other words, denoting
by (0,,(,) the value of the pair (s,z) at the point 7,, the pairs of values
(01, 1), (02, C2), - - -, (0252, Cap—2) are associated through the equation ¢ = 0
(Section 16).

With this choice of the initial values for the integrals u, we thus have

2p—2 2p—2
(Zugu),.‘.,Zug’ﬁ =(0,...,0)
1 1

where the summation is over all the common roots (7,,0,) (Section 6) of the
equation F' = 0 and the equation c1¢1 + capo + - - - + cpp, = 0; the constants
¢ are arbitrary.

If €1, €9, ..., €6, are points for which a rational function £ of s and z, that

becomes infinite of first order m times, has the same value, and if u;“ ), Suy 2y

denote the values of ug, s, z at €,, then (Section 15)

m m
LD SN 9
1 1

is congruent to a constant, that is, a system (by,bs,...,b,) independent of
& It is then possible, for an arbitrarily given position of one point €, to
determine the position of the others so that

(Zm:uﬁ“’,‘ Zu(“)) (by,....b,).
1

It is therefore possible, when m = p, to bring (u; — by, ..., u, —b,), and when
m < p, to bring

p—m
(u —Za(”)—bl,...,up—Za;”)—bp)
1

for every position of the point (s,2) and the p — m points 7, into the form

( Za(u) ...,—ia;”))
1
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by allowing one of the points € to coincide with (s, z). It follows that

p—m p—m
0 (Ul *ZO&EU) *bl,...,up* ZO&SI) *bp) =0
1

1

for all values of the pair (s, z) and the p — m pairs (0, (,).

24.
It follows from the investigations of Section 22 as a corollary, that a given
system (ey,...,e,) is always congruent to one and only one system of the

form ) )
(Z aﬁ”), e Z aff)
1 1

provided that the function 6(u; —ey, ..., u, —¢e,) does not vanish identically.
For the points n must then be the p points for which this function becomes
zero. If, on the other hand, 9(u§p ) e, U — e,) vanishes for every value
of (sp,2p), then by Section 23 one can set

p—1
(ugp)—el,...,uép)—ep ( Zuly),...,—Zug’)>
1

and therefore for every pair (s,, 2,) the pairs (s1,21),..., (Sp-1,2p—1) can be
determined so that

p
(Zu(ly),.. Zu”)> (e1,-..,ep).
1
Consequently, when (s, z,) varies continuously,

Zdu(”)—O form=1,2,...

The p pairs (s, 2,) are therefore p roots different from the pairs (v,,4,), of
an equation ¢ = 0 whose coefficients vary in such a way that the remaining
p — 2 roots stay constant. If we denote the values of u, for these p — 2 pairs

of values of s and z by uP™ W™ 4% then

2p—2 2p—2
(Zu(") ...,Zué’”) =(0,...,0)
1
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and consequently
2p—2 2p—2
(e1,... ( ZU(U)...,—Z%")).
pt1 pt+1

Conversely, if this congruence holds,

2p—2 2p—2
9(u§p)—61,...,u§f’ —ep) <Zu Zuz(;/) = 0.
P

An arbitrarily given system (e, ..., e,) is therefore congruent to only one

system of the form
P o P
>3 el
1 1

if it 1s not congruent to any system of the form

p—2 p—2
(— Z o= Zaz(,"))
1 1

and 18 otherwise congruent to infinitely many.
Since

P P P
0 (ul —Zai“),...,up~2a£“)> =0 (Zaﬁ“)—ul,...,Zay) —up>,
1 1 1

1

6 is an exactly similar function of each of the p pairs (0,,(,) as it is of the
pair (s, z). This function of (0,,(,) vanishes for the pair of values (s, z) and
for the other p — 1 pairs (o, () associated through the equation ¢ = 0. For,

if we denote the value of u, at these points by @(Tl), (2) cee 1(Tp_1), then

p p p—1 p—1
(zagm, N Za;,w) (aw ST Zﬂf,”))
1 1 1 1

and consequently § = 0, when 7, coincides with one of these points or with
the point (s, 2).
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25.
The properties of the function 6 developed above yield the expression of
log 0 in terms of integrals of algebraic functions of (s, 2), (01,¢1), - . ., (0, ().

The quantity

P p
log 6 <u§2) — Za&“), . ) — log 6 <ugl) — Zag“), . )
1 1
regarded as a function of (o, (,), is a function of the position of the point 7,,
which becomes discontinuous at the point €;, in the same way as — log({,—z1)
and at the point €, in the same way as log({, — 22). On the positive edge
of a line joining €; to €5, this function is greater by 27é, and on the positive
edge of the line b, by 2(u£1) - uf,Q)), than on the negative edge. Outside the
lines b and the line joining €; to €2, the function is continuous.

Let us now denote by &¥ (e, €5) any function of (o,,(,) which—except
on the lines b—is discontinuous in a similar fashion and whose values on
the opposing edges of these lines differ by the same constants. This func-
tion differs from the above function by an amount independent of (o,,¢,)

P
(Section 3). Consequently, the above function differs from Z&)(“)(q, €2) by

1
an amount independent of all the quantities (o, (), and therefore depending
only on (s1, z;) and (82, z2). Now & (€1, €5) represents the value of a function

W(e€1, €2) of Section 4 for (s, z) = (0, (,), whose moduli of periodicity on the
P

cuts a are 0. If a constant ¢ is added to this function, the sum Z&)(“)(q, €2)

1
is increased by pc. The additive constant in the function &(ej,€2), or the

initial value in the integral of the third kind representing this function, may
therefore be taken below so that

P
log 8? — log 8V = Z&)(“)(el,eg).
1

Since 6 depends on each pair of values (o, () in the same way as on (s, 2), the
variation undergone by log § when any of the pairs (s, 2), (01, (1), - - -, (0p, )
undergoes a finite variation while the others remain unchanged, can be ex-
pressed as a sum of functions @.

It clearly follows that, by making successive changes in the individual
pairs of values (s, z), (01,(1),- .., (0p,(p), We can always express logé as a
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sum of functions @ and

log 6(0,0,...,0)
or the value of log# for some arbitrary system of values. The determination
of log 6(0,0,...,0) as a function of the 3p—3 moduli of the systen of rational

functions of s and 2 (Section 12) requires considerations analogous to those
used by Jacobi for the determination of ©(0) in his work on elliptic functions.
We can arrive at the desired result using the equations

00 8% 09 520
PR 2 - /
b0y, 002 ™ 25a,. = Bu00, (7 45)

to express the partial derivatives of log 8 with respect to the quantities a in
the expression

ol
d10g9 = Z 0g9 dap,,p,’

Oa,, v

via integrals of algebraic functions. The execution of this calculation appears,
however, to need a more extensive theory of those functions satisfying a
linear differential equation with algebraic coefficients. 1 intend to provide
this shortly, using the the principles applied here.

If (s, 29) differs infinitely little from (s, 21 ), then (€, €2) becomes dzt(e;),
where #(e;) is an integral of the second kind of a rational function of s and
z, which is discontinuous at €; in the same way as —— and has moduli of

zZ—2Zz

periodicity 0 at the cuts a. It follows that the modulus of periodicity of such

. . (1) . .
an integral at the cut b, is equal to 2 dgz”l , and the constant of integration

can be determined so that the sum of the values of #(¢;) for the p pairs

(01,(1), .-, (0p, (p) is equal to 31%#2?“ It then follows that 91—%‘—29— is equal

to the sum of the values of #(n,) for the p — 1 pairs different from (o, (,)
associated through the equation ¢ = 0 and the pair (s, 2z). We obtain for

log OO . Hlog oW
Ologt 7, Y L dg, = dlog o™,

+
821 1 8C#

an expression that Weierstrass has given for the case where s is only a two-
valued function of z (Crelle’s Journal, vol. 47, p. 300, formula 35).

The properties of &(e;,€5) and t(e;) as functions of (s, 2;) and (s9, 22)
can be deduced from the equations

- 1
O(ey, €9) = p (log 9(u§2) — puy,...) —log 9(u§1) — puy,...))
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and

1 c’)log@(ugl) —puy,...)

tle) =
( 1) P 821
which are special cases of the preceding expressions for log 9 — log 8V and
31050(1)
c’)zl :

26.

We now consider the problem of expressing an algebraic function of z as
the quotient of two functions, each a product of the same number of functions
O(uy — €1, ...) and powers of the quantities e*.

Any such expression undergoes multiplication by constants whenever (s, z)
crosses a transverse cut, and these constants must be roots of unity if they
are to depend algebraically on z and consequently assume only a finite num-
ber of different values for the same z when z undergoes continuous variation.
If all these factors are uth roots of unity, the uth power of the expression
sought will be a single-valued and therefore rational function of s and z.

Conversely, it can easily be shown that every algebraic function r of
z that can be prolonged continuously throughout the whole surface 77, is
single-valued and undergoes multiplication by a constant factor whenever a
transverse cut is crossed, can be expressed in a multiplicity of different ways
as the quotient of two products of #-functions and powers of the e*. Let us
denote by (3, a value of u, for r = co and by +, a value of u, for r = 0, and
let us draw from each point at which r becomes infinite of first order a line
interior to 1", joining it to a point at which r becomes infinitely small of first
order. The function logr is taken to be continuous in 7", except on these
lines. Accordingly, if logr is greater by an amount ¢,27i on the positive
edge of the line b, and by an amount —h, 27 on the positive edge of the line
a,, than on the corresponding negative edges, consideration of the contour
integral [ logrdu, yields:

ZVM_Zﬂﬂzgu”i+Zhvau,v (k=1,...,p)

where g, and h, must, in view of the foregoing remarks, be rational numbers,
and in the left side of the equation the summation is over points where r is
infinitely small or infinitely large of first order. Any points where the order
exceeds 1 are regarded as consisting of several such points (Section 2). If all
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but p of these points are given, then these p points can always be chosen,
generally speaking in only one way, so that the 2p factors e9?™ and e="2™
have given values (Sections 15 and 24).

Suppose that in the expression

_]3 €v22hyu,,

Q

in which P and ) are products of an equal number of functions

0 (ul — Zalﬂ),...)

with the same (s,2) and different (o,(), we substitute the pairs of values
of s and z, for which r becomes infinite, for (o, () in the -functions of the
denominator, and the pairs for which r vanishes for the pairs (o, () in the
f-functions of the numerator, and take the remaining pairs (o, () to be the
same in the denominator and numerator. Then the logarithm of the resulting
expression has the same discontinuities as logr in the interior of 77, and in
crossing the lines a and b its value, like that of logr, changes by purely
imaginary numbers constant along these lines. It thus differs from logr,
by Dirichlet’s principle, only by a constant. The expression itself differs
from r by a constant factor. It goes without saying that the substitution
is admissible only when none of the #-functions is identically zero for each
value of z. This would happen (Section 23) if all the pairs of values for which
a single-valued function of (s, z) vanishes were substituted for the pairs of
values of (o, () in one and the same #-function.

27.

A single-valued or rational function of (s, z) thus cannot be represented
as a quotient of two §-functions multiplied by powers of the e*. All functions
r, however, that have more than one value for the same pair of values of
s and z, and become infinite of first order for p or fewer value-pairs, can
be represented in this form, and comprise all the algebraic functions of z
that can be represented in this way. Apart from a constant factor, each r is
obtained once and once only if in

0 (vl — 1 — Y hyay,, .. )
9(?]1, ce ,’Up)

—23 v hy
v

€
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we assign rational fractions less than 1 to h, and g, and set v, equal to
p

_ Z Ofl(/“)-

Thé resulting expression is an algebraic function of each of the quantities
¢, and the principles developed in the previous section fully suffice to express
it as an algebraic function of 2, (j, ... (.

This can be seen as follows. As a function of (s,z), when continuously
extended throughout the surface 7", it has one definite value everywhere.
It becomes infinite of first order for the pairs (oy,(1),-..,(0p, () and, in
crossing from the positive to the negative side of the lines a, and b,, acquires
factors 2™ and e 92" respectively. Every function of (s, z) satisfying these
specifications differs from it only by a factor independent of (s, z). Regarded
as a function of (o, (,), it has a well-defined value when extended through-
out the whole surface T’, becomes infinite of first order at the point (s, z)
and for the other p — 1 pairs (o (”), Clu)), o z(,”)l, (p”)l) associated through
the equation ¢ = 0, and across a,, it acquires a factor e "2 across b, a fac-
tor e9®™; and every other function of (o,,(,) satisfying these specifications
differs from it only by a factor independent of (o,,,(,). If therefore we define
an algebraic function of z,(;,...(, in the form

f((sa z); (01’ Cl)a et (Up’ Cp))

possessing these properties as a function of each pair, it differs from the above
function only by a factor independent z,(;,...(,. We can write the above
function as A f, where A is this factor. To determlne the factor let the pairs
in f other than (o, (,) be denoted by (01”),C1 )y ( oy 1,( ) so that f
now becomes

9((0 C); (5,2), (0, ¢10), . (6%, ).

Obviously we get the inverse value of the function to be represented, and
thus an expression equal to Aif, if we substitute in Ag the pair (s, z) for
(0,,¢,) and substitute, for the pairs (s, z), (05“), 1(“)),‘ , ( I(,”)I,C(“)) the
pairs (s,z) for which the function to be represented is 0, and thus f = 0.
This yields A2, and thus A up to sign. The sign can be found by direct

treatment of the #-series in the expression to be represented.
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VII.

On the number of primes less than a given magnitude.
(Monatsberichte der Berliner Akademie, November 1859.)

I'think that I can best express my thanks for the honor which the Academy
has conferred in admitting me as a correspondent, by making prompt use of
the privilege now afforded me to report on an investigation into the frequency
of prime numbers. This is a subject to which Gauss and Dirichlet have de-
voted much effort, and may therefore be considered to be not unworthy for
such a communication.

I take as my starting point in this investigation the remark made by Euler,

that
1 1
Hi—z=2%

pS

where p runs through all prime numbers, and n through all natural num-
bers. I shall denote by ((s) the function of the complex variable s, which
is represented by each of these two expressions when they converge. Both
expressions converge only if the real part of s exceeds 1; however, it is easy
to find an expression for the function which is always valid.

The equation
*° II(s —1
/ eAnmIsvldI — (‘5 )
0 ne

gives immediately

(s - 16(s) = [

If we now consider the contour integral

/ (—;)s_‘lldx

taken from +o00 to +00 in a positive sense over a closed path, which includes
in its interior the point 0 but no other point of discontinuity of the integrand,
then it is easily seen to be equal to

(e—wsi . ewsi) /OO Is_ldx
0

er —1
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provided that, in the multi-valued function (—z)*~! = e(s=D108(=2) the Jog-
arithim is determined in such a way that it is real when z is a negative real
number.

It follows that

9sin7s (s — 1)C(s) = z'/

[e e}

® (—z)*ldz
et —1

when the integral is interpreted as above.

This equation now gives the value of ((s) for every complex s and shows
that it is a single-valued function whose value is finite for every finite s with
the exception of 1. It also shows that ((s) vanishes when s is an even negative
integer.

If the real part of s is negative, the integral can also be evaluated by being
taken over a path which, instead of surrounding in a positive direction the
domain described earlier, surrounds in a negative direction all other complex
numbers; because the integral is then infinitely small for all s of infinitely
large modulus. In the interior of this domain, the integrand is discontinuous
only when z is equal to an integral multiple of £27¢, and the integral is
therefore equal to the sum of the integrals taken in a negative sense around
each of these points. The value of the integral around the point n27i is
(—n2mi)*~'(—27i). Hence

2sin7s II(s — 1)¢ (2m)* Zn (=) 40,

which gives a relation between ((s) and {(1 —s). This can also be expressed,
by known properties of the function II, as follows:

IT (% — 1) T 3((s)

remains unchanged when s is replaced by 1 — s.
This property of the function led me to introduce the integral I1 (-s%- - 1)

instead of II(s — 1) as a multiplier of the general term of the series ) = and
thus to obtain a very convenient expression for the function ((s). In fact,

— H <— — 1) 3 = / e VT3l
ns 2 0

Therefore, if we set
o

S e = y(a),

1
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(len

(5 -1)75cs) - /OOO Y(x)rdda
2p(z) +1 =g /2 (zw (—i—) + 1)

(Jacobi, Fund., p. 184)! we have

oo 1
I (g— - 1) T 3((s) = /1 Y(x)zD " dr + /0 (% (i) 2532y

1
+l/ (232 _ g1y gy

Since

2
— 8 ~ 1 / ’lp (s/2 + $_(1+s)/2)d23.

I now write s = % + t7 and

I (3) (s - D ic(s) = £00)

&) = % — (tQ + i) [m lb(a:)a:‘% cos (%tloga:) dz

00 /2.1,
£(t) = 4/1 é(xiz———;ﬁﬁﬁcr_l/‘lcos (é—tlogz) dz.

This function is finite for all finite values of ¢ and can be expanded in a
very rapidly convergent series in powers of t2. Since log((s) = — 3 log(1 —
p *) remains finite for any value of s whose real part exceeds 1, and since
the same is true of the logarithms of the other factors of £(¢), it is clear that
£(t) can vanish only if the imaginary part of ¢ lies between % 7 and —% i. The
number of roots of the equation £(¢) = 0, whose real parts lie between 0 and
I', is about

s0 that

and also

T T T

27 2r  2m
hecause the integral [dlogé(t) taken in a positive sense around a contour
which includes in its interior all the values of ¢ whose imaginary parts lie be-

ween % ¢ and —% i and whose real parts lie between 0 and T' (ignoring a small

1Jacobi’s collected works vol. I, p. 235. W.
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fractional term whose order of magnitude is %) has the value (T log ;—ﬂ — T) 1
this integral is however equal to 27i times the number of roots of the equa-
tion £(t) = 0 in this region. Now we find in fact that there are about this
number of real roots in this domain, and it is very likely that all the roots
are real. A rigorous proof of this would certainly be desirable; however after
a few brief and fruitless attempts to find one, I have put this on one side
for the time being, because it did not seem to be essential to the immediate
object of my investigation.

If we denote by « an arbitrary root of the equation £(a) = 0, then log £(t)
can be expressed by

2

> log (1 - %) + log £(0).

Since the density of the roots increases with ¢ only as fast as log it;, this ex-
pression converges and is of order tlogt as t tends to infinity. The expression
thus differs from log £(t) by an amount which is a continuous function of ¢*
and which remains finite and continuous for all finite ¢ and tends to zero for
infinite ¢ after division by ¢2. The difference is therefore a constant whose
value can be found by setting ¢t = 0.

With the aid of these results, the number of primes less than x can now
be determined.

Let F(z) denote this number when z is not a prime number, but this
number plus 3 when z is a prime, so that whenever F(z) has a jump in
value,

F(zx+0)+ F(z —0)

F(z) = 5

In the series

log ((s Zlogl— Zp + = ZP*ZS—F Zp_3s

we now replace

o o] (o @]
p° by s/ 5 Yz, p~? by s/ ) A
p p?

logC / f fs ldflf

We obtain
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where f(z) denotes

1 1 1 1
F($)+§F(I§)+§F(ZIJ§)+"'

This equation is valid for every complex value a + bi of s, when a > 1.
llowever, if the equation

9(s) = /000 h(z)z *dlogz

holds in this domain, then the function h can be expressed in terms of the
[inction g using Fourier’s theorem. If h(z) is real and

g(a + bi) = gi(b) + iga(b),

the equation splits into the two following equations:
g1(b) = /00 h(z)x™%cos(blog z)dlog z,
0
iga(b) = —1i /OO h{z)z *sin(blog z)dlogz.
0
If we now multiply these two equations by

(cos(blogy) + isin(blogy))db

and integrate from —oo to 400, the right-hand side of each equation becomes
nh(y)y~, by Fourier’s theorem. Accordingly, after adding the two equations
and multiplying by iy®, we obtain

a+oot
2mih(y) = / o(s)y*ds,

—001

where the integration is carried out so that the real part of s remains constant.

The integral represents, for every value of y at which the function h(y)
jumps in value, the mean of the values on either side of the jump. The
(unction f(z) defined as above possesses this same property, and therefore
Lhe equation

1 [t log((s)
f(y)_%/awoi 5 y° ds
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holds in full generality.
The expression found earlier for log ¢,

%10g7r~10g(8~1) logH( ) Zl()g <1+ ol >+log§( ),

could now be substituted in this equation. However, the integrals of the
individual terms of the resulting expression do not converge when the limits
of integration are infinite. It is therefore expedient to begin by transforming
the equation by partial integration into

11 /‘“+°°idlog%

f@) =5 -

S
ds.
2mi logzx vas

a—oot

Since
logH( ) -%1_1{100 (Zlog (1 + ) —g logm) ,

dilogll($) dllog(l+ L)
B ds —Z ds ’

and therefore

1
all the terms of the expression for f(z) with the exception of the term

1 1 a-+oot 1
L / 5 log (0)a*ds = log (0)

2mi logx J o ooi

assume the form

| fatecid (% log (1 - %)) s

+—
271 Jo—ooi ds x
Now
d(glog(1-g))_ )
dap (B—s)B
and, when the real part of s exceeds that of 3,
1 a+oot s ye] T
_— ——__ZE = 33_ = / xﬂ'ldx,
2me a—oot (/B - S)ﬁ /6 [e9)
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or

T
= / " da,
0

depending on whether the real part of 3 is negative or positive. Accordingly,

L L /a+ooi d (% log (1 — %)) s

271 logx ds v

a—o0o1
1ot
=—— - log (1 - ﬁ) x*ds
270 Jy—ooi S 16
T 1.,@—1
= / dzx + const. (in the first case)
o logx

and

T :Lﬂ—l
= / dzr + const. (in the second case).
o logz

The constant of integration can be determined in the first case by allowing
the real part of 3 to become negative infinite. In the second case, the value
of the integral from 0 to z takes on two values depending on whether the
path of integration lies above or below the real axis, the values differing by
2mi. In the former case, the integral will become infinitely small when the
coeflicient of ¢ in [ is infinite and positive. In the latter case, the integral
is infinitely small when this coefficient is infinite and negative. This shows

how the expression log (1 — %) on the left side is to be determined so that

the constant of integration disappears.
By inserting these values in the expression for f(x), we obtain

f(z) = Li(z) — Z (Li(z%J“ai) + Li(z%_ai)>

a

* 1 d
+/ z + log £(0),

x2—1 zlogx

where the summation Z is over all positive roots (or more precisely all

7
complex roots having a positive real part) of the equation £(a) = 0, arranged
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in order of increasing moduli. It can be shown, by a more detailed discussion
of the function &, that with this ordering the series

Z (Lz'(:z:%+m) + Li(l’%*m)> log z

[e]

converges to the limit of the integral
_1\?
) a+bid§210g(l+£sa+)>
- $d
277'2 /G.Abi dS ras

when b tends to infinity. If the order were to be changed, however, the series
could converge to an arbitrary real value.
The function F(x) can be found from f(z) by inverting the relation

f) =30 P,

which yields
1 1
P(z) = Y (1= fla®),
in which m runs through all the natural numbers not divisible by any square
other than 1, and u denotes the number of prime factors of m.

If, in the sum Z, we restrict the summation to a finite number of terms,

(a4
then the derivative of the expression for f(z) (neglecting a term which de-
creases very rapidly with increasing z) becomes

1
2

1 5 Z cos(alogz)x

log x a log x

bl

which gives an approximate expression for the density of the primes of mag-
nitude < z, plus half the density of squares of primes, plus one-third of the
density of cubes of primes, and so on.

The well-known approximation F(z) = Li(z) is therefore correct only to
within an order of magnitude 2!/2 and gives rather too large a value. For
the non-periodic terms in the expression for F(z) are, excluding those which
remain bounded as x increases without limit,

1 1 1
Li(z) — = Li(z'/?) — = Li(z'/?) — = Li(z/?)
2 3 5

1 1
+= Li(z'/¢) — > Li(z"") + -
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In fact the comparison between the number of primes less than z and
Li(x), undertaken by Gauss and Goldschmidt and taken up to x = 3, 000, 000,
has revealed that the number of primes is already less than Li(z) after the
first hundred thousand and that the difference, with many fluctuations, grad-
ually increases with . The increases and decreases of density in the prime
nmiumbers due to the periodic terms had already been observed in the counts,
hut it had escaped notice that it is regulated by a certain law. [f a future
count is undertaken, it would be interesting to follow up the influence of the
individual periodic terms in the expression for the density of the primes. The
[unction f(x) should exhibit a more regular behaviour than F'(x), and indeed
nlrcady substantially coincides on average with Li(z) + log £(0) in the first
liundred.
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VIII.
On the propagation of planar air waves of finite amplitude.

(Abhandlungen der Koniglichen Gesellschaft der Wissenschaften zu
Gottingen, vol. 8, 1860.)

The differential equations that determine the motion of gases have long
been set down. However, their integration has essentially been worked out
only for the case when the pressure differences can be treated as infinitely
simall fractions of the total pressure. Until very recently, one had to be con-
lent to take into account only the first power of these fractions. A short
while ago, Helmholtz took account of second order terms in the calculation
nnd thereby explained the actual origin of combination tones. However, in
the case where the initial motion is entirely in one direction, and velocity and
jpressure are constant in every plane perpendicular to this direction, the exact
differential equations can be completely solved. The previous treatment is
entirely sufficient to explain the experimental phenomena already observed.
Nevertheless, with the great progress which Helmholtz also made very re-
cently in the experimental treatment of acoustical questions, the results of
Ie present more exact calculation should perhaps give some reference points
for experimental research in the not too distant future. This may justify their
ronununication, quite apart from the theoretical interest of the treatment of
nonlinear partial differential equations.

Boyle’s law may be assumed to give the dependence of the pressure on the
tlensity, when the temperature differences due to variations in pressure are
compensated so quickly that the temperature of the gas can be considered
constant. Probably, however, the thermal exchange is entirely negligible.
Ilence we must take, as a foundation for this dependence, the law that the
pressure of the gas increases in proportion to the density, when heat is neither
(nken up nor released.

According to the laws of Boyle and Gay-Lussac, denoting by v the volume
ol a unit mass, p the pressure and T the temperature measured from —273°C,

logp + logv = log T + const.

Here we treat T' as a function of p and v. We denote the specific heat for
constant pressure by ¢, and the specific heat for constant volume by ¢, in
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both cases for unit mass. Then this unit mass, when p and v vary by dp and
dv, takes up the quantity of heat
oT , 0T

—d 2 — dp.
C&v v+ C o D

: dlogT _ 3logT __ . . .
Since 72— ooy — e oy — b this quantity is

T(cdlogv + c'dlogp).

Thus if no heat absorption takes place, dlogp = —~= dlogv. If we assume,
with Poisson, that the ratio 5 = k of the two specific heats is independent

of temperature and pressure, we have
logp = —klogv + const.

According to recent experiments of Regnault, Joule and W. Thomson,
these laws are probably very close to validity for oxygen, nitrogen, hydrogen
and their mixtures under all pressures and temperatures treated.

A very close fit has been determined for by Regnault for these gases to
the laws of Boyle and Gay-Lussac, and the independence of the specific heat
¢ from temperature and pressure.

For atmospheric air, Regnault obtained:

c=0.2377 between —30° C and + 10°C,
c=0.2379 between +10° C and + 100°C,
c=0.2376 between +100° C  and + 215°C.

Likewise, atmospheric pressures between 1 and 10 atmospheres yielded
no noticeable difference in specific heat.

From experiments of Regnault and Joule, the Mayer hypothesis adopted
by Clausius appears to be very nearly correct for these gases: a gas expanding
at constant temperature takes up only the amount of heat required to perform
the external work. If the volume of the gas varies by dv while the temperature
remains constant, then dlogp = —dlogwv, the quantity of heat absorbed
is T'(c — ')dlogv, and the work done is pdv. Hence the hypothesis gives,
denoting by A the mechanical equivalent of heat,

AT(c — ')dlogv = pdv
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Ol p/U
AT’
which is independent of pressure and temperature.

Accordingly £ = £ is independent of pressure and temperature. If we
tnke ¢ = 0.237733, A = 424.55 kilogram meters, according to Joule, and for
lemperature 0°C, or T' = (1)03%5(;, pv = 7990.267 according to Regnault, we
lind that £ = 1.4101. The velocity of sound in dry air at 0°C amounts to

V7990.267 x 9.8088k

c—c =

meters per second, and with this value of £ is found to be 332.440. The two
most complete series of experiments of Moll and van Beek, respectively give
432.528 and 331.867 separately, 322.271 taken together; the experiment of
Martins and A. Bravais gives 332.37, according to their own calculations.

1.

To begin with, we do not need to make a definite hypothesis on the
dependence of pressure on density. Hence we assume that the pressure is
+(p) for density p, and leave the function ¢ undetermined for the present.

We now introduce rectangular coordinates z,y, z, taking the z-axis in
the direction of motion. Denote by p the density, p the pressure and u the
velocity at coordinate x and time ¢. Let w be an element of the plane having
coordinate x.

The volume of a right cylinder standing on the element w, of height dzx, is
then w dz, and the mass it contalns is wpdzx. The variation of the mass during
time clement ¢, or the quantity w L dtdr, is determlned by the mass flowing
mto the element which is found to be —w 2 (pu)dzdt. Its acceleration is

i

0o tugs ax, and the force that drives it in the direction of the positive axis is
op op
22 dr = —(0) L wd
e ©'(p) 5z~ 4

where ¢'(p) denotes the derivative of ¢(p). Hence we have the two differential
wquations for p and u:

Op  O(pu) ou ou  , 0Op
o= or 0 P\aTia) T Vg
" ou ou

— 4 _——_’()_8._1
ot Yoz T T¥\P g o8P
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and
0 1 -+ _._] _.._LL
g ogp+u ogp = ot

Multiplying the second equation by ++/¢'(p) and adding the first, and writ-
ing for brevity

1) / VP d logp = £(p)
(2) fp)u=2r, fp)—u=2s,

these equations take the simpler form
or 0s - 0s
@ G0 g e (V) 5

where u and p are defined as functions of r and s via the equation (2). It
follows that

(4) dr = ? (d:r — (u + \/W) dt)
(5) ds = g; (d:r — (u — \/W) dt) :

Under the hypothesis, always found in physical reality, that ¢'(p) is pos-
itive, these equations signify that r remains constant if z and ¢ vary in such

a way that dzr = (u + \/w’(p)) dt, and that s remains constant if  and t

vary so that dz = (u — \/w’(p)) dt.

Thus a particular value of r, or of f(p) + u, moves towards larger values
of z with velocity \/¢’(p) + u, while a particular value of s, or of f(p) —
moves towards smaller values of x with velocity \/¢'(p) — u.

A definite value of r will gradually meet with each value of s lying ahead
of 7, and the velocity of its progress will depend at a given moment on the
value of s with which it meets.

2.

The analysis at once offers the means of answering the question of where
and when a value 7’ of r encounters a value s’ of s lying ahead of r’; that
is, we determine x and t as functions of r and s. Indeed, if we introduce r
and s as independent variables in equations (3) of the previous section, these
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equations become linear differential equations in x and ¢. Thus they can be
solved by known methods. In order to effect the reduction of the differential
equation to one linear equation, it is convenient to write equations (4) and
(5) of the previous section in the form:

(1) {(I (u+ Velo)t) +
el
G

(2) { (ng Vo) t) - b
[d () o (U2 ) o

dlog dlogp

Considering s and r as independent variables, we obtain for z and ¢ the two
linear differential equations:

ool 7)) (e )

0s dlog p

B(I—(u— w’(p))t): (dlog\/— 1>‘

or dlogp
Consequently,
(3) (l‘ - (u + \/——) ) dr — (l‘ - (u - go’(p)) t) ds
is a complete differential, whose integral w satisfies the equation

Pw _ (dlog\/— 1):m(6_w+6_w).

ords dlogp or  0s

licre m =

1 dlog /¢’ (p) o . . . i
eI ( Togs 1) is a function of r + s. Now write f(p) =
r+s=o0. Then

\/—_
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and consequently

d
. 1d10ggg
m=—-—- —=5%,

2 do
With the Poisson hypothesis ¢(p) = a?p*, we have

2avk k=72
k—1

If we choose 0 for the value of the arbitrary constant, then

k+1 k—3
VI +u="mr s

k—3 k+1

/ — ==
Plp) —u=—5—r+——s,

"= (%‘ﬁ) %Z Q(k—kl_)(i-ks)'

If we assume Boyle’s law (p) = a?p, we obtain

flp) =

+ const.

f(p) = alogp,
Ve'lp)tu=r—s+a, O'(p)—u=s—r+a,
1
=~

that is, the values obtained from the above if we reduce f(p) by the factor

%, and thus reduce r and s by 2,:"/1—, and then set k = 1.

The introduction of r and s as independent variables is, however, only pos—
sible where the determinant of these functions of x and ¢, which is 24/ BI ‘&'
does not vanish, that is, when 8—T % are both nonzero.

If &£ = 0, we obtain dr = 0 from (1) and
T — (u — go’(p)) t = a function of s

from (2). Consequently the expression (3) is again a complete differential,
and w is merely a function of s.
Similarly, if % = 0, then s also is a constant with respect to ¢, and

T — (u + /¢'( ) t and w are functions of r.

Finally, if ‘9; and 8; are both 0, then from the differential equation, r, s
and w are constants.
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3.

In order to solve the problem, we must first of all determine w as a
lunction of r and s in such a way that it satisfies the differential equation
0w ow  Ow
1 -m|——+—-—1=0
(1) Ords (dr Os
together with the initial conditions, which will determine w up to an additive

constant that can clearly be chosen arbitrarily.
The equation

(2) (:L‘—(u+\/mt))dr—(x—(u~\/m)t)ds:dw

will then yield the time and location where a particular value of r meets a
particular value of s. Finally we find v and p as functions of z and ¢ by
referring to the equations

(3) F(o) +u=2r, f(p) —u=2s,

Indeed, provided that neither dr nor ds is zero in a finite interval and
consequently neither r nor s is constant, the equations

(4) o (ut Vo)t =22,
) N RN ) L

which follow from (2), can be combined with (3) to express u and p in terms
of z and ¢.

If, however, r initially has the same value " in a finite interval, then this
interval gradually moves forward to larger values of x. Inside this region

where r = 7', we cannot derive the value of z — (u + ¢! (p)) t from the

cquation (2), because dr = 0. Indeed, in this case the question of where
and when this value r’ encounters a particular value of s permits no precise
auswer. Equation (4) is now valid only at the boundaries of this region and
yields the values of z, between which the constant value ' of r occurs, when
lime is specified, or alternatively the time interval during which this value
of r occurs, when location is specified. Between these limits, u and p are
determined as functions of z and ¢ from equations (3) and (5). Similarly we
find these functions when s takes the value s’ in a finite region, while r varies,
or when 7, s are both constant. In the latter case, they take constant values,
which are found from (3), between the bounds defined via (4) and (5).
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4.

Before we set about the solution of equation (1) of the previous section,
it seems convenient to note some considerations that are not needed for this
purpose. Concerning the function ¢(p), the only hypothesis required is that
its derivative does not decrease with increasing p, which in physical reality
is certainly always the case. We also make a remark here that will be used
several times in the following section. The quantity

elp) —elpa) _ 1 e da
—‘bl—_—p—g———/O‘P(PrF(l Jp2)da,

when one of p; and p, varies, either remains constant or increases and de-
creases with this quantity. It follows from this equation that the value of this
expression lies between ¢'(p;) and ¢’ (p2).

We treat first of all the case where the initial disturbance of equilibrium
is restricted to a finite region defined by the inequalities a < x < b. Thus
outside this interval, v and p, and consequently r and s, are constant. The
values of these quantities for z < a are denoted with suffix 1; for z > b,
suffix 2. The region in which r is variable gradually moves forward according
to Section 1, its lower bound having velocity 1/ ¢'(p1) + u1, while the upper
bound of the region, in which s is variable, moves backward with velocity

@'(p2) — uy. After a time interval

b—a
V(1) + /@ (p2) +ur — uy’

the two regions separate, and between them a gap forms in which s = s, and
r = r1, and consequently the gas particles are again in equilibrium. Thus
from the initially disturbed location, two waves issue in opposite directions.
In the forward wave, s = s,; accordingly, to a particular value p of the density
is associated the velocity u = f(p) — 2s9, and both values move forward with
constant, velocity

V@'(p) +u=¢(p)+ f(p) — 252

In the wave moving backward, on the other hand, the velocity — f(p) + 2r
is associated to the density p, and these two values move backward with
velocity v/¢'(p) + f(p) — 2r;. The rate of propagation is greater for greater
densities, because both f(p) and \/¢’(p) increase with p.
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If we think of p as the ordinate of a curve for the abscissa z, then each
point of this curve moves forward parallel to the z-axis with constant velocity.
Indeed the greater the ordinate, the greater the velocity will be. It is easy
to see that, according to this law, points with greater ordinates would finally
overtake preceding points with smaller ordinates, so that to a given value of
+ would correspond more than one value of p. Since this cannot occur in
physical reality, a condition must enter that renders the law invalid. In fact,
the derivation of the differential equation is based on the assumption that u
und p are continuous functions of z having finite derivatives. However, this
nssumption ceases to hold as soon as the density curve is perpendicular to
the z-axis at some point. From this moment on, a discontinuity appears in
Ihis curve, so that a greater value of p immediately succeeds a smaller value.
'I'his case will be discussed in the next section.

The compression waves, that is, the parts of the wave in which the density
increases in the direction of propagation, become ever narrower with their
forward progress and finally become compression shocks. However, the width
ol the expansion waves grows in proportion to elapsed time.

We may easily show, at least under the assumption of Poisson’s (or
Boyle’s) law, that in the case when the initial disturbance of equilibrium
is not confined to a finite region, compression shocks must also form in the
course of the motion, excluding quite special cases. The velocity with which
n value of r moves forward is

k+1 k—3
T+ S

2 2

with this hypothesis. Thus larger values will, on average, move with greater
velocity. A larger value 7’ must eventually overtake a preceding smaller value
1", unless the value of s corresponding to 7" is, on average, smaller by
(TI _ TII) ]'_+IE
3—-k
Ilian the value of s simultaneously corresponding to 7’. In this case, s becomes
negatively infinite for positive infinite x, and thus for x = +o00, the velocity
i is 400 (or instead, the density, according to Boyle’s law, becomes infinitely
sinall). Thus excluding special cases, it must always transpire that a value
ol r, larger by a finite amount, follows immediately after a smaller value.
(‘onsequently, since g—; becomes infinite, the differential equations lose their
validity, and forward moving compression shocks must occur. Likewise, in
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almost all cases, since g—; tends to infinity, backward moving compression
shocks will form.

To determine the time and location for which g—;, —g% become infinite and
sudden compressions begin, we obtain from equations (1) and (2) of Section
2, on introducing the function w,

or (8210 N (dlog V' (p) N 1) t) _1

or \ or? dlog p

Os [ Pw dlog\/w’(p)+1 o

Ox 0s? dlog p -
5.

Since sudden compressions almost always occur, even when density and
velocity initially vary continuously everywhere, we must now seek the laws
for the propagation of compression shocks.

We suppose that at time ¢, a jump in v and p occurs at z = £. We denote
the value for x = £ — 0 of these quantities, and those depending on them,
using suffix 1; for x = £ + 0, suffix 2. The velocities with which the gas
moves relative to the location of the discontinuity, u; — %‘%, Uy — %, may be
denoted by v, and v,. The mass that passes in the positive direction through
an element w of the plane where x = £, during the time element dt, is then

V11w dt = Vo PoW dt,

the force acting on the element is (¢(p;) — @(p2))wdt and the resultant in-
crease in velocity is vy — v,. Thus

(¢(p1) — @(p2))wdt = (vy — v1)vpywdt

and
V1p1 = V2p2,
so that
_ \/Pz w(p1) — wlp2)
v = Fy | — —————=~,
P1 P1— P2
Thus
d _ _
(1) @©_ 1. r e(p1) — p(p2) O p(p1) = wlp2)
dt P pL— P2 P2 P1— P2
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FFor a compression shock, p, —p; must have the same sign as v; and vy. For
a lorward moving shock the sign is negative, for a backward moving shock,
positive. In the first case, the upper signs apply and p; is greater than ps.
"T'hus, by the assumption on p(p) at the beginning of the previous section,

U+ > — >uz+\/<p'(p2).

(‘onsequently, the location of the discontinuity moves forward more slowly
than the succeeding values of 7, and more quickly than the preceding val-
nes. Thus 7 and 7, are determined at a given moment via the differential
equations valid on either side of the discontinuity. The same applies for s,,
and consequently for p, and wus, since the values of s move backward with
velocity +/¢'(p) — u; but not for s;. The values of s; and % are uniquely
determined from 7y, po and uy via the equation (1). Indeed, only one value
ol py satisfies the equation

(:3) 2(r1 —12) = f(p1) = flp2) + \/(,01 —p)(elpy) = @(pg)).

—_
[
—

P1P2

I'or the right side takes each positive value only once when p; increases to
infinity from the value p,, because as well as f(p;1), the two factors

\E*\f \/ ;=

into which the last term can be divided, persistently increase, or only the
Intter factor remains constant. Now when p; is determined, we obtain fully
etermined values of u; and % via the equation (1).

Entirely similar considerations hold for a backward moving compression
shock.

6.

We have found that in a propagating compression shock, the values of
1 and p on either side are always linked by the equation

(p1 — ,02)(@(.01) — @(P2))‘

2
Uy — up)” =
( P1P2
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The question now arises as to what happens when, at a given time and
location, arbitrarily given discontinuities occur. In this case, according to the
values of u,, p1, us, pa, either two compression shocks run from this location in
opposite directions, or one runs one forward, or one runs backward; or, finally,
no compression shock actually occurs, in which case the motion follows from
the differential equation.

We denote the values that u and p take after or between the compression
shocks at the first moment of their propagation using an accent. Then in the
first case p’ > p1, p' > p2, and we have

P'p

, \/ (7 = p2)((P) — 0lps))

fonT pp
2

bl

(1)

bl

p'p1

. ¢ (' = p2)elp!) = #(p2))

p'p2

(2) U — Uy = \ﬁ’d —,)(p(p) — ¢lp))

Since both terms on the right side of (2) increase together with p/, u; — ug
must be positive and

(ur — ug)® > (p1 — p2)(e(p1) — p(p2))
1 P1P2 '

Conversely, when these conditions are fulfilled, one and only one pair of values
of v’ and p’ satisfies the equations (1).

For the latter case to occur, and thus for the motion to be determined
via the differential equations, it is necessary and sufficient that r; < ry and
$1 > Sg, that is, u; — uy is negative and

(ur —u2)® > (f(p1) — f(p2))*.

The values r; and 7o, s; and s,, then move apart, since the value in front
moves forward with greater velocity, so that the discontinuity vanishes.
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[f neither the former, nor the latter, conditions are fulfilled, then the
mitial values are satisfied by a single compression wave, indeed one that
moves forward or backward according as p; is larger or smaller than ps.

Indeed, in that case, if p; > po,

2(r1 —r2) or f(p1) — fp2) + w1 — g

is positive, because (u; — ug)? < (f(p1) — f(p2))?, and at the same time it is

< flp1) — flp2) + \/(/’1 — p2)(p(p1) — 90(/02))’
P1P2

hecause
2 < (o1 = p2) (plp1) — #lp2))

P1P2

Now we may find a value for the density p’ behind the compression shock
that satisfies condition (3) of the previous section, and this value is < p;.
(‘onsequently, since s' = f(p') — 1, s1 = f(p1) — r1, we also have ' < s1, so
that the motion proceeds according to the differential equation behind the
compression shock.

The other case, p; < pa, is obviously not essentially different from this

(U1 — Uz

One.

7.

In order to illustrate the above by a simple example, where the motion
vt be determined by the methods we have found, we shall assume that the
pressure and density depend on one another via Boyle’s law and that initially
dlensity and velocity have a jump at x = 0, but are constant on both sides of
this location.

By the above, there are four cases to be distinguished.

[. If uy—uy > 0, so that the two gas masses move together, and (E%“a) EES

- )0 2 . . . . . . .
&1:1/7152;)’ then two compression shocks running in opposite directions will

1/4
form. From (1) of Section 6, if @ denotes (%) and 0 denotes the positive

root of the equation
Uy — Us 1

dataD ' F
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the density between the compression shocks is g/ = 6%,/p1p>. From (1) of
Section 5, the forward moving compression shock satisfies

% :uQ+aa9:u'+£;
the backward moving one satisfies

@©_ W _y o

a Tt T

After time ¢ has elapsed, if

(0%

(ul - a€> t <z < (uy+aad)t,

the values of the velocity and density are ' and p’. For a smaller z, the
values are u; and p1; for a larger z, us and p,.

II. If u; — up < 0, so that the gas masses move apart, and moreover

2 2
(m —uz) S (log &)
a - P2 '

then two gradually widening expansion waves issue from the boundary in
opposite directions. By Section 4, between them we have r = r;, s = sg,
u = 71— S2. In the forward moving wave, s = s, and z — (u+a)t is a function
of r, whose value is 0 from the initial values t = 0, z = 0. For the backward
moving wave, on the other hand, we have 7 = r; and z — (u — a)t = 0. One
equation for the determination of u and p, for

(r1—sa+a)t <z < (ug+alt,

is u = —a + ¥; for smaller values of z, it is 7 = r, and for larger values,
r = 1. The other equation is u = a + $ for

(up —a)t <z < (ry— sy — ajt.
For smaller z, it is s = s1, and for larger x, s = s,.

ITII. If neither of these two cases holds, and p; > p;, a backward moving
expansion wave and a forward moving compression wave occur. For the
latter, we find from (3) of Section 5, § denoting the root of the equation

2(7"1 — Tg)

1
=2logf+60 — -
ogb + 7’
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(hat o' = 6?p,. From (1) of Section 5,

d
—§:u2+a0:u'+g.

dt 0

I'hus after time t has elapsed, in front of the compression shock, that is for
r > (ug + ab)t, we have u = uy, p = py. Behind the compression shock,
however, we have r = r; and moreover, if

(up —a)t <z < (u —a)t,

we have u = a + 7. For a smaller z, we have v = u;, and for a larger z,
!
U =1u.

IV. Finally, if neither of the first two cases holds, and p; < po, the
progress is just as in III, with the direction reversed.

8.

To solve our problem in general, by Section 3 we must determine the
unction w in such a way that it satisfies the differential equation

(n AT LU
oras  \aor " Bs)

nnd the initial conditions.

Let us exclude the case where discontinuities occur. Then obviously from
Scction 1, the location and elapsed time, or the values of z and ¢, for which a
definite value r’ of r meets a definite value s’ of s, are completely determined
once the initial values of r and s are given for the interval between the values
" of r and s’ of s, provided that the differential equations (3) of Section 1 are
satisfied in the region (S) of values of z which (for any given t) lie between
the two values corresponding to r = v’ and s = §’. Thus the value of w for
r =71, 8 =4¢"is also fully determined if w satisfies the differential equation
(1) in the region (S), and if for the initial values of r and s the values of 22
nnd %—’;’, and hence, up to an additive constant, that of w, are given. This
vonstant may be chosen arbitrarily.

For these conditions are equivalent to those given above. It also follows
[rom Section 3, that g—‘f takes different values on either side of a value r” of

r, when this value falls in a finite interval. However, %—f varies continuously
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with s; likewise, for the variation of %—7;’ with r. The function w itself varies
continuously with both r and s.

After these preparations we can proceed to the solution of our problem,
the determination of the value of w for two arbitrary values r’, s’ of 7, s.

For visualization, we think of z and ¢ as abscissa and ordinate of a point
in a plane, and draw the curves in this plane where r and s have constant
values. We may denote the first of these by (r), the second by (s). We treat
the direction in which ¢ increases as positive in the curves. The region (S)
will then be represented by a part of the plane bounded by the curve ('),
the curve (s’), and the part of the x axis lying between them. The point
in question is to determine the value of w at the intersection of the first
two curves from the values given in the latter line. We wish to generalize
the problem somewhat. We assume that the region (S) is bounded by an
arbitrary curve ¢, rather than the latter line, which cuts neither curve (r),
(s) more than once, and that for values of r and s belonging to the curve the
values of %—1;’, %—1;’ are given. It will emerge from the solution of the problem
that we require for these values of %1;-’, %—1: only that they vary continuously
with position in the curve: otherwise they may be arbitrary. If the curve
c met one of the curves (r), (s) more than once, these values would not be
independent of each other.

In order to determine functions that satisfy linear partial differential equa-
tions and linear boundary conditions, we can apply a procedure entirely
analogous to the solution of a system of simultaneous linear equations, mul-
tiplying by undetermined factors, adding and then determining those factors
so that the sum of the unknown quantities reduces to a single one.

We consider the part (S) of the plane bounded by the curves (r) and
(s) to be cut up into infinitely small parallelograms and denote by ér, ds the
variations that the quantities 7 and s undergo, when passing along the curve
elements that form the sides of the parallelograms in a positive sense. Further
denote by v an arbitrary function of r and s that is everywhere continuous
and has continuous derivatives. From equation (1),

O*w ow Ow
(2) 0—/1}(87‘83~m(5+b—8))57‘5$

where the integral is taken over the region (S). The right side of this equa-
tion is now arranged, in other words, the integral is transformed via partial
integration, so that apart from known quantities it contains only the func-
tion sought, not its derivatives. By carrying out this operation, the integral
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/ 0% N omu N omu S 6
) v Ords or Os ros,

lecomes

luken over (S), together with a simple integral that, since %;—’ varies contin-
nously with s, %f—; with r, and w with both 7 and s, is taken only over the

houndary of (S). Denote by dr and ds the variations of r and s in a boundary
clement. Here the boundary is traversed in the same direction, relative to
the interior normal, as the positive direction in the curves (r) with respect
Lo the positive direction in the curves (s). The boundary integral is

—/ ouw _ ds+w (2% 4 mo)d
v 83 muw S w 87‘ muv Y.

The integral over the entire boundary of S is equal to the sum of the
integrals over the curves ¢, ('), (') forming this boundary. Denoting their
intersection points by (¢,7’), (¢,s"), (', '), the integral is

c,s’ r! s’ er!
Lol+L,
c,r! c,s’ s’
Of these three summands, the first contains only known quantities apart
[roin the function v. The second, since ds = 0 in this integral, contains

only the unknown function w itself, not its derivatives. The third summand,
however, can be transformed via partial integration into

c,r!

ov
w| — +mv|ds;
" 0s
npain, only the desired function w occurs in this term.
By these transformations, the equation (2) clearly yields the value of the

lunetion w at the point (1’ s), expressed in terms of known quantities, if the
[unetion v satisfies the following conditions:

(vw)rs = (w)er + [

S/

0*v Omv  Omw

1 h = 0;
) throughout S, 5 e + 87‘ + 0;
3
) 2) forr=r, 5§+mv:0;
3) fors=14¢, —g—;-i-mvzo;

4) forr=r',s=35, we have v = 1.
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We then have

e Ow v
(4) wpg = (VW) + /CW (v (E — m-w) ds +w (5; + mv) dr) )

9.

By the procedure applied above, the problem of determining a function
w satisfying a linear differential equation and linear boundary conditions
reduces to a similar but much simpler problem for another function ». The
determination of this function is usually easiest by treating a special case of
the problem via Fourier’s method. Here we must be content merely to point
out this calculation, and demonstrate the result in another way.

In equation (1) of the previous section, we introduce independent vari-
ables 0 = r + s, u = r — s in place of r and s, and choose for ¢ a curve in
which o is constant. Now the problem can be treated by Fourier’s principles.
By comparing the result with equation (4) of the previous section, we have,
writing ' + s =o', 7' — s =/,

il d
v = —/ cos pu(u — u') ap (10" )pa(0) — Yoo 01 (0))dp.
T Jo do
Here (o), ¥2(0) denote particular solutions of the differential equation
" — 2my’ + p*p = 0, for which

d
Vi — o, = d—‘;

If we assume Poisson’s law, according to which m = (3 — £5) 2, ¢, and

1o can be expressed as definite integrals. We recover a triple integral for v,
whose reduction yields

U:(r'ﬂ')%*ﬁF(g_; L_ll—(r—r’)(s—s’))-

r+s 2 k—1k—1 27 (r+s)(r+¢)

We can easily demonstrate the correctness of this expression by showing
that it actually satisfies the condition (3) of the previous section.
Let us write v = exp (— faa, m da) y. For y, the conditions become

Oy dm 9
Bros (d_a_m)y_o’
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and y = 1 both for r = 7’ and s = §’. Under Poisson’s hypothesis, however,
we can satisfy these conditions by taking y to be a function of

(s 9)
(r+s8)(r'+ ")

AA?
— L m = 2, so that 22 — ;? = ) the
bt o

l'or then, writing A = %

¢quation becomes

Py 1 d*y . 1 N dy
dsor o2 \ d(log 2)? z dlogz /)

(lonsequently, v = ("7')A y, and y is a solution of the differential equation
d*y dy
1— — A+ A)zy = 0.
(1-2) d(log z)? ‘ dlog z A+ Ay

With the notation introduced in my paper on Gauss’s series, y is a function

0 —x 0
F (o 1+ 0 Z) ’
in fact, the particular solution equal to 1 for z = 0.

According to the transformation principles developed in that paper, y
van be expressed not only via the functions P(0, 2\ + 1,0), but also via the
lunctions P (1,0,A+3), P (0, A+ 3,A+ 3). We obtain in this way a large
vlass of representations of y via hypergeometric series and definite integrals.
tlere we point out only the following:

y:F(1+/\,—/\,1,Z)=(1_z)F( 1)

=(1—2)"'7F <1+/\1+A,1, 1)

which are adequate in all circumstances.

In order to derive the results that hold for Boyle’s law from those found
a\/—

for Poisson’s law, we reduce r, s r', 8" by 47 according to Section 2, and then

sct £ = 1. We obtain m = —% and

U:eza(r r'+s— S')Z (5——5')7‘.

2a 2n
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10.

If we substitute the expression found for v in the previous section into
equation (4) of Section 8, we obtain the value of w for r = ', s = &', expressed
in terms of the values of w, 68—1:, %‘f on the curve ¢. In our problem, only %—“’
and %—1: are given directly on the curve, while w must be found from these
quantities by integration. Hence it is convenient to transform the expression
for w,s ¢ in such a way that only the partial derivatives of w appear under
the integral sign.

Denote by P and 3 the integrals of the expression —muv ds+ (8” + mv) dr
and ( + mv) ds — muvdr, which are complete differentials in view of the

equatlon
v Omv  Omw

Oros * or + 0s
Denote by w the integral of Pdr + X ds, an expression which is again a
complete differential since

=0.

oP 0%
- —mu =

s T ar

We now determine the integration constants in these integrals in such a

way that w, g“’, g“’ vanish for r =7/, s = s’. Now w satisfies the equations
Ow N Ow i1 0w
—+ — =v, — =-—mvu
or O0Os oros

and w = 0 for both r = v’ and s = s’. Incidentally, w is completely deter-
mined by these boundary conditions and the differential equation

2
Tw (—83+a—w+1>:0.

87"83 or  Os

If we now introduce w in place of v in the expression for w, o, we can
transform it via partial integration into

&8’ Ow ow Ow\?
0w ()3 (3)4)

In order to determine the motion of the gas from the initial state, we
must take ¢ to be the curve in which £ = 0. In this curve, %—f =z, %—gj = —1.

By repeated partial integration, we obtain

!

¢,8
w’l",S/ = ’u]c’,,./ + / (UJ dI - IdS).
4

ot
,T
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Consequently, by (4), (5) of Section 3,

(= (VP =oe [ e

Zgr 8&.}

(o (Vo)) - [ B

’ Z,s

—_—
(2]
~—

However, the equations (2) only express the motion as long as

v (dlog Vo' D) +1>t Puw (dlog Vo) +1)t

or? dlog p " 0s? dlog p

remain different from 0. As soon as one of these quantities vanishes, a com-
pression shock occurs, and equation (1) is only valid inside a region that lies
entirely to one side of this compression shock. Hence the principles developed
here are insufficient—at least in general—to determine the motion from the
initial state. However, with the help of (1), and the equations that hold for
the compression shock by Section 5, we can indeed determine the motion if
the location of the compression shock at time ¢ (that is, £ as a function of t) is
given. But we will not pursue this further. Likewise we forgo the treatment
of the case when the air is bounded by a fixed wall. The calculation entails
no difficulties, and a comparison of the result with experiment is not possible
il present.
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IX.
Author’s announcement for VIII.

(Géttinger Nachrichten, 1859, no. 19.)

This investigation makes no claim to produce results useful for experimen-
tal research. The author wishes it to be considered only as a contribution
to the theory of nonlinear partial differential equations. For the solution of
linear partial differential equations, the most fruitful methods have not been
found by developing the general idea of the problem, but rather from the
lreatment of special physical problems. In the same way, the theory of non-
linear partial differential equations seems generally to demand a thorough
Ilreatment of particular physical problems, taking into account all the sec-
ondary factors. Indeed, the solution of the quite special problem that is the
subject of this work requires new methods and concepts, and leads to results
Lhat will probably play a role in more general problems.

By the complete solution of this problem, questions discussed in lively
lashion some time ago®' by the English mathematicians Challis, Airy and
Stokes, insofar as not already settled by Stokes?, would be decided more
clearly. The same applies to the controversy with regard to another question
in the same area in the K. K. Ges. d. W. zu Wien between Petzval, Doppler
and A. von Ettinghausen3.

The only empirical law, other than the general law of motion, assumed
in this investigation, is the law according to which the pressure of a gas
varies with its density when no heat is taken up or released. Poisson already
assumed, albeit based on hypotheses resting on very uncertain foundations,
(hat the pressure is proportional to p*, where the density is p. Here k is
the ratio of the specific heat at constant pressure to the specific heat at
constant volume. Poisson’s hypothesis can now be based on the experiments
of Regnault on the specific heat of gases, and a mechanical principle of the
theory of heat. It seems necessary to include this basis for Poisson’s law
in the introduction, since it still appears to be little known. The value of k£
found in this way is 1.4101. The velocity of sound in dry air at 0°C, according

1 Phil. Mag., vols. 33, 34 and 35.
2Phil. Mag., vol. 33, p. 349.
3 Sitzungsberichte der K. K. Ges. d. W., 15 January, 21 May and 1 June, 1852.
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to the experiments of Martins and A. Bravais, is found to be 332.37 meters
per second, which produces the value 1.4095 for k.

The comparison of the results of our investigation with reality via exper-
iments and observation poses great difficulties, and indeed is scarcely practi-
cable at present. Nevertheless, we discuss the results here as far as possible
without being long-winded.

The work considers the motion of air, or a gas, only in the case when,
initially and throughout, the whole motion takes place in one direction; and in
every plane perpendicular to this direction, velocity and density are constant.
It is known that when the initial disturbance of equilibrium is restricted to a
finite segment, under the customary assumption that the pressure differences
are of smaller order of magnitude than the pressure, two waves issue from
the disturbed location in opposite directions and advance with the velocity

@' (p), which is constant under this hypothesis. Here ¢(p) denotes the
pressure at density p, and ¢'(p) the derivative of this function.

A rather similar outcome occurs for the case when the pressure differences
are finite. The location where equilibrium is disturbed likewise decomposes
after a finite time into two waves progressing in opposite directions. In these
waves the velocity, measured in the direction of propagation, is a definite
function [ /¢’(p) dlog p of the density; the constant of integration may differ
in the two waves. Thus in each wave, a given value of the density is linked
to each value of the velocity; indeed, with a greater density is associated an
algebraically greater velocity. Both these values move forward with constant
velocity. Their velocity of propagation relative to the gasis \/¢'(p). In space,
however, the velocity is greater by the amount of the velocity of the gas in the
direction of propagation. Under the hypothesis, found in physical reality, that
¢'(p) does not decrease with increasing p, greater densities move with greater
velocity. It follows that the rarefication waves, that is the parts of the wave
in which density increases in the direction of propagation, increase in breadth
in proportion to time. Likewise, compression waves decrease in breadth and
finally become compression shocks. The laws which apply throughout the
region of disturbance of equilibrium, either before the separation of the two
waves, or within each wave, are not given here, and likewise for the laws of
propagation of compression shocks; this would require complicated formulae.

In connection with acoustics, then, this investigation produces the result
that in the cases where density differences cannot be treated as infinitely
small, a variation in the form of the sound wave, that is to say the tone,
appears in the course of the propagation. However, experimental verification
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of this result seemns to be very difficult, in spite of the very recent progress
made by Helmholtz and others in the analysis of tones. For within short
distances, a variation of tone is not noticeable, while at greater distances
it would be difficult to separate the various causes that could modify the
lone. An application to meteorology is really not to be considered, since
the motions of air investigated here are of the type that propagate with the
velocity of sound. To all appearances, currents in the atmosphere move with
much smaller velocity.
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X.

A contribution to the study of the motion of a homogeneous fluid
ellipsoid.

(Abhandlungen der Koniglichen Gesellschaft der Wissenschaften zu
Gottingen, vol. 9, 1861.)

In his last work, edited by Dedekind, Dirichlet investigated the motion of
n homogeneous fluid ellipsoid, whose elements are attracted to one another
hy the law of gravity. His approach is surprising and opens a new path. The
continuation of this fine research has a special appeal for mathematicians,
(uite apart from the question of the form of heavenly bodies which was the
occasion for the investigation. Dirichlet himself carried through the solution
of the problem completely only in the simplest cases. For the continuation of
the investigation, it is convenient to give a form of the differential equation
for the motion of a fluid body that is independent of the time-origin chosen.
For example, we may study how the variation in size of the principal axes
ol an ellipsoid affects the motion of the fluid body relative to these axes. In
(rcating the problem here in this way, we presuppose Dirichlet’s discussion.
'l'v avoid misunderstanding, we note that it was not possible to adhere to his
notation without change.

1.

We denote by a, b, ¢ the principal axes of the ellipsoid at time ¢, and by
&y, 2 the coordinates of an element of the fluid body at time ¢; a suffix 0
is used to denote the initial values of these quantities. We assume that the
principal axes of the ellipsoid coincide with the coordinate axes at the start
(ime.

It is well known that Dirichlet’s investigation starts from the observation
that we can satisfy the differential equation for the motion of the fluid by
laking the coordinates x,y, z to be linear expressions in their initial values,
the coefficients being functions only of time. We write these expressions in
the form
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J:—E——I— @+nio
by Co
2
(1) y=02 Ry
Qo by Co
— g” :‘Lﬁ + m” % + n/l @.
ag bo Co

Denote by &, , ¢ the coordinates of the point (z, y, z) with respect to a moving
coordinate system, whose axes coincide at each instant with the principal axes
of the ellipsoid. Then &, 7, ( are known also to be linear expressions in z,y, 2

§=oaz+ fy+nz,
(2) n=aoz+8Yy+vz,
CZ a":l; +/81Iy+,_yllz‘

The coefficients are the cosines of the angles that the axes of one system
form with the axes of the other, a = coséx, 8 = cos £y, and so on. Between
these coefficients, six equations hold which imply that on substituting these
expressions, we obtain

4y t=a? P22

Since the surface is always formed of the same fluid particles, we must

have £2 2 22
Y
a2+b2+c2_g+b2+—

Now let

£ 20

- = 011 — + 51 + N —

a Co

2

(3) ? + /BI Yo ’ _0’

b Co

g — <0 + ﬁ, Yo // @

c Co
That is, we express 5, 1,2 S in terms of 22 e, bg o by substituting the values (1 )
into the equations (2 and denote the resultlng coefficients by ay, 81,..., 7.
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'hen aq, B1,...,7, are the coefficients of an orthogonal transformation of
coordinates: they can be treated as the cosines of the angles that the axes of a
moving coordinate system &, 7, {; form with the axes of the fixed coordinate
system z,y, z. If we express z,y, z with the help of equations (2) and (3) in

TWINS Zo Yo 20 i i
terms of aO,ZO,CO,thls yields

¢ = aaa; + ba'ay + ca’af

! "l
m = aaf + ba'B; + ca’’ By,
"n_n

n = aay, + ba'y] + cd’y,
' =afa; +b3'a) + cf"af,
(1) m' = afp + bF'B, + 8”5y,
n' = afy + b3y + B,
" = avya; + by o) + y'af,
m" = ayp + by' By + Y8y,
n' = ayy 4+ by'm + ey
Hence we can treat the position of the fluid particles, or the values of the
quantities £,m,...,n” at time ¢, as dependent on the quantities a,b,c and
the position of the two moving coordinate systems. We observe that in inter-
changing the two coordinate systems, in the system of quantities ¢, m,n the
rows are interchanged with the columns. Thus ¢,m’,n” remain unchanged,
while the pairs of quantities m and #',n and ¢”,n’ and m” interchange. Our
next business is to derive the differential equations for the variations of the
principal axes, and the motion of these two coordinate systems, from the fun-
(lnmental equations for the motion of the fluid particles in §1,1 of Dirichlet’s

work.

2.

In the equations in question, it is obviously permissible to replace derivatives
with respect to the initial values of x,vy, z, which were denoted there by
t, b, ¢, by derivatives with respect to &, n,(. The equations formed in this
way are written as aggregates of the original set of equations, and conversely.

Inscrting the values of g—z, g%, ceey g_Z’ we obtain in this way
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Foan 9y 0%z oV oP
et et e T T e
(1) Qifa’+_8_2_gi ’+92_27’:68_V_8_P
ot? ot? ot? on  On’
&Pz , 0% , 0% , OV 0P

Here V' is the potential, P the pressure at the point z,y, z at time ¢, and
the constant ¢ represents the attraction between two unit masses at unit
distance.

Now it is a question of putting the quantities on the left of the equality
signs in the form of linear functions of £, n, {. Some preparations are needed
for this.

For brevity, let us write

oz

ot
oz
ot
oz @

A+
ot at

dy 0z ,
Q+Eﬁ+—8?7_€’

Jy 0z
! _I -~ I:I
(M—Fat‘ﬁ—kat‘7 T

1 0z "o
g t507 =(.

By differentiation of equation (2), we obtain

0 d d d
%Zﬁ“?f“ﬁ“g’
0 do! ag' dy'

8(_dall d/@l! d,yll

- @t a ¥Vt

z+ (.
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[ we now express z,vy, z in terms of £, 71, (, we find that

_8_§:<.d_.({ gﬁ[j_}_@ >€+<da ’+%/@’+ﬂ7’>n

ot~ \dt dt a T w T a
+<Z(; +—ﬁﬁ )C+§,
+<%C-;—a” ﬁﬁ”+ﬁ ’)<+n’,

84‘ B da// d/B// da// , d/B// , d,)/// ,
—8_t_(dta [” >5+<dt“+dtﬁ+dt7"

Ao, dﬁ“ .
(G o+ ) e

Differentiating the known equations a® + 82 ++2 =1, ad’ + 38 + vy =

(), ..., we obtain
“%%*ﬁfzf”f; s At =
" at
d +H’ﬁ ’fzza
e dﬁ'ﬂw N ﬁ"mv" v).
Cfl—?a'+%§ﬁ’+z—zv’= (ddiaqt%ﬁt—lﬂﬂt%:—/y)‘

Consequently, denoting these last three quantities by p, g, r,

,  O€
3 -E—mﬂz(,
5}
(1) n —T§+£~pc,
0
('=—q€+mm+

ot
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By a very similar procedure we obtain, from the equation (2),

o*x 3‘ 022 o¢
o 8t2 25+ 5p gz = o " T
foaks 0z on'
5 s / / — ! L !
(5) 512 8t2 R R e (S
82 /I ! 82 CI
ae @ + o at? 2 EERA SR T
From equations (3) of Section 1, denoting by p1, ¢1,71 the quantities that de-
pend on the functions ay, 81, ..., in the same way as p, ¢, r on the functions
a’/B""?f)/”?
(&Y, n_, ¢
ot \a Yy e
0 (n ¢ 3
6 L) nons
( ) at b D1 e T1 a
O (CY 8,0
ot \ c e Py
If we substitute the values of %, %;1, %% from (6) into (4), we obtain
da
¢ = - §+(ar1—br)z+(cq—aq1)%,
db
© W=l —br) 4+ 2t o),
3 n ., de ¢
/
— (cqi —aq) >+ (bp—cpy) T+ S5 5
¢ =(cq—aq)=+(bp—cp)y+— =

It is readily apparent that the geometric significance of these quantities
is as follows: &)1/, (" are the velocity components of the point z,y, z of the
fluid mass parallel to the axes of &7, (; 3t, m, 36 the relative velocities,
decomposed in the same way, for the coordinate system &,n,(. Further, in
(1) the quantities on the left side are the accelerations, those on the right
side the accelerating forces parallel to these axes. Finally, p,q,r are the
instantaneous rotations of the coordinate system &,7,( about its axes and

P1,q1,71 have the same significance for the coordinate system &1, 1, (1.
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3.

We now substitute the values of the quantities £, 7', ' into the equations
) Irom (7), and, using the equations (6), express the derivatives of §, 1,2 5
m terms of €,1,(. The quantities on the left side of the equation (1 ) take

the form of linear expressions in &, 7, (. On the right side, V has the form
H— A¢? - By = C¢,

where H) A, B, C depend on the quantities a, b, ¢ in a known way. Accord-
inply, we can satisfy these equations when the pressure on the surface has
the constant value @, by taking

s determining the ten functions a, b,c; p,q,7; p1,q1,71 and o of time so
that the nine coefficients of &, 7, are equal on each side, while the incom-
pressibility condition abe = agbgcy is satisfied. Equating coefficients of 5,

b
in the first, and of § in the second equation yields

d2

d2+2b7‘7‘1+20qq1—a(7‘ + 72 4 ¢ +q1)—2——26aA
dr dr da db

aE_bd_tl+2d_t —QET1+GPQ+bP1(11—20p611:0,

dr dr da db
a— —b— 42— —2— r + ap1q1 + bpg — 2¢p1g = 0.

dt dt dt dt
[‘rom these equations, we obtain six others by cyclic permutation of the
axes, or alternatively by arbitrary interchanges. Here we note that in an in-
terchange of two axes not only the corresponding quantities are interchanged,
bul. Lhe six quantities p, q, ..., r; change signs.
We can give these six equations a more convenient form for the subsequent
investigation by introducing, in place of p,p1; q, ¢q1; 7,71, the half-sums and

linll-differences
P+ D q+q T4 T
U= , U= , W= :
2 2 2
i P—Dh ’ q4—q p_ TN
U = , V= , w =
2 2 2
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as unknown functions.
In this way the system of equations that the ten unknown functions of
time must satisfy becomes

( , , 1 d%a
: , 2 _
(a—c)w*+ (a+c)v?+ (a—buw?+ (a+bw —QW—EQA~E,
. , , 1 d%
(b—a)w2+(b+a)w2+(b—c)u2+(b+c)u2—5Eﬁ:ebB—%,
(c—b)uQ—F(c—kb)uQ+(c—a)v2+(c+a)v'2—l@—ECC'—g
2 dt? ¢’
d d(b —
(b—C)d—IZ—FQ (dt C)u+(b+c—2a)vw+(b+c+2a)v’w’:0,
du’ d(b
(a) < (b+6)d—i+2 (de) u + (b—c+2a)vw + (b—c— 2a)v'w =0,
d d
(c—a)d—:+2a(c—a)v+(c+a—2b)wu+(c+a+2b)w'u'=0,
dv' d
(c+a)—(% 2 (Cdja)v’+(c—a+2b)wu’+(c—a—2b)w’u:0,
d d
(a——b)d—lzj+2a-£(a—b)w+(a+b—20)uv+(a+b+2c)u’v’:O,
dw’ d , , ,
(a+b) p” +2d—t(a+b)w +(a—b+2c)uv' + (a — b—2c)u'v =0,
abc=a0boco.

\

The values of A, B, C follow from the known expression for V|

oods 52 n2 CQ
Ve=H- A& B —C = / ds (1 _ _ _
¢ m O = o A a?+s b +s c2+s)’

where

DR D

After carrying out the solution of these differential equations, we now
have to find the general solution 8, 6’, 8" of the differential equations

de de’ de”

_ 91_ 9// o 9// . — 9_ /
(8) - =10 —qb", — = —r0+p0", —-=q0 —pb
in order to determine the functions a, 3,...,~v".
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By (3) of Section 2, o, &/, a"; 8,6',8"; v,7',7" are the three particular
ohitions of (8) having the values 1, 0, 0; 0, 1, 0; 0, 0, 1 at t = 0. To
determine the functions «y, £y, ..., 7}, we require the general solution of the
smnltaneous differential equations

do , . db Y de" ,
(y) —d_t_l =r10] — ], d—tl = —1160; + p107, , d_tl = q160, — p10;.

4.

We may now ask what methods for the integration of the differential
equations (a), (8), () are presented by the general hydrodynamical princi-
ples used by Dirichlet to extract the seven integrals of first order (§1(a)) from

the differential equations to be satisfied by the functions £,m,...,n"”. The

rqnations that follow from these may easily be derived with the help of the
expressions for (', 7', {’ given above.
The principle of conservation of area yields
(b—c)u+ (b+c)u = g=ag’® + Bh° + vk°,
(1) (c—a)Yv+ (c+a)v =h=0a'¢"+ A" +~k°,
(@ —b)*w+ (a+b)*w =k =0a"¢° + B"h° +v"k°,

where the constants g%, h%, k® are the initial values of g, h, k, and coincide
with the constants &, &, & in Dirichlet’s work. It follows that 8§ = g, 6/ = h,
1" .: k is a solution of the differential equations (), which may readily be
mnl irmed from the last six differential equations («).

['rom Helmholtz’s principle of conservation of rotation, we obtain the
s(uintions

b—‘C)2U*— b+c)2u'—g1 =0o1M +ﬁ1h0+'}/1k‘
() (c—a)®v = (c+a)*v' = hy = g} + B1AY + kY,
(a—b)*w — (a+b)*w =k = /g0 + B/RY + /K.

I'ie constants g¥, h?, k9 are equal to the quantities BC2A, C AB, ABC in the
work mentioned above.

Iinally, the principle of conservation of kinetic energy yields an integral
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of first order of the differential equations («):

(1((da)* (db\*, (de)?
2 dt dt dt
(I) { . > = 2¢ H + const.
+(b— c)*u? + (c — a)*v? + (a — b)*w?

| +(b+ U + (c+a)*v? + (a+ b)*w?

From the equations (1) and (2), two integrals of the equations (a) follow
at once:

(1) g* + h* + k* = const. = w?
(III) g: + h} + ki = const. = w?.

Further, two integrals of the equations () occur,

(IV) 02+ 6 + 6" = const.,
(V) 6g + 0'h + 6"k = const.,

which permit their general integration to be reduced to a quadrature. Since
the equations () are linear and homogeneous, for their general solution, we
need only look for two particular solutions distinct from g, h, k. To this end,
we may choose the arbitrary constants in the two integrated equations so
that the calculation simplifies. Assigning both constants the value 0, one has

(3) O'h+ 0"k = —go.

We now square this equation and add to it the equation

/7 ”

0% -0 =6°
multiplied by A2 + k2, obtaining
—(0'k — 0"h)* = W6,
and consequently
(4) 0'k — 6"h = wid.
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Solving the linear equations (3), (4), we find that

. ,  —gh+ kwi
‘ , —gk— hwi
“)) - W 6.
Substituting these values in the first of the equations (), we obtain
1Ay g ko
6 dt h2+k>dt  h24+ k27
1 h+rk
(7) log 6 = 3 log(h? + k?) +wi/% dt + const.

From the solution of the differential equations () contained in (5), (6),
and (7) we obtain a third, on replacing i by —i throughout. Now it is easy to
lorm the expressions for the functions «, 3,...,~” from the three particular
solutions we have found.

The geometric significance of each real solution of the differential equation
(/1) is that, multiplied by a suitable constant factor, it expresses the cosine
ol the angles that the axes of £, 7, ( make with a fixed line at time t. For the
lirst of the three solutions found above, this fixed line is formed by the normal
to the invariant plane of the whole moving body. For the real and imaginary
parts of the other two solutions, the fixed lines are two perpendicular lines in
this plane. Now the cosines of the angles between the axes and these normals
nre £, %, f The position of the axes relative to these normals thus emerges
hy solving the equations («), without further integration. For the complete
determination of their position, a single quadrature suffices, for example the
evaluation of w fot %’;i—;’ﬁ dt, which gives the rotation of the plane formed by
the normal and the £ axis, around its normal.

Very similar considerations apply to the differential equations (). In the
sutne way we can get the general solutions from the two integrals

(V1) 6% + 6% + 6,% = const.
(VII) 6191 + 01hy + 0k; = const.
and so derive the values of the quantities ay, f1,...,7] at time ¢, only one

(uadrature being required. Finally, the position of an arbitrary fluid particle
al time t emerges from the expressions for the quantities z,y,z and the
unctions £, m, ..., n"” given in (1), (4) of Section 1.
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5.

We would now like to elicit what has been gained for the purposes
of integration, by reducing the differential equations between the functions
¢,m,...,n" (equations (a) of §1 in Dirichlet) to our differential equations.
The system of differential equations (a) has order sixteen, and we know first
order integrals of seven of the equations, which enable us to reduce it to a
system of order nine. The system of equations (a) is only of order ten, and
we know first order integrals of three of them. By the transformation of
these differential equations given here, the order of the system of differential
equations still to be integrated is reduced by two, and in place of this we
finally only have to carry out two quadratures. Thus the transformation has
the same effect as the discovery of two integrals of first order.

We remark explicitly that our form of the differential equations is only to
be preferred for integration and actual determination of the motion. For the
most general investigations of this motion, on the other hand, this form of
the differential equation is less suitable, not just because the derivation is less
simple, but also because the case of the equality of two axes requires special
treatment. Namely, with the equality of two axes, the special circumstance
enters that the information the equations yield about the form of the fluid
mass is incompletely determined. It depends in general also on the instanta-
neous motion, and only remains arbitrary when the motion is such that the
axes are equal throughout. While the investigation of this case is always easy
and accordingly does not demand elaboration, it can in particular cases take
various particular forms. General investigations, for example the demonstra-
tion in general of the possibility of the motion (§2 in Dirichlet) become fairly
extensive, in view of the number of cases requiring special treatment.

Before we proceed to the treatment of special cases in which the differ-
ential equations (o) can be integrated, it is convenient to observe that in
a solution of these differential equations, however directly it proceeds from
the form of the equations, changes in sign of the functions u,v,...,w’ are
permissible if they leave uvw, v'vw’, v'vw’, v'v'w unchanged. Thus, firstly,
we can simultaneously change the signs of the functions «’, v', w’. In this way
the quantities o, 3,...,7" are interchanged with ay, 81,...,7/, and thus in
the system of quantities ¢, m,...,n”, rows are interchanged with columns.
Secondly, two of the pairs of quantities u,u’; v, v’; w,w’ can simultaneously
be given the opposite signs. This variation may be reduced to a sign change
of a coordinate axis that takes a motion into a symmetrically similar one.
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I'his remark contains the reciprocity theorem found by Dedekind.

6.
We now investigate the case in which one of the pairs of quantities u, u’;
vo0'y w,w' is zero throughout, for example v = v = 0. The geometric

aipnificance of this hypothesis is that the principal axis always lies in the
invariant plane of the whole moving body, and the instantaneous axis of
rotation is perpendicular to this principal axis.

From the last six differential equations («), it follows at once that in this
vase the quantities

() (¢~ @)%, (¢ +a)2V, (a — b)%w, (a + b)Y’
are constant, and the equations

(b+c—2a)vw+ (b+c+ 2a)'vw' =0,

) (b—c+2a)vw' + (b—c—2a)'w =0

must hold.

For further investigation, we distinguish whether or not a second of the
thiree pairs is zero. In general, we observe that, as a consequence of equations
(1), the quantities h, k, hy, k; are constant. Consequently, the angles between
the principal axes and the invariant plane of the whole moving body are also
ronstant. Moreover, the equations between ratios

g:h:k=p:q:r,
g hiiki=pq:n

lollow from the differential equations (3) and (v), which simplifies the solu-
tion of these equations.

I'irst case. Only one of the three pairs u, u’; v, v’; w, w’ vanishes.

If neither v and ¢’, nor w and w’, vanish together, it follows from the

eijuations (p) and (v) that
4
a—c
= const.,
(a + C)

(a—b 4
= b const.

v'? 20 —b—c

J(2a+b—c
2a +b+c)
)
)

2a—b+c

v2

(1)

— | ~— N— | —

(
(
(2a —b+c
(

N
(

w? (2a—b—c

| 2a+b—c

w?  (2a+b+tc
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Taking this together with

abc = const.,

we see that a, b, ¢ are constant, and consequently v, v’, w, w’ are constant.
Now let

/
2 v 2

<

) (2a+b+c(2a—b+c):(Qa—b—c(2a+b—c)_S’
2 w2

)
(2a4+b—c) (2a—b—c)(2a —b+c)

~—

g

(2a+b+c

~—

From the first three differential equations (&), we obtain the three equations

2 32 2 2 o €A O
(3) (4a —b—3C)S+(4a2—3b—c)T_7—ZL§,
(4) (b =T = £ B — 5%,

(*=bv)S=5C—- 5.

To derive the values of S,T and o, we form from equations (4) the equations

o ds
b2T 2 — ﬂ/ S
TS 2 Jo AWM +3s)(c2+s)

o emr [ ds
T = - — .
5 2b2c2 2 /0 A(b? + s8)(c® + )

Now substitute these values in the equation (3):

2 2 2 2 2 _EA
(40, —b _C)(T+S)_2(bT+CS)__é—_-2§’

which yields

5) Do _ew/wds 25+4(12-—b2—02+ 1
2a2b2¢2 2 Jo A\ (B2 +3s)(c2+s) al+s)

Here, for brevity, we write
(6) 4a* — a®(B* + %) + b?c* = D.
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Substituting the value of ¢ in the equations (4), we now obtain

b — ¢? er [ sds 4a? — * + b b?
(7) —— DS = — ‘ - - ,
b2 — a? 2 Jo A +59) c2+s a?+s

. c? — b? er [ sds 4a® — b* + c?
(8) 5 DT = — 5 - )
? — a? 2 Jo A(ct+5s) b2+ s a’?+s

[t now only remains to investigate what conditions a, b, c must satisfy
for real values of v,v',w,w’ to emerge from the equations (7), (8) and the
cquations (2).

For (%)2 and (%)2 to be nonnegative, it is necessary and sufficient that

(4a® — (b + ¢)*)(4a* — (b—¢)*) > 0.

‘I'hus either a? > (%—9)2 or a? < (b_TC)Q.

If a > %, the quantities S,7 must be > 0 for the equations (2) to
produce real values for v, v, w, w’. However, we can readily show that when
a > 8¢ D and the two integrals on the right in (7), (8) are always positive.

We need only put D in the form
a*(4a* — (b + ¢)?) + be(2a® + be),

and the integral in (7) in the form

€T * sds
42_2 242 b2—2—b22.
2a2b202/0 A ((4a* — c*)s + a”(4a” + c?) )

We then note the following consequences of a > big‘::
40> — (b4 ¢)* >0, 4a®> — * > 0,
il further

40>+ 0% —c* > (b+c) 4+ b2~ 2 = 2b(b + ¢),

no that
1
a’(4a® + b* — c*) > 2b(b + c)a® > 5 b(b+ c)® > b

I''om these inequalities, it follows that both D and the integral in question
linve only positive terms. The same holds for the integral on the right side
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of (8) obtained by interchanging b, ¢. If we let a run over the values from b;‘z

to oo, then if b > ¢, T will always remain positive; S only remains positive
as long as a < b. Thus the conditions for this case, writing b for the greater
of the axes b, ¢, are

b
(1) ;cgagb.

. . 2
For the investigation of the second case, when a? < (%) , we shall
suppose that b is the greater of the axes b, ¢, so that a < b—;c. For v, v, w,w’

to be real, we must have S < 0, T' > 0. Since it follows from the inequalities
b > (2a +¢)? > 4a® +

that the integral on the right side of (8) is always negative in our case, the
latter condition 7" > 0 is only fulfilled when D(c* — a?) > 0. Thus either

2 b2__4 2 . « . . .
2 < o) o 2 > 2. This case thus subdivides into two cases. There is

b2 —q2
: : b2—4a?
a finite gap between them, since S)Z—aa) < a?, and there is not a continuous

transition from one case to the other. Now the integral in equation (7), as
long as (:2 < a?, can only be positive, because of the inequalities c*+s < a®+s,
4a? — 2+ b? > b2 So the conditions to be fulfilled reduce in the first of these
cases to a < , or

2002 _ 442
(IT) c<b—2a and c*< u.

b2 — g2
In the second case, the conditions are
— sds 4a? — 2 + b? b?
111 < d — <0.
() a< an A(b? + s) ( c2+s a2+3)_

It is easy to see that when a runs through values from 0 to ¢, the integral on
the left side of the last inequality remains negative as long as a < 5, while it
is positive for a = c. We see that the exact determination of the bounds in
which this inequality is satisfied depends on the solution of a transcendental
equation.

Regarding the sign of o, which is known to determine whether or not the
motion is possible without outside pressure, we may observe that the value
for this quantity found above can be put in the form

* 352+ 6a%s+ D
D A3

ds.
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T'hus in cases 1 and 111, where D > 0, it is certainly positive. However, for
2 negative value of D, at least if this value is taken to be below a certain
hound, it becomes negative.

7.
Second case. Two of the pairs u, u’; v, v’; w, w’ vanish.

We now treat the case where two of the pairs u,u’; v,v'; w,w’ are 0
throughout, so that there is only a rotation about one principal axis.

If besides u and v/, v and v’ are 0 throughout, the equations (1) and (v)
reduce to

(a — b)?w = const. = 7 , (a+ b)’w’ = const. = 7',

Now the first three differential equations («) produce the equations

72 N T2 1 d%a 4
— - —— = €q - =
@—b3  (atbp 2de @
2 2 1 d%b o
(1) ! T _ap-Z
(b —a)? * (b+a)® 2 dt? ‘ b’
1 d%c o
Tl

which, together with
abc = (10(’)000,

determine the quantities a,b,c and o as functions of time. The principle
ol conservation of kinetic energy yields the integral of first order for these
dilferential equations:

Y 1 da\? db\? de\? 72 72
B3 (E) *(a) *(E> I CEDEARCEE

= 2¢H + const.

I'rom this it follows at once that when 7 is nonzero, the principal axes a and
I cannot be equal.

From the cases already investigated by MacLaurin and Dirichlet, when
« = b, one can determine an expression for the motion in closed form if a, b, ¢
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are constant. In this case we obtain from (1), by eliminating o, the two
equations

T2 N ™ em (®ds  (B—-c)s K
(b+a)®  (b—a)® b Jy A B2+s)(E+s)
7’2 B ™ em /Oo ds (a*—c?)s
(b+a)® (b—a)B® a fy A (a2+5s)(2+s)
where K and L denote the integrals on the right sides. We may also write
the equations in the form

(3)

2

/ T

4 L ———
4w btat 2 ),

er [

ds

A ((a2 f;@s +s) ab(c§2+ 3))

T2 €T ds s—ab c?
5 w5 —( " )
(b—a)* 2 J; A\(a2+3s)b2+s) ab(c?+s)

We assume, as in the cases treated earlier, that b is the greater of the two
axes a,b. These two equations produce positive values for 72 and 7’2 if, and
only if, K is positive and greater than the absolute value of L. It is clear
that the first condition is fulfilled as long as ¢ < b. The second condition
is satisfied when ¢ = a and thus L = 0; and consequently, since K, L vary
continuously with ¢, is satisfied inside a finite domain on either side of this
value. This domain, however, does not reach the values b and 0. For if ¢ = b,

! . . . . . . . .
72 is negative, while for infinitely small ¢, 72 is negative, since then

K o ds
P p2 \1/2°
0 s1/2(14 )32 (1+ 5 s)

L_ e ds
E_EW 2 3/2 a2 \1/2’
0 sI2(145)32(1+%5s)

and consequently L > K. If b tends to infinity while a and ¢ remain finite,
then L can only remain smaller than K if a® — ¢? also decreases infinitely.
Both bounds for ¢ then only differ from a by an infinitely small amount.
When b approaches infinitely close to its lower bound a, the upper bound for
¢, where 72 becomes 0, converges to a. The lower bound, however, converges
towards a value for which the integral on the right side of (5) vanishes. To
determine this value, we write £ = sin 1, and recover the equation

(=5 + 2cos 2y + cos 4)(m — 21p) + 10sin 2¢) + 2sin 41p = 0.
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I'his has only one root between 1 = 0, ¢ = 7/2, giving

€ = 0.303327. ...

a

Adnittedly for b = a, ¢ can take every value between 0 and b, since 72 will
nlways be 0 on account of the factor b — a. We then obtain the case studied
by MacLaurin. The two cases found by Jacobi and Dedekind emerge for
wt = w2,

For b = a, the case just discussed coincides with case (I) of the previous
section. If

7
U)2 ’LU2

(b+c+2a)b—c+2a) (b+c—2a)b—c—2a)

it. coincides with case (III). Among the four cases now found in which the
Iluid ellipsoid does not change shape during the motion, these three cases
vary continuously into one another, while case (II) remains isolated.

8.

The investigation of whether there are cases apart from these four, in
wlhich the principal axes remain constant during the motion, leads to a some-
wliat lengthy calculation. We indicate this only briefly, since it merely pro-
duces a negative result.

From the hypothesis that a, b, ¢ are constant, we can readily show that o
is constant. We multiply the first three differential equations («) by a,b,c¢
respectively and add. Then we use equation I of Section 4, the principle of
conservation of kinetic energy.

Differentiating these three equations, and substituting the values of 2 du’

dt’ dt>’
. dd—"t" from the last six equations («), we obtain the three equations
(b —c)u(vw —v'w') + (b+ c)u' (v'w — vw') = 0,
(1) (c — a)v(wu —w'u') + (¢ + a)v' (w'u — wu') = 0,
(@ —b)w(uw — u'v') + (a + b)w' (v'v — u') = 0.
Iviwh of these is a consequence of the others.
[. Now suppose none of the six quantities u,v’,...,w" is 0. From these

cquations we infer the equality of the following three pairs, denoting their
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values by 2a’,2b,2¢:

v v w w

(a—c)=+(@a+c)—=(a—b)— +(a+b)— =2d,
v v w w
(b—a)ﬂ,+(b+a)£=(b~c)3,+(b+c)u—:2b’,
w w u u
(c—b)—+(c+b)— = (c—a) =+ (c+a) — = 2¢"
U U v v

’

From these equations, a'? — b2 = a® — b2, b? — ¢2 = b2 — ¢*. Now we may let
9:a2—a'2:b2—b/2:c2~c/2,
and from the first three differential equations of («) we have

2ma’ = const., 2xb’ = const., 2pc’ = const..

Here we write vv' + ww' = m, ww' + wu’ = x, wu’ + vv' = p for brevity. We
combine these equations with the equation

(a® — b*)(a® — A + (b* — a®)(b* — *)x + (¢ — a®)(c* — b*)p

1
~ 1 (w? — w%),
which follows easily from equations 11, II1. It follows that 6, and thus u, o/, ..., /',

must be constant if we exclude a = b = ¢. However we can now easily show
that the last six equations (o) cannot be fulfilled. In this way we establish
that u,/, ..., w' cannot all be nonzero provided not all three axes are equal.

The case a = b = ¢ would lead to the case of a sphere at rest; u’,v’, w’
turn out to be 0 while u, v, w remain arbitrary. So the position of the axes
at each instant can be varied arbitrarily.

II. The only remaining hypothesis is that one of the quantities u, v, ..., v’
is 0. This always yields, as we shall see, the earlier case where one of the
three pairs u, u'; v,v"; w, w’ vanishes.

1. When one of «/,v’,w’ is 0, for example v’ = 0, the equations
(b—cuwvw =0, (b—cuv'w' =0

follow from (1). This leads to one of the following hypotheses: firstly, the case
investigated earlier; secondly, b = ¢; thirdly, v = 0,w’ = 0, or v/ = 0, w = 0,
which is not essentially different
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If b = ¢, u remains arbitrary, and can thus be set equal to 0, which leads
Lo the case discussed earlier.
If v =0,w = 0, we obtain

(b—c—2a)uv'w =0, (¢c+a—2buw'w=0, (a—b+2c)uv'w =0
from the differential equations («). Adding the first two equations,
—(a + b)uv'w = 0.

So, apart from ', v, w’, another of u, v, w’ must be 0, leading to the earlier
case again.

2. Finally, when one of u,v,w is 0, for example u = 0, it follows from
the equations (1) that
wv'w =0, vvw = 0.

These equations lead either to our earlier hypothesis; or to the hypothesis
u = v = w' = 0, which does not differ essentially from the case v’ = v =
w' = 0 just considered; or finally, to © = v = w = 0. However, under this
hypothesis the differential equations («) give

Hence two more of the quantities u’, v, w’ must be 0, again producing the
case treated earlier.

It has emerged that along with the invariance of form is necessarily asso-
ciated invariance of the state of motion. In other words, whenever the fluid
mass persists in forming the same body, the relative motion of all parts of
the body remains constant. We can think of the absolute motion in space
in these cases as composed of two simpler motions. We impart firstly an
inner motion to the fluid mass, with the fluid particles moving in similar
parallel ellipses perpendicular to one cross-section. Now impart to the whole
system a uniform rotation around an axis lying in this cross-section. If the
cross-section, as assumed above, is perpendicular to the principal axis a, the
cosines of the angles between the axis of rotation and the principal axes are

A k. : e om h .k i
0,2, Z; the period of rotation is T Moreover 0,b ok, Cc ok are the coor

dinates of the endpoint of the instantaneous axis of rotation with respect to
the principal axes. From the inner motion, the elliptical paths of the fluid
particles are parallel to the tangent plane at this point of the ellipsoid, so
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that their centers lie in this axis of rotation. The particles move on these
paths in such a way that radius vectors drawn from the centers sweep out

equal areas in equal time periods, and run over their paths in time —22—.
Vaitri

9.

We now come back to the treatment of the motion of the fluid mass in the
case where u, u’; v, v’ are 0 throughout, so that there is only a rotation around
one principal axis. We observe at once that the equations (1) of Section
7, giving the variation of the principal axes in this case, permit another
mechanical interpretation. Namely, one can treat them as the equations of
motion of a material particle (a, b, ¢) of mass 1, constrained to move upon a
surface determined by the equation abc = const. and driven by forces whose
potential function is

’
7_2 7_2

(@=b2 " (atb)

— 2¢H,

or the same quantity with the sign changed.

Denote this quantity by G. The equations of both motions may be put
in the form

d*a d?b d*c
1 —da+—-—=d0b+—=dc+0G =0

) az T T
for any infinitely small values of da, §b, dc that satisfy the condition abc =
const. The principle of conservation of energy yields

1 (da\? [db\? [de\? G

3 (E) + (E) + (d_t) + G = const.
Accordingly, the part of the energy independent of the variation in form of
the fluid mass is G.

In order for a,b,c, and consequently the shape and state of motion of
the fluid ellipsoid to remain constant, and thus for %‘%, %, % to vanish, it is
clearly necessary and sufficient that the first order variation of the function
G of the variables a, b, ¢, satisfying abc = const., vanishes. For this we may
cite equations (3) or (4) and (5) of Section 7. However, this invariance of
the state of motion will be unstable if the value of the function is not a

192



Riemann, Collected Papers

minimum. There are then always arbitrarily small variations of the state of
(he fluid mass that effect a complete change of the motion.

The direct investigation of the second order variation, in the case when
the first order variation of the function G vanishes, would be very involved.
llowever, we may decide as follows the question of whether the function has
a minimum value in this case.

It can readily be shown that the function, whatever values 7 and
a, b, c may assume, must have a minimum for a system of values of the in-
dependent variables. This is an obvious consequence of the following three
facts. Firstly, the function G, in the boundary case of infinitely small or
infinitely large axes, must approach a non-negative limiting value. Secondly,
values of a, b, ¢ can always be given for which G becomes negative. Thirdly, G
can never become negatively infinite. These three properties of GG follow from
known properties of the function H. The function H takes its greatest value
in the case when the fluid mass assumes the shape of a sphere, namely the
value 27p?, where p denotes the radius of this sphere, so that p = (abc)l/3.
['urther, H becomes infinitely small when one of the axes becomes infinitely
large, and consequently at least one of the others becomes infinitely small.
However, when b tends to infinity, Hb does not become infinitely small. Con-
sequently in the function GG, provided a does not go to infinity at the same
lime, the negative term finally outweighs the positive term.

If 72 is nonzero, then already among the values of a,b, ¢ satisfying the
condition b > a, there must be a set of values for which the function takes
a minimum. For the three conditions above, from which the existence of a
minimum follows, are fulfilled for this region, since G is also non-negative in
the limiting case a = b.

Now we can further investigate how many solutions of equations (3) of
Section 7 satisfy the condition of the vanishing of the first order variation.
‘This investigation is easily carried out if we also treat the expressions for
r? and 72 that emerge for complex values of a,b,c. However we cannot
undertake this investigation in the present work and must be content to
state the result that we shall need later.

If 72 is not 0, the equations (3) only admit one solution on either side of
b = a. Thus the first order variation vanishes for only one system of values
on each side of this equation, and the function G must take its minimum for
this system of values. We denote this minimum by G*.

If 72 is 0, the first order variation always vanishes for b = a, and a value
ol ¢ that is equal to a for 72 = 0, and steadily decreases for increasing 7'2.

2 2

’
, T
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For this system of values, the second order variation can easily be expressed
as an aggregate of (da + 6b)%, (§a — 6b)?, with the coefficient of (da + 6b)?
always positive. For the function, as we know from the above investigations,
takes its smallest value here, among all values it takes when b = a.

However, the coefficient of (da — 6b)? is

er [ ds s—ab N c?
2 Jo AN\(a®+s)(b2+s) ab(c?+s)
which is only positive if

€< 0.303327. ..
a

and consequently 72 < emp? 8.64004. . .. It becomes negative if ¢ goes beyond
this value.

Thus the function G only has a minimum G* for this system of values in
the first case. The investigation of the equation (3) shows that in this case
the first order variation vanishes only for this system of values. However, in
the latter case, G has a saddle point; accordingly there must be two more
systems of values for which a minimum G* occurs. From the investigation of
the equations (3), it follows that the first order variation vanishes for only
two further systems of values, which can be obtained from each other by
interchanging b, a.

From this investigation, then, we find that in the case, known since
MacLaurin, of the rotation of a flattened ellipsoid of rotation turning around
its shorter axis, the invariance of the state of motion is unstable as soon as
the ratio of the smaller axis to the others is less than 0.303327... . With
the smallest variation of the other two axes in this case, the shape and state
of motion of the fluid mass would change completely, and a persistent oscil-
lation of state would occur around the state corresponding to the minimum
of the function G. This consists of a uniform rotation of an ellipsoid with
distinct axes about the shorter axis, combined with a simultaneous inner mo-
tion of the particles in ellipses, similar to one another, perpendicular to the
axis of rotation. The period of the latter rotation is equal to the period of
revolution, so that each particle already returns to its original position after
a half rotation of the ellipsoid.
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10.
If the total energy of the system,

1 (da\® [db\* [dc\?

= — — — Gy = 1,

(@), + (&) (&),) ro
which obviously cannot be less than G*, is negative, then the form of the
ellipsoid must oscillate within a finite region bounded via the inequality G <
(.

We can readily investigate these oscillations in the case where €2 — G* is

(reated as infinitely small.

We consider the value ¢ in our function G to be taken from the equation
abe = agbocy. Now equation (1) of the previous section yields

d’a ¢ d%c oG d?b ¢ d% oG

@ adr e VaE vaeta

Now the values of a, b, ¢ can only vary by infinitely small amounts from the
values corresponding to the minimum of G. Denoting the variations at time
I by da, db, dc and neglecting higher order terms, we connect these variations
[y the equations

da O6b ¢
— 4+ —+—=0,
a b c

d*6a ¢ d*6c G 0*G

‘ _¢ 5b=0
() dt2  a dt? + Ha? da+ Hadb b=0,

d’sb ¢ d*c O0*G oG

@ bae ot ga e =
'I'hese are known to be satisfied when we take d;f;l = —u?da, % = —u6b,

d?sc

and thus also &5 = —u?de, and then choose the constant u? so that one
ol the equations is a consequence of the others. The last condition on p?
voincides with the condition that the quadratic expression in da, db,

26°G — p?(8a® + 6b% + 6¢°)

call be expressed as a square of a linear expression in these quantities. This
condition is always satisfied by two positive values of u?, since 6°G and
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da®+8b? 4 6c? are essentially positive, and the two values become equal when
52G and da? + 5b* + 5¢? differ only by a constant factor. These two values
of 1? yield two solutions of the differential equations (1) for which da, db, éc
vary in proportion to a periodic function of time, of form sin(ut + const.).
We obtain the general solution of (1) by combining these solutions.

Each solution individually produces infinitely small periodic oscillations
in the shape and state of motion. Admittedly we can only show from this
that there are two types of oscillations, which become more nearly periodic,
the smaller they are. However, we obtain the existence of finite periodic
oscillations as follows.

If €2 is negative, then obviously a must take one and the same value more
than once. We treat the motion starting from the instant when a takes such
a value for the first time. The motion will be completely determined by the
initial values of d‘z, th)’ and b. Thus the values taken by these quantities, when
a later on takes this value, are also functions of their initial values. These
functions, taken together, we denote by y. The motion will become periodic
when their values are equal to the initial values. Because of the equation
abc = const. and the principle of conservation of kinetic energy, when b and
%—‘t’ resume their initial values, then so do ¢, % and dc Thus there are only
two conditions to fulfill. By taking the derivatives of the functions x for the
case of infinitely small oscillations, we can show that these conditions do not

contradict one another and have real roots inside a finite domain.

For this case of periodic oscillations, a, b, ¢ can be expressed as functions
of time via Fourier series. Apart from the case treated by Dirichlet, the
constants in the series can admittedly be determined only approximately.
This can be done, for example, by extending the above expansion for the
case of infinitely small oscillations to terms of higher order.

It seems worth the trouble to give at least a superficial treatment of this
motion, which is the simplest in which shape and state of motion are constant.
We now wish to extend the investigation, carried out in the previous section
for the case of rotation around only one principal axis, to all the motions
satisfying Dirichlet’s hypothesis.

11.

For this purpose, we transform the differential equations («a) into a
clearer form. In place of u,v,...,w’ we introduce the quantities g, h, ... k.
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We generalize the meaning of G; we now take G to denote the expression
1 fg+a\° [h+hm\> [k+k\° [g—a\° [h—h\>
- + + + +
4 b—c c—a a—b b+c c+a

<k - k1)2 / aoboco ds
+ — 2em ,
a+b V(@ + )2+ 5)(? + s)

the part of the energy that is independent of the variation in shape.
We now obtain

oG 06 oG
p“aga q—-ah, 7—'8]{;7

_ oG _9G _8G
p1—8gl,(h—8h1> 1—8]&'1‘

The last six differential equations («) can be written in the form

dg _,9G 3G dg e oG

A Mt R Ml R Nl il
dt ok oh’ dt Yok, "'oh,’
) dh  9G  8G dh , 9G 3G
dt "9 Yok dt " og Mok

dk _ 0G , 0G dk, _ OG , 0G
dat 9on "9 dt = Ton, Mog

The first three equations of () become

da  0G o d?b  0G o d?c  0G o
gy 8, 0G50 _ 80,06 0 _ &C, 06,0
@ wErta i wmte 2 Y w2

We note also that, from equations II, when w = 0, the three equations
g=0, h=0 k=0

follow. That is, these quantities always remain zero if they are zero initially.
Naturally the same holds for the quantities g;, h1, k;.

From the differential equations (1), (2) we now see easily that for the
vanishing of the first order variation of the function G of the nine variables
a,b, ... ki, connected by the three conditions

abc = const., g> +h? + k> = w? g} + A+ kI =wi,
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it is necessary and sufficient that

d*a d*b d?c dg dk,
dt?2’ dt?’ dt?’ dt’ 7 dt

are 0. Thus the shape and state of motion of the ellipsoid remain constant
if da db de

ot 5o 5 are 0. Farlier we gave a full discussion of the cases in which
this occurs. However, we now see readily that the function G must have a
minimum for at least one set of values of the independent variables. For in
the limiting case when the axes become infinitely large or infinitely small, G
tends to a nonnegative limit and, as already seen, there are definite values
of the independent variables for which it takes negative, but not negatively
infinite, values. For the constant state of motion corresponding to such a
minimum, it follows from the principle of conservation of kinetic energy that
each infinitely small variation satisfying Dirichlet’s hypothesis entails only
infinitely small oscillations. In every other case, invariance of the shape and
state of motion is unstable. The search for a state of motion corresponding to
a minimum of G is important not only for the determination of the possible
stable forms of a moving massive fluid body. It would also be basic to the
solution of our differential equations via infinite series. Accordingly we now
find the cases, among those where the first order variation vanishes, where
the function G has a minimum. Now from each of the cases found earlier
in which the ellipsoid maintains its form, by interchanging axes and varying
the signs of g, h, ..., k; one obtains several sets of values of a,b, ...,k that
cause the variation of first order of G to vanish. We can combine these here,
as the function G takes the same values for all these, and all are equivalent
for our question.

Before treating the individual cases, we note that when w or w is zero the
investigation takes a particularly simple form, since g, h, k or gy, hy, k; drop
out of the function G completely. The earlier investigation of constant states
of motion gives only two essentially different cases in which one of these two
quantities is 0. In the case discussed in Section 6, this can only occur if

w? a+b

w? (2a-b-c)(2a—b+c) [(a-b\"
w? (2a+b+c)(2a+b—c)—( ) '

Thus the expression
(3) b*e® + a*b? + a*c® — 3at,
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which we denote by E. is 0, and it emerges that w or w; is actually 0. Solving
the equation £ = 0 for a produces only one positive root, lying between b*‘
and b, and this can happen only in case (I). Apart from this ca,se there 15
still the case where w or wy is 0, examined in Section 7, where 72 = 772,

We can now show at once that in cases (I), (II), (III), the function G
cannot take a minimum value, since its value for fixed a, b, ¢ can always be
decreased by suitable variations of g, h,..., k;. Since g and g are 0 and
h,hy, k, ky, excluding the case £ = 0, are nonzero, the variations of these
(uantities are connected by the equations

8g° + 2hdh + 2kék = 0, 6g° + 2h 6hy + 2k 5k; = 0.

The variation of G becomes

1{(6g+60\° [69—0ba\"\ OG oG
z((—b_c ) +(—b+c +an ot gy ok

oG oG
9 sk ki
ton Ot O
Since 89G 0G 9G 3G
—:—=h:k =h, : k
oh = Ok " Bhy Ok LT
we have
| 1 [(bg+éa\? (b9 g\’
) 5G—Z<< b—c > +( b+c
106G 1 8G
oh 8kh °7 T 2n, Bk, N

We form the determinant of this quadratic form in §g and dg;, and sub-
stitute the values obtained in (1) of Section 6,

2qh b+ ¢? — 2a% + v/(4a2 — (b+ ¢)2)(4a? — (b — ¢)?),

() oh
q—l =02+ —2a° F /(402 = (b + ¢)?)(4a® — (b — ¢)?)

1

s0 that h}“ = F. The determinant is found to be

3(a? — b*)(a® — ¢?)
1B — )2
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It is positive in case (I), if E' < 0, and in case (I11I), but negative in case (1),
if £ =0, and in case (II). In the first two cases, the expression (4) can take
both positive and negative values: in the other two cases, we find either only

positive values, or only negative values. For dg; = —dg, G has the value
54 1 b? + ¢ — 2a? .
(b+c)? 2F

Under the assumptions valid in these cases, this is always negative, as we
readily see by rewriting it as
(b2 + ¢ — 2a*)(b* + dbe + % + 2a®) + (4a® — (b + ¢)?)(4a® — (b —¢)?)

— 2
4(b+ c)’E %9,

and observing that b + ¢ — 2a? is always positive when E > 0.
If one of the two quantities w or w; vanishes, for example w; = 0, the
conditions connecting gy, dhy, 0k, become

897 + 8hi + 8k; = 0.
Consequently the expression for the variation of G reduces to
1/ b*+c? q
6G == | ———— — = | 6g%.
2 (<b2 — ) h) I
We obtain from (5), since zth =0,

h
— =b%* 4+ — 22
q

Substituting this value, we obtain

(b% + c?)(4a® — (b+ ¢)?) + (b — ¢)?(b* + 4bc + ¢?)
4(b% — c2)2(b? + c? — 2a?)

0G = — 59>

This is negative, since in this case b? +¢? — 2a* and 4a? — (b+¢)? are positive.
Thus in all these cases the function G has no minimum value. It remains

to treat the case of Section 7, where we can altogether exclude the singular

case where b = a and 72 > (emp*)8.64004 . .. . If either w? or w? is 0, this case

produces, for given values of the other quantities, only one constant state of

motion for which 72 = 7'2, and for these values G must take its minimum
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value. For a given pair of nonzero values of w? and wi, however, this case

produces two constant states of motion of the fluid mass, that pass into each
other on interchanging 72, 7'2. For we can determine 72 and 72 from w? and
W using
w 4+ wq ) w — Wi
T = , T = ,
2 2

and vary the signs of w and w; arbitrarily.

We can easily show that, in the single case when w and w; have the same
sign and so 72 has the largest value, no minimum of G occurs. The conditions

on the variations of g, h, ..., k; are now

8g° + 0h® + 2kék = 0, dg;7 + 6hi + 2k,0k; = 0,

and the variation of G will be
(o) () () (2
G ) e
+ ((itfy + (;; ) (893 +5h2)}

However, this has a negative value when we take w and w;, with the same
sign and dh = dh; =0, dg; = —dg. For this produces

06 = {(b+1c)2 B (b—lrla)2 * ((b+1a)2 - (b—la)2> @4::1)2}592.

1
< W‘ AlSO

e —L .
llere L (b+c)2 <
!

and consequently 72 > 72, so that 72 can only exceed

(b+a)2, since for ¢ < a, (3) of Section 7

72

2
Ty = Tap
1tif e > a.

Thus the function has no minimum in this case, and consequently must
(ake its minimum in the single remaining case.

Thus this occurs for the motion treated in Section 7, if 72 < 7'2 (exclud-
ing the above singular case). In all other cases the persistence of the form
nnd state of motion is unstable. However, in this case every infinitely small

pives
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variation of the form and state of motion of the fluid mass, satisfying Dirich-
let’s hypothesis, produces only infinitely small oscillations. Admittedly this
does not imply that the state of the fluid mass is stable in this case. The
investigation of the conditions under which this occurs could indeed be car-
ried out by known methods, since it leads to linear differential equations.
We forgo the treatment of this question in the present work. It is merely
a development of the beautiful reasoning that is a high point of Dirichlet’s
scientific activities.
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XI.
On the vanishing of #-functions.

( Borchardt’s Journal fir reine und angewandte Mathematik, vol. 65, 1865.)

The second part of my memoir on the theory of Abelian functions, which
wits published in the 54th volume of Borchardt’s journal of mathematics,
contains the proof of a theorem on the vanishing of theta-functions to which I
shall refer, assuming the notation used previously to be familiar to the reader.
[“verything deduced in the memoir in brief indications of the applications of
this theorem is based on the concept of defining a function by means of
ils discontinuities and infinities. As can easily be seen, these applications
must form the foundation of the theory of Abelian functions. However in
the theorem itself, and in its proof, insufficient account has been taken of
the possibility that the theta-function may vanish identically (that is, for
every value of the variable) when for its variables are substituted integrals of
nlpebraic functions of a single variable. The purpose of the following short
metnoir is to remedy this defect.

In discussing #-functions in an indefinite number of variables, the need
lor an abbreviated notation to represent a sequence such as

V1,V2,...,Um

nnikes itself felt as soon as the expression for v, via v is complicated. We
vonld use symbols analogous to summation and product signs, but such a no-
fation would take too much space, and the symbols governed by the function
ripn would be difficult to print. I prefer therefore to represent

m
V1,V ..U DY | v ()
1
nhd Lhus
b
O(vi,ve,...,0) by 8 | v (v,)
1
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1.
Suppose that, in the function 6(vy,vs,...,vy), we substitute for the
variables v the p integrals u; —e;, ug — es, ..., u, — e, of algebraic functions

that branch in the same way as the surface T'. We obtain a function of z,
which varies continuously throughout the whole surface T° outside the lines
b, but acquires the factor exp(—u] — u, + 2e,) in crossing from the negative
to the positive side of the line b,. As proved in §22, this function, if it does
not vanish for all values of z, becomes infinitely small of first order at only p
points of the surface 7". These points were denoted by 71,7, ...,7,, and the

value of the function u, at the point 7, by o). This led to the congruence
for the 2p systems of moduli of the #-function:

D p p
(1) (e1,e2,...,¢,) = (Za@ + KLY o)+ KoY ol +Kp> .
1 1 1

The quantities K depend on the (at present arbitrary) additive constants in
the functions u, but are independent of the quantities e and the points 7.
If we perform the calculation indicated there, we find that

p

1
(2) 2K, = Z — /(u,‘,L + uy, )du, — €70 — Z €,y

p=l

In this expression, the integral [(uj +u; )du, is taken in a positive direction
over b, and, in the summation, v/ runs through the natural numbers from 1
to p other than v. Further, ¢, = +1, depending on whether the end of the
line 4, lies on the positive or negative side of a,, while ¢, = +1, depending
on whether this same point lies on the positive or negative side of b,. The
determination of the sign is, incidentally, necessary only if the quantities e are
to be completely determined from the discontinuities of log# in accordance
with the equations of §22. The above congruence (1) remains valid, whatever
sign we take.

We shall first retain the simplifying assumption made there, that the
additive constants in the functions u are so determined that the quantities
K are all 0. In order to free the final results from this restrictive hypothesis,
obviously all that will then be needed will be to add back — K, —K», ..., —K,
to the arguments of the theta-function.

If, therefore, the function 6(u; — e, us — es, ..., u, — €,) vanishes at each
of the p points ny,m2,...,m, and does not vanish identically for every value
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of z, then

1

P P p
(61762, - .,61)) = (Z (l/(lll), Z(Xéﬂ), ey ZO[I()H)> .
1 1

This theorem holds for arbitrary values of the quantities e, and we de-
duced from this, by allowing the point (s, z) to coincide with the point 7,

that
p—1 p—1 p—1
' 9(— a(lﬂ),— ag“),...,— al(,“)):().
1 1 1

Since the #-function is even,

p—1 p—1 p—1
’ (Zagw,zagw,..,, a;w) o,
1 1 1
no matter what the points n;,7,,...,7,-1 might be.

2.

However, the proof of this theorem requires, for completeness, some
amplification due to the circumstance that the function

O(uy — ey, us — €a,...,Up — €p)

may vanish identically (and in fact this can happen for every system of sim-
ilarly branching algebraic functions, for certain values of the quantities e).

Because of this, we must initially be content to show that the theorem
remains valid, when the points 7 vary independently within finite limits.
The general validity of the theorem will then follow by virtue of the principle
that a function of a complex variable cannot vanish throughout a finite region
without being zero everywhere.

When z is given, the numbers e, e, ..., e, can always be chosen so that

O(ur — er,uz — €2, ..., up — €p)

does not vanish. For otherwise the function (vs,...,v,) would vanish for
every value of the variables v, and every coefficient in the development of the
function in integral powers of e2*1 e?2 ... e?* would be zero, which is not
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the case. The quantities e can therefore be varied independently from one
another within a finite region, without the function

O(u)y — ey, up — es,y ..., up —€,)

vanishing for the given value of z. In other words, one can always find a
2p-dimensional region E, within which the system of quantities e can move
without the function

Olur — ey, ug —eg, ..., up — €p)

vanishing for this value of z. It will therefore become infinitely small of first
order at only p different positions of (s, z). If we denote these points by
M, ..., "Np, we have

P p P
(1) (e, €2,...,6p) = (Zag“),Zag“),...,Zag“)).
1 1

1

To every choice of the system of numbers e inside E, or every point of E,
corresponds a determination of the points 7, whose totality form the points
of a region H corresponding to the region E. However, in consequence of
the equation (1), to each point of H corresponds only one point of E. If]
therefore, H were a region of 2p — 1 or fewer dimensions, then E could not
have 2p dimensions. Hence H is a 2p-dimensional region.

The reasoning on which our theorem is based thus remains valid for ar-
bitrary positions of the points 7, within a finite region, and the equation

p—1 p—1 p—1
9(—Zagﬂ),—Zagﬂ),...,——Zag‘)) =0
1

1 1

holds for any positions of the points 71, 72,...,7,—1 in the interior of finite
regions, and consequently in general.

3.

It follows that the system of quantities (ej,es,...,€,) is congruent, in
one and only one way, to an expression of the form

p p p
v Z ol , i v (u,—e)
1 1 1
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does not vanish for every value of z. For if the points n;,72,...,n, can be
determined in more than one way so that the congruence

p D P
vie)| = i(Zaff“)

1
p
holds, then by the result just proved the function 6 | v (u, —e,) | would
1

vanish for more than p points, without vanishing identically, which is impos-
sible.
p
If0 | v (u, —e,) | vanishes identically, we need, in order to obtain
1
in the above form, to consider

(ev)

—_— 3

p
0 v (u +al) —ull) —e,)
1

aud if this function vanishes identically for every value of z, (i, z;, to consider

2 2
o [+ 3ol =S~ e
1 1 1
We suppose that
[ (p
0 (Zl o (PH2m rln—l uPH ey>
1
(1) vanishes identically, but that
p
ol ( rln+1 a£p+2—u) _ rlnugp ) 6y>
1
does not.

\

Hence the latter function, regarded as a function of (,;, vanishes not only
for €,-1,€p-2,. .., €p—m, but for p —m other points which we may denote by
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M, 72, - - - Mp—m, SO that

() (5

These points 71,72, ...,7p—m can be determined in only one way so that
this congruence holds, because otherwise the function would vanish at more
than p points. This same function, regarded as a function of z,_;, besides
vanishing for

Il

Mp+15Tpy - -+ 5 Tlp—m+1,

vanishes for p — m — 1 other points, which we may denote by

€1,€25-..,€p_m—1-
We then have
p p—2 p—m—1
y <_ Z u,(f‘) _ e,,) = ( Z u(“)> ’
1 p—m
and the points €1, €, ..., €p—m—1 are completely determined by this congru-

ence.
Under the assumptions (1), then, the two congruences

p p/p
(2) vie)| =|v <Z oz,(f‘))
1 1\1

p p [p-2
(3) vi—e)|=1lv (Z uf,‘”)
1 1\ 1

can both be satisfied by choosing m of the points n and m — 1 of the points
€ arbitrarily, after which the remaining points are determined. The converse
theorem is also true, that is, the function vanishes if one of these conditions
is satisfied. Accordingly, if the congruence (2) can be satisfied in more than
one way, then the congruence (3) also has more than one solution, and if m,
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but not more, of the points n can be chosen arbitrarily, then m — 1 of the
potnts € can be chosen arbitrarily, after which the others are determined, and
tonversely.

It follows in the same way that if

p
Olv(r,) | =0,
1

the congruences

p p [/p-1
(1) v(r,)| =|v (Z af,’”) ,
1 1\ 1
p p /p-1
v(i-r) |l =1|v (Z u,(f‘))
1 1 1

nlways have a solution. In fact, m of the points n and m of the points €
vnn be chosen arbitrarily, after which the remaining p — 1 — m points are
determined, if

(h)

p m m
01v (Z ult) — Z al®) + 7",,)
1 1 1

in identically zero, but

p [/m+l m-+1
o[- St
1 1 1

i not identically zero, the case m = 0 not being excluded. This theorem has
n converse. If m, but not more, of the points  can be chosen arbitrarily,
then the hypothesis is satisfied and it follows that m, but not more, of the
puints € can also be chosen arbitrarily.

4.

Denote by ), the first derivative of 6(vy, vs, . .., v,) With respect to v,,

by 6/  the second derivative with respect to v, and v,, and so on.
w\u , u
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If

(u,(jl) — al(,l) +7,)

>
=3

p
vanishes identically for every value of z; and (3, all of the functions 6’ | v (r,)
1

will be zero. In fact the equation

() —aM +1,) | =0,

>
=R

when s; and z; are infinitely close to g1 and (;, becomes the equation

p p
ZH; v (r,) daf}) = 0.
1 1
If we assume that p
du, = ——_—¢“(2;) Z’
| 5
then, after omission of the factor
d¢;
OF(01,(1)’
60'1

the equation becomes
p p
>0 v () | gulon, 1) =0.
1

1

As no linear equation with constant coefficients can hold between the func-

tions ¢, it follows that all the first order partial derivatives of 8(vy, va, ..., vp)
p

must vanish for v (v, =1,).
1
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p
In order to prove the converse theorem, assume that v (v, = r,) and
1
/l
1 (0, = t,) are two systems of values for which the function € vanishes,
|

p
without vanishing identically for v (v, = M — o)+ ry) and
1

1z
(v, = u) — oV + t,). We form the expression

P (1) (1) /p (1) (1)
Olv(uw —a’+r,)|0|v(iew —w’ +71,)
1 1
(2)
P 1 P 1
0 I/(u,(,)—a,(,)th,,) 0 I/(a,(,)—u,(,)th,,)
1 \1

If we regard this expression as a function of z;, then it is an algebraic
lunction of z; and indeed a rational function of s, and z;, because the de-
nominator and numerator of the fraction are continuous on 7" and acquire
the same factors on crossing the transverse cuts. For z; = (7 and s; = o7, the
tlenominator and numerator become infinitely small of second order, so that
tlie function remains finite. However, the other values for which the denom-
inator or numerator vanish are, as shown above, completely determined by
Lhe values of the quantities r and ¢, and thus independent of {;. Now since
nn algebraic function is completely defined, apart from a constant factor, by
the points at which it becomes infinite or zero, the expression is a rational
[inction x(si,21) of the variables s, 2; independent of (;, multiplied by a
constant, that is, a quantity independent of z,. As the expression is sym-
metric in regard to the systems (sy, z1) and (o1, (1), this constant is (o1, (;)
multiplied by a number A not depending on (; either. If we write

VAx(s,z) = p(s, 2),
we obtain, for our expression (2), the value

(3) p(s1,21) plo1, (1)
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where p(s, z) is a rational function of s and z.
To determine this function, we merely need to let {; = 21,01 = s1, ob-
taining

\ 2

29' y (r,) | dul!
v) [

p(Sl, 21)2 = { ’
p
29' v (t,) duf})
l 7
or, after extracting the square root, and removing the factor W&?—Zl),
081
p
D20 v ) | dulsi, )
w 1
(4) plsi,z) = £ :
ZGL v (t) | ¢ulsi,z1)
w 1
We now deduce from (3) and (4) the equation
p (1 _ (1 (1 1
0 ( ) ( ) + 7'1/)
1
(5)
p 1 1
0 u(u al) —u,(,)—+-t,,)
1
p
Z% (T‘u Puls1, 21 29/ v (r) | dulon, Q1)
ok 1 1
(P p
ZQL 1% (tu (ﬁ“ 51,21 29/ 1% t,, <019<1)
@ \1 1

It follows from this equation that

p
0|v @ —ao+r)
1
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must be equal to zero for every value of z; and (y, if all first order partial

P
derivatives of the function (v, vs, ..., v,) vanish for v (v, = r,).
1
5.
If
p m m
(1) 0v (Z oW — Zuf,“) + r,,)
1\ 1 1
m m
vanishes identically, that is for every value of p (0,,(,) and p (s, 2,), then
1 1
by taking ¢, = zm, Om = Sm, we find—in the manner indicated above—that
all first order partial derivatives of the function 6(vy,vs, ..., v,) vanish for

P m—1 m—1
v (v,, = Z oW — Zu,(f‘) +7",,) :
1 1 1

Further, by allowing (-1 — Zm—1, Om—1 — Sm-1 t0 become infinitely small,
we find that all second order partial derivatives vanish for

D m—2 m—2
v (v,, = Z ol — Zu,(,”) + 7",,) :
1 1

Obviously we find in general that all nth order partial derivatives vanish for

P m—n m—n
u<vl,= Zaff‘)-— ZUS,“)-*-TV)a

1 1

whatever the values of the quantities z and (.
It follows that, on the present assumption (1), all partial derivatives of
p
the function 6(vy,vs,...,v,) up to order m are 0 for v (v, =r,).
1
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In order to prove that the converse theorem holds, we first show that if

m—1 m—1
o[ (et )
1
vanishes identically and the quantities

yY
GON Y (r,)
1

are all zero, then

D m
0|v (Zaff‘)—Zu +rl,
1 1

must also vanish. To this end we generalize equation (5) of §4.
We assume that

D [m-1 m—1
0 V(Zu,(j‘)—Za —{—’I“l,
1 1

1

vanishes identically, but

p m
(S-St )
1 1

does not. We retain the earlier assumption in regard to the quantities ¢, and
consider the expression

p m m P m m
0\|v (Z u,(,“) - Z a,(,“) + r,,) 0| v (Z a,(,“) - Z u,(,“) + r,,) X
1 1 1 1 1 1
p p \
X H 0|v (ul(/p) — P 4 t)|6|v (a(") o) 4 t)
P’ 1 1 )
no (P , P )
H 0|v@w? —a¥ +1,)]6 v —ul) +1,)
pp'= 1 | )
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In the above expression, the variables p and p’ under the product signs run
from 1 to m, omitting terms with p = p’ in the numerator.
1t we regard this expression as a function of z;, we see that the factor that
arises on crossing each transverse cut is 1. Consequently it is an algebraic
inction of 2;. For 2, = (, and s; = 0, the denominator and numerator are
infinitely small of second order, and the fraction therefore remains finite. For
all other values for which the numerator and denominator vanish, the quanti-
m
ties 7 and ¢ are fully determined by the quantities p (s, z,), as shown in §3,
2
and hence are independent of the quantities (. Now since the expression is a
symmetric function of the quantities z, the same is true for every z,: it is an
algebraic function of z,, and the values of 2, for which this algebraic function
hecomes infinitely small or infinitely large do not depend on the quantities (.
The expression is therefore equal to an algebraic function x(z1, 22, .. ., 2m) of
the variables z (not depending on ¢), multiplied by a factor not depending on
the variables z. Since the expression remains unaltered when the quantities
z, ¢ are interchanged, this factor is x((1, s, - - -, () multiplied by a constant
A independent of the quantities z, (. We may therefore, if we write

\/ZX(ZI’ZQ’ ey Zm) = ¢(Z1522, ceey Zm)a

give our expression (2) the form

(3) w(zlazQa"'azm)¢(<la<2w-'aCm)'

Here 9(21, 22, . .., 2m) is an algebraic function of the variables z, independent
of the quantities ¢, which, by virtue of its branching type, can be expressed
m
rationally in p (s, 2,).
1
If we now allow the points 7 to coincide with the €, so that the quantities
¢y — 2, and o, — 5, all become infinitely small, then—using the notation for
partial derivatives in §4, (1)—we have

P p
+ >0, e )| duldau? - dul
vy, ~yVm“l 1

(4) Y(21,20,.. ., 2m) = (

p(ro) | duf)
1
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It is hardly necessary to point out that the choice of sign is irrelevant, since
it has no bearing on the value of

u)(zh 2950y Zm)w((la (2) ceey gm)7

and that du(I” ),dug" L ,du,(f‘ ) can be replaced simultaneously in the nu-
merator and denominator by quantities ¢(s,, 2,), $2(Su, 24), - - -, Pp(Su, 2)

proportional to them.
From the equation contained in (2), (3), and (4), which has been proved
for the case in which

p /m-1 m—1
o1v (Z u — Z al® 4 r,,)
1 1 1
is zero, and

P m m
o1l v (Z u,(f‘) _ Z a,(f‘) + Tﬂ)
1\1 1

is not, it follows that
P m m
(VS-S o)
1 1 1

cannot be different from zero, if the functions 8™ | v (r,) | all vanish.
1

Thus, if the functions ™+ (r,) | all vanish, the validity of the equa-

e

tion
p n n
(oS- Sek e ) ) <o
1 1 1

for n = m implies its validity for n = m + 1. Accordingly, if the equation
p

holds for n = 0, or if § | v (r,) | = 0, and all partial derivatives of the
1
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p p
function @ | v (v,) | up to order m vanish for v (v, = r,), but the (m+1)-th
1 1

order partial derivatives do not all vanish, then the equation also holds for all
values of n up to n = m, but not for n = m + 1. For as we found previously,
it would follow from

P /m+l m+1
o[ (S2u - St )| <o
1 1 1

that all the quantities #(m+1) (r,) | must vanish.

— T3

6.

Combining what we have just proved with the earlier results, we have
the following result:
If 6(ri,7r9,...,75) = 0, then p — 1 points 91, 7m2,...,7M—1 can be found,
such that

p—1 p—1 p—1
(1, T2y Tp) = (Zagﬂ)’zagu)7u_’zaéﬂ)) ;
1 1

1
and the converse is true.

If the function (v;,vs,...,v,) and its partial derivatives up to order m
vanish for vy = 7y, v, =79,...,v, = rp, but the (m + 1)-th partial derivatives
are not all zero, then m of these points n can be chosen arbitrarily with-
out altering the quantities r, and then the remaining p — 1 — m points are
completely determined.

Conversely if m, but not more, of the points n can be chosen arbitrarily
without altering the quantities r, then the function 6(v, vs,...,v,) and its
partial derivatives up to order m vanish for v; = r), vy = rs,...,v, = 1,, but
the (m + 1)-th partial derivatives are not all zero.

Complete investigation of all the particular cases which can arise in regard
to the vanishing of a theta-function was necessary, not so much because of
the particular systems of similarly branching algebraic functions to which
the different cases correspond; but rather, because without this examination,
gaps arise in the proof of the theorem. The proof can now be based on our
theorem on the vanishing of a #-function.
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XII.
On the representation of a function by a trigonometric series.

(Abhandlungen der Koniglichen Gesellschaft der Wissenschaften zu
Géttingen, vol. 13.)

The following essay on trigonometric series consists of two essentially dif-
ferent parts. The first part contains a history of the research and opinions on
arbitrary (graphically given) functions and their representation by trigono-
metric series. In its composition I was guided by some hints of the famous
mathematician, to whom the first fundamental work on this topic was due.
In the second part, I examine the representation of a function by a trigono-
metric series including cases that were previously unresolved. For this, it was
necessary to start with a short essay on the concept of a definite integral and
the scope of its validity.

History of the question of the representation of an arbitrary func-
tion by a trigonometric series.

1.

The trigonometric series named after Fourier, that is, the series of the
form

a1 sinx + agssin2x +aszsindz + - --

1
+§ bo + by cosx + bycos2x + bycos 3z + - - -

play a significant role in those parts of mathematics where arbitrary functions
occur. Indeed, there is reason to assert that the most substantial progress
in this part of mathematics, that is so important for physics, has depended
on a clear insight into the nature of these series. As soon as mathematical
research first led to consideration of arbitrary functions, the question arose
whether an arbitrary function could be expressed by a series of the above
form.

This occurred in the middle of the eighteenth century during the study
of vibrating strings, a topic in which the most prominent mathematicians of
the time were interested. Their insights about our topic would probably not
be represented were it not for the investigation of this problem.
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As is well known, under certain hypotheses that conforin approximately
to reality, the shape of a string under tension that is vibrating in a plane is
determined by the partial differential equation

ot? ox?

where z is the distance of an arbitrary one of its points from the origin and y
is the distance from the rest position at time ¢. Furthermore « is independent
of t, and also of z for a string of uniform thickness.

D’Alembert was the first to give a general solution to this differential
equation.

He showed! that each function of 2 and ¢, which when set in the equation
for y yields an identity, must have the form

f(z + at) + ¢(x — at).

This follows by introducing the independent variables x + at, x — at instead
of z and t, whereby

Oy L Oy hanges into 4 aa(ﬁrm)
— — — ——= chan _—
0x? a? Ot? & oz — at)

Besides the partial differential equation, which results from the general
laws of motion, y must also satisfy the condition that it is always 0 at the
endpoints of the string. Thus, if one of these points is at x = 0 and the other
at * = ¢, we have

flat) = —g(=at),  f{l+at)=—¢({ - at)

and consequently

f(z) = =¢(=2) = —¢(t = (£ + 2)) = f(20 + 2),
y= flat+z) - flat — ).

After d’Alembert had succeeded in finding the above for the general so-
lution of the problem, he treated, in a sequel? to his paper, the equation

! Mémoires de l’académie de Berlin, 1747, p. 214.
2Ibid. p. 220.
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f(z) = f(2¢ + z). That is, he looked for analytic expressions that remained
unchanged if z is increased by 2¢.

In the next issue of Mémoires de 'académie de Berlin®, Euler made a basic
advance, giving a new presentation of d’Alembert’s work and recognizing
more exactly the nature of the conditions which the function f(z) must
satisfy. He noted that, by the nature of the problem, the movement of the
string is completely determined, if at some point in time the shape of the
string and the velocity are given at each point (that is, y and %%). He showed
that if one thinks of the two functions as being determined by arbitrarily
drawn curves, then the d’Alembert function f(z) can always be found by a
simple geometric construction. In fact, if one assumes that y = g(z) and
%? = h(z) when t = 0, then one obtains

f(z) = f(—x) =g(x) and f(z)+ f(—x)= le-/h(a:) dz

for values of x between 0 and ¢, and hence obtains the function f(z) between
—¢ and £. From this, however, the values of f(z) can be derived for all other
values of z using the equation

f(2) = f(20+ ).

This is, represented in abstract but now generally accepted concepts,
Euler’s determination of the function f(z).

D’Alembert at once protested against this extension of his methods by
Euler?, since it assumed that y could be expressed analytically in ¢ and z.

Before Euler replied to this, Daniel Bernoulli® presented a third treatment

of this topic, which was quite different from the previous two. Even prior

to d’Alembert, Taylor® had seen that y = sin "5 cos ””Tf“, where n is an

. . 2 2
integer, satisfies %29 = QQg;% and always equals 0 for x = 0 and x = £. From

this he explained the physical fact that a string, besides its fundamental
11 1

tone, can also give the fundamental tone of a string that is 3,3,7,... as

3 Mémoires de l'académie de Berlin, 1748, p. 69.

4 Mémoires de ’académie de Berlin, 1750, p. 358. ‘Indeed, it seems to me, one can only
cxpress y analytically in a more general fashion by supposing it is a function of ¢ and z.
But with this assumption one only finds a solution of the problem for the case where the
different graphs of the vibrating string can be contained in a single equation.’

5 Mémoires de ’academie de Berlin, 1753, p. 147.

8Taylor, De methode incrementorum.
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long (but otherwise similarly constituted). He took his particular solutions
as general: he thought that if the pitch of the tone was determined by the
integer n, then the vibration of the string would always be as expressed by
the equation, or at least very nearly. The observation that a string could
simultaneously sound different notes now led Bernoulli to the remark that
the string (by the theory) could also vibrate in accordance with the equation

y = Zansinn—zzcosn—;q (t — Bn)-

Further, since all observed modifications of the phenomenon could be ex-
plained by this equation, he considered it the most general solution.” In or-
der to support this opinion, he examined the vibration of a massless thread
under tension, which was weighted at isolated points with finite masses. He
showed that the vibrations can be decomposed into a number of vibrations
that is always equal to the number of points, each vibration being of the
same duration for all masses.

This work of Bernoulli prompted a new paper from Euler, which was
printed immediately following it in the Mémoires de l’académie de Berlin.8
He maintained, in opposition to d’Alembert®, that the function f(z) could
be completely arbitrary between —¢ and ¢. Euler!® noted that Bernoulli’s
solution (which he had previously represented as particular) is general if and
only if the series

. I . 2z
alsln7+a2sm—~—+---

14

1 b T 2z
+§b0+ 10087+bzcos T+
can represent the ordinate of an arbitrary curve for the abcissa x between
0 and ¢. Now no one doubted at that time that all transformations which
could be made with an analytic expression (finite or infinite) would be valid
for each value of the variable, or only inapplicable in very special cases.
Thus it seemed impossible to represent an algebraic curve, or in general a
nonperiodic analytically given curve, by the above expression. Hence Euler
thought that the question must be decided against Bernoulli.

"Loc. cit., p. 157 section XIII.

8 Mémoires de l’académie de Berlin, 1753, p. 196.
9Loc. cit., p. 214

BT 0c. cit., sections I1I-X.
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The disagreement between Euler and d’Alembert was still unresolved by
this. This induced the young, and then little known, mathematician La-
prange to seek the solution of the problem in a completely new way, by
which he reached Euler’s results. He undertook!! to determine the vibration
of a massless thread which is weighted with an indeterminate finite number
of equal masses that are equally spaced. He then examined how the vibra-
fions change when the number of masses grows towards infinity. Although
he carried out the first part of this investigation with much dexterity and
a great display of analytic ingenuity, the transition from the finite to the
infinite left much to be desired. Hence d’Alembert could continue to vindi-
cate the reputation of his solution as the most general by making this point
in a note in his Opuscules Mathématiques. The opinions of the prominent
mathematicians of this time were, and remained, divided on the matter; for
in later work everyone essentially retained his own point of view.

In order to finally arrange his views on the problem of arbitrary func-
tions and their representation by trigonometric series, Euler first introduced
these functions into analysis, and supported by geometrical considerations,
applied infinitesimal analysis to them. Lagrange!'? considered Euler’s results
(his geometric construction for the course of the vibration) to be correct,
but he was not satisfied with FEuler’s geometric treatment of the functions.
D’Alembert,'® on the other hand, acceded to Euler’s way of obtaining the
differential equation and restricted himself to disputing the validity of his
result, since one could not know for an arbitrary function whether its deriva-
tives were continuous. Concerning Bernoulli’s solution, all three agreed not
Lo consider it as general. While d’Alembert,!? in order to explain Bernoulli’s
solution as less general than his own, had to assert that an analytically given
periodic function cannot always be represented by a trigonometric series,
Lagrange!® believed it possible to prove this.

2.

Almost fifty years had passed without a basic advance having been made
in the question of the analytic representation of an arbitrary function. Then

1 Miscellanea Taurinensia, vol. I. Recherches sur la nature et la propagation du son.
12 Miscellanea Taurinensia, vol. 11, Pars math., p. 18.

13 Opuscules Mathématiques, d’Alembert. Vol. 1, 1761, p. 16, Sections VII—XX.

14 Opuscules Mathématiques, vol. 1, p. 42, Section XXIV.

15 Misc. Taur. vol. III, Pars math., p. 221, Section XXV.
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XII. On the representation of a function by a trigonometric series.

a remark by Fourier threw a new light on the topic. A new epoch in the
development of this part of mathematics began, which soon made itself known
in a wonderful expansion of mathematical physics. Fourier noted that in the
trigonometric series

a;sinx + aysin 2z + - - -
flz) =4,
+5bo+bicosx +bycos2x + -,

the coeflicients can be determined by the formulae
1 [ 1 [

= —/ f(z)sinnzdz, b, = —/ f(z)cosnz dx.
mJ_x T .

He saw that the method can also be applied if the function f(x) is arbitrary.
He used a so-called discontinuous function for f(z) (with ordinate a broken
line for the abscissa x) and obtained a series which in fact always gives the
value of the function.

Fourier, in one of his first papers on heat, which was submitted to the
French academy!'® (December 21, 1807) first announced the theorem, that
an arbitrary (graphically given) function can be expressed as a trigonometric
series. This claim was so unexpected to the aged Lagrange that he opposed
it vigorously. There should!” be another note about this in the archives of
the Paris academy. Nevertheless, Poisson refers,'® whenever he makes use of
trigonometric series to represent arbitrary functions, to a place in Lagrange’s
work on the vibrating string where this method of representation can be
found. In order to refute this claim, which can only be explained by the well
known rivalry!® between Fourier and Poisson, we must once again return to
Lagrange’s treatise, since nothing can be found that is published about these
facts by the academy.

In fact, one finds in the place cited?® by Poisson the formula:

‘yzZ/YsiandX xsin$7r+2/Ysin2X7rdX x sin 2z

2/Ysin3X7rdX xsin3$7r+etc.+2/YsinnX7rdX X sinnxm,

16 Bulletin des sciences p. la soc. philomatique, vol I, p. 112.

7From a verbal report of Professor Dirichlet.

18 Among others, in the expanded Traité de mécanique No. 323, p. 638

19The review in the Bulletin des Sciences on the paper submitted by Fourier to the
academy was written by Poisson.

20 Misc. Taur., vol. III, Pars math., p. 261.
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so that when z = X, one has y =Y, Y being the ordinate corresponding to
the abscissa X’ .

This formula looks so much like a Fourier series that is easy to confuse
them with just a quick glance. However, this appearance arises only because
Lagrange uses [ dX where today we would use Y AX. It gives the solution
to the problem of determining the finite sine series

a) sinxmw + as sin 2zmw + - - - + a, sinnrw

so that it has given values when z equals

1 2 n
n+1 " n+1" 7 n4+1

Lagrange denotes the variable by X. If Lagrange had let n become infinitely
large in this formula, then certainly he would have obtained Fourier’s re-
sult. However, if we read through his paper, we see that he was far from
believing that an arbitrary function could actually be represented by an in-
finite sine series. Rather, he had undertaken the whole work because be
believed that an arbitrary function could not be expressed by a formula.
Concerning trigonometric series, he thought they could be used to represent
any analytically given periodic function. Admittedly, it now seems scarcely
possible that Lagrange did not obtain Fourier’s series from his summation
formula. However, this can be explained in that the dispute between Euler
and d’Alembert had predisposed him towards a particular opinion about the
proper method of proceeding. He thought that the vibration problem, for
an indeterminate finite number of masses, must be fully solved before apply-
ing limit considerations. This necessitated a rather extensive investigation?!,
which was unnecessary if he had been acquainted with the Fourier series.

The nature of the trigonometric series was recognized perfectly correctly
by Fourier.?? Since then these series have been applied many times in math-
ematical physics to represent arbitrary functions. In each individual case it
was easy to convince oneself that the Fourier series really converged to the
value of the function. However, it was a long time before this important
theorem would be proved in general.

2 Misc. Taur., vol 111, Pars math., p. 251.
22 Bulletin d. sc. vol. I, p. 115. “The coefficients a,a’,a”, ..., being then determined’,
etc.
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XII. On the representation of a function by a trigonometric series.

The proof which Cauchy® read to the Paris academy on February 27,
1826, is inadequate, as Dirichlet?® has shown. Cauchy assumed that if z is
replaced by the complex argument z + yi in an arbitrary periodic function
f(x), then the function is finite for each value of y. However, this only
occurs if the function is a constant. It is easy to see that this hypothesis was
unnecessary for the later conclusions. It suffices that a function ¢(z + yi)
exists which is finite for all positive values of y, whose real part is equal to
the given periodic function f(z) when y = 0. If one assumes this theorem,
which is in fact true,?® then Cauchy’s method certainly leads to the goal;
conversely, this theorem can be derived from the Fourier series.

3.

The question of the representation by trigonometric series of everywhere
integrable functions with finitely many maxima and minima was first settled
rigorously by Dirichlet?® in a paper of January 1829.

The recognition of the proper way to attack the problem came to him
from the insight that infinite series fall into two distinct classes, depending
on whether or not they remain convergent when all the terms are made
positive. In the first class the terms can be arbitrarily rearranged; in the
second, on the other hand, the value is dependent on the ordering of the
terms. Indeed, if we denote the positive terms of a series in the second class
by

ay,Q2,QA3, ...,

and the negative terms by
_bl> _b27 _b37 ceey

then it is clear that )_a as well as ) b must be infinite. For if they were
both finite, the series would still be convergent after making all the signs the
same. If only one were infinite, then the series would diverge. Clearly now
an arbitrarily given value C' can be obtained by a suitable reordering of the
terms. We take alternately the positive terms of the series until the sum is
greater than C, and then the negative terms until the sum is less than C.
The deviation from C' never amounts to more than the size of the term at

28 Mémoires de l'ac. d. sc. de Paris, vol. VI, p. 603.

24 Crelle’s Journal fir die Mathematik, vol IV, pp. 157 & 158.

25 The proof can be found in the inaugural dissertation of the author.
26 Crelle’s Journal, vol. IV, p. 157.
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the last place the signs were switched. Now, since the numbers a as well as
the numbers b become infinitely small with increasing index, so also are the
deviations from C. If we proceed sufficiently far in the series, the deviation
hecownes arbitrarily small, that is, the series converges to C'.

The rules for finite sums only apply to the series of the first class. Only
these can be considered as the aggregates of their terms; the series of the
second class cannot. This circumstance was overlooked by mathematicians
ol the previous century, most likely, mainly on the grounds that the series
which progress by increasing powers of a variable generally (that is, excluding
mdividual values of this variable) belong to the first class.

Clearly the Fourier series do not necessarily belong to the first class. The
convergence cannot be derived, as Cauchy futilely attempted,?” from the
riles by which the terms decrease. Rather, it must be shown that the finite
series

1 [ 1 [
—/ f(a)sinada sina:+—/ f(a)sin2a dasin2z + - -
T J s T )

1
- f(a)sinnada sinnz

[ 1 [
+—/ f(a)da+—/ f(a)cosadacosz
2 J_, T J _x
1 [ 1 ["
+—/ f(a)cos2ada cos2m+-~~+——/ f(a) cosnadacosnz,
TJ TJon

or, what is the same, the integral

I sin 22 (z — @) J
21 J_x (@) sin £52 @

npproaches the value f(z) infinitely closely when n increases infinitely.
Dirichlet based this proof on two theorems:

NIf0<e<m/2 then (¢ w dp tends to Z ¢(0) as n increases to
( 0 sin B 2

infinity.

20 <b<ce<m/2 then fbc qb(ﬁ)il%?gﬁédﬁ tends to 0, as n increases to

infinity.

“"Dirichlet in Crelle’s Journal, vol IV, p. 158. ‘Quoi qu'il en soit de cette premiere
ohscrvation, ... a mesure que n croit.’
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It is assumed in both cases that the function ¢(3) is either always increasing
or always decreasing between the limits of integration.

If the function f does not change from increasing to decreasing, or from
decreasing to increasing, infinitely often, then using the above theorems the
integral

1 [ sin 22t (z — )
— d
2r J_ fle) sin % @

can clearly be split into a finite number of parts, one of which tends?® to
3 f(z + 0), another to £ f(z — 0), and the others to 0, as n increases to
infinity.

It follows from this that a periodic function of period 27, which

1. is everywhere integrable,
2. does not have infinitely many maxima and minima, and

3. assumes the average of the two one-sided limits when the value changes
by a jump,

can be represented by a trigonometric series.

It is clear that a function satisfying the first two properties but not the
third cannot be represented by a trigonometric series. A trigonometric series
representing such a function, except at the discontinuities, would deviate
from it at the discontinuities. Dirichlet’s research leaves undecided, whether
and when functions can be represented by a trigonometric series that do not
satisfy the first two conditions.

Dirichlet’s work gave a firm foundation for a large amount of important
research in analysis. He succeeded in bringing light to a point where Euler
was in error. He settled a question that had occupied many distinguished
mathematicians for over 70 years (since 1753). In fact, for all cases of nature,
the only cases concerned in that work, it was completely settled. For however
great our ignorance about how forces and states of matter vary for infinitely
small changes of position and time, surely we may assume that the functions
which are not included in Dirichlet’s investigations do not occur in nature.

28It is easy to prove that the value of a function f, which does not have infinitely
many maxima or minima, for increasing or decreasing values of the argument with limit z,
either approaches fixed limits f(z +0) and f(z — 0) (using Dirichlet’s notation in Dove’s
Repertorium der Physik, vol. 1, p. 170); or must become infinitely large.
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Nevertheless, there are two reasons why those cases unresolved by Dirich-
let seem to be worthy of consideration.

First, as Dirichlet noted at the end of his paper, the topic has a very close
connection with the principles of infinitesimal calculus, and can serve to bring
preater clarity and rigor to these principles. In this regard the treatment of
Lhe topic has an immediate interest.

Secondly, however, the applications of Fourier series are not restricted to
research in the physical sciences. They are now also applied with success
in an area of pure mathematics, number theory. Here it is precisely the
[unctions whose representation by a trigonometric series was not examined
by Dirichlet that seem to be important.

Admittedly Dirichlet promised at the conclusion of his paper to return
to these cases later, but that promise still remains unfulfilled. The works by
Dirksen and Bessel on the cosine and sine series did not supply this com-
pletion. Rather, they take second place to Dirichlet in rigor and generality.
Dirksen’s paper,? (almost simultaneous with Dirichlet’s, and clearly written
without knowledge of it) was, indeed, in a general way correct. However, in
the particulars it contained some imprecisions. Apart from the fact that he
found an incorrect result in a special case® for the sum of a series, he relied
in a secondary consideration on a series expansion® that is only possible in
particular cases. Hence the proof is only complete for functions whose first
derivatives are everywhere finite. Bessel®? tried to simplify Dirichlet’s proof.
llowever, the changes in the proof did not give any essential simplification,
hut at most clothed it in more familiar concepts, at the expense of rigor and
penerality.

Hence, until now, the question of the representation of a function by a
lrigonometric series is only settled under the two hypotheses, that the func-
lion is everywhere integrable and does not have infinitely many maxima and
iinima. If the last hypothesis is not made, then the two integral theorems of
Dirichlet are not sufficient for deciding the question. If the first is discarded,
however, the Fourier method of determining the coefficients is not applica-
ble. In the following, when we examine the question without any particular
assumptions on the nature of the function, the method employed, as we will
sce, is constrained by these facts. An approach as direct as Dirichlet’s is not

2 Crelle’s Journal, vol IX, p. 170.

0 Loc. cit., formula 22.

3 Loc. cit., section 3.

328chumacher, Astronomische Nachrichten, 374 (vol. 16, p. 229.)
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possible by the nature of the case.
On the concept of a definite integral and the range of its validity.

4.

Vagueness still prevails in some fundamental points concerning the def-
inite integral. Hence I provide some preliminaries about the concept of a
definite integral and the scope of its validity.

Hence first: What is one to understand by f: f(z)dx?

In order to establish this, we take a sequence of values x|, zs, ..., Tp_;
between a and b arranged in succession, and denote, for brevity, z; — a by
01, z3 —x, by b9, ..., b—1x,_1 by &,, and a positive fraction less than 1 by

€. Then the value of the sum
S=061f(a+edr)+af(x1+€b2) +03f(xa+€303) + -+ + 6nf(Tn1 + €0n)

depends on the selection of the intervals 4 and the numbers €. If this now has
the property, that however the §’s and €’s are selected, S approaches a fixed
limit A when the §’s become infinitely small together, this limiting value is
called fabf(m) dz.

If we do not have this property, then f: f(z) dz is undefined. In some of
these cases, attempts have been made to assign a meaning to the symbol,
and among these extensions of the concept of a definite integral there is one
recognized by all mathematicians. Namely, if the function f(z) becomes
infinitely large when the argument approaches an isolated value ¢ in the
interval (a,b), then clearly the sum S, no matter what degree of smallness
one may prescribe for §, can reach an arbitrarily given value. Thus it has no
limiting value, and by the above f: f(z) dz would have no meaning. However
if

c—an b
/ f(z)dz + f(z)dx
a ctazp
approaches a fixed limit when «; and a; become infinitely small, then one
understands this limit to be f:f(a:) dzx.

Other hypotheses by Cauchy on the concept of the definite integral in the
cases where the fundamental concepts do not give a value may be appropriate
in individual classes of investigation. These are not generally established, and
are hardly suited for general adoption in view of their great arbitrariness.
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5.

Let us examine now, secondly, the range of validity of the concept, or
(the question: In which cases can a function be integrated, and in which cases
can it not?

We cousider first the concept of integral in the narrow sense, that is, we
suppose that the sum S converges if the d’s together become infinitely small.
We denote by D; the greatest fluctuation of the function between a and z;,
that is, the difference of its greatest and smallest values in this interval, by
Dy the greatest fluctuation between z; and z,,. .., by D, that between z,_,
and b. Then

61Dy + 09Dy + - -+ 6, D,

must become infinitely small when the §’s do. We suppose further, that A is
the greatest value this sum can reach, as long as all of the §’s are smaller than
d. Then A will be a function of d, which is decreasing with d and becomes
infinitely small with d. Now, if the total length of the intervals, in which the
[uctuation is greater than o, is s, then the contribution of these intervals to
the sum 6,D; + 6Dy + - -+ + 8, D,, is clearly > 0s. Therefore one has

08 <0, D)+ 83Dy + -+ 6,D, <A, hence s < %.
Now, if o is given, A/o can always be made arbitrarily small by a suitable
choice of d. The same is true for s, which yields:

In order for the sum S to converge whenever all the 6’s become infinitely
small, in addition to f(z) being finite, it is necessary that the total length
of the intervals, in which the fluctuations exceed o, can be made arbitrarily
siall for any given o by a suitable choice of d.

This theorem also has a converse:

If the function f(z) is always finite, and by infinitely decreasing the 8’s
logether, the total length s of the intervals in which the fluctuation of the
[unction is greater than a given number ¢ always becomes infinitely small,
then the sum S converges as the §’s become infinitely small together.

For those intervals in which the fluctuations are > ¢ make a contribution
to the sum 6; Dy + - - -+ 6, D, less than s times the largest fluctuation of the
function between a and b, which is finite (by agreement). The contribution of
the remaining intervals is < o(b—a). Clearly one can now choose ¢ arbitrarily
small and then always determine the size of the intervals (by agreement) so
that s is also arbitrarily small. In this way the sum 6 D) +03D9+ - - -+ 8, D,,
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can be made as small as desired. Consequently the value of the sum S can
be enclosed between arbitrarily narrow bounds.

Thus we have found necessary and sufficient conditions for the sum S to
be convergent when the quantities 4 tend together to zero, or equivalently,
for the existence of the integral of f(x) between a and b in the narrow sense.

If we now extend the integral concept as above, then it is clear that for
the integration to be possible everywhere, the second of the two conditions
established is still necessary. In place of the condition, that the function
is always finite, will enter the condition, that the function becomes infinite
only on the approach of the argument to isolated values, and that a definite
limiting value arises, if the limits of integration tend to these values.

6.

Having examined the conditions for integrability in general, that is, with-
out special assumptions on the nature of the function to be integrated, this
investigation will be applied and also carried further, in special cases. First
we consider functions which are discontinuous infinitely often between any
two numbers, no matter how close.

Since these functions have never been considered before, it is well to start
from a particular example. Designate, for brevity, (z) to be the excess of z
over the closest integer, or if x lies in the middle between two (and thus the
determination is ambiguous) the average of the two numbers 1/2 and —1/2,
hence zero. Furthermore, let n be an integer and p an odd integer, and form
the series

9 n?

fa) =2 G2 B g fne)

It is easy to see that the series converges for each value of z. When the argu-
ment continuously decreases to x, as well as when it continuously increases
to z, the value always approaches a fixed limit. Indeed, if = £ (where p

2
and n are relatively prime)

f(z+0)=f(z)—#(1+%+21—5+~-) B

f(z—O):f(x)+2iﬁ(1+%+%+---) = f(z) +

in all other cases f(z + 0) = f(z) and f(z — 0) = f(z).
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Hence this function is discontinuous for each rational value of x, which in
lowest terms is a fraction with even denominator. Thus, while f is discontin-
uous infinitely often between any two bounds, the number of jumps greater
than a fixed number is always finite. The function is everywhere integrable.
Besides finiteness, it has the two properties, that for each value of z it has
limiting values f(z + 0) and f(z + 0) on both sides, and that the number of
jumps greater than or equal to a given number o is always finite. Applying
our above investigation, as an obvious consequence of these two conditions, d
can be taken so small that in the intervals which do not contain these jumps,
the fluctuations are smaller then o, and the total length of the intervals which
do contain these jumps will be arbitrarily small.

It is worthwhile to note that functions which do not have infinitely many
maxima and minima (to which the example just considered does not belong),
where they do not become infinite, always have those two properties, and
hence permit an integration everywhere where they are not infinite. This is
also easy to show directly.

Now consider the case where the function f(z) to be integrated has a
single infinite value. We assume this occurs at = = 0, so that for decreasing
positive values of x its value eventually grows over any given bound.

It can easily be shown that xf(x) cannot always remain larger then finite
number ¢ as x decreases from a finite bound a. For then we would have

a ad
/ fz)dx > ¢ —x,
x x z

thus larger than c (log % — log ?‘1;), which increases to infinity with decreasing
x. Thus if zf(x) does not have infinitely many maxima and minima in a
neighborhood of x = 0, then zf(z) must become infinitely small with z if
f(z) can be integrated. On the other hand, if

f(z)dz (1 — )
d(zt-~)

f(z)z® =

for a value a < 1, becomes infinitely small with x, then it is clear that the
integral converges as the lower limit tends to 0.

In the same way one finds that in the cases where the integral converges,
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the functions

1 f(z)dx 1 1 f(z)dx
yxlog — = —————— xlog — loglog — =
flryrlog 1 = et la)rlos 1 loglos =~k T
1 1 TR B | f(z)dzx
f(‘q’)x log ; lOglOg ; te lOg ; log ; - —d10g1+n 1

xT

cannot remain always larger than a finite number as x decreases from a
finite bound. Thus if they do not have infinitely many maxima and minima,
these functions must become infinitely small with z. On the other hand, the
integral [ f(z)dx converges as the lower limit of integration tends to 0, if

f(z)zlog %...logn—li_ <10g” %>a B f(x)dxf —a)

—d (log™ 1)~

r

becomes infinitely small with z, for a > 1.

However, if f(z) has infinitely many maxima and minima, then nothing
can be determined about the order at which it becomes infinite. In fact, given
the absolute value of f, and thereby given the order of infinity of f at 0, by a
suitable determination of the sign one can always make the integral f f(z)dx
converge when the lower limit of integration tends to 0. The function

d (z cos el/z)
dz

1 )
= cose/ + —e/*ginel/*
z

serves as an example of a function which becomes infinite in such a way that
its order (taking the order of < as one) is infinitely large.

The above discussion, on the principles of a topic belonging to another
area, suffices. We now proceed to our actual problem, a general investigation
of the representation of a function by a trigonometric series.

Investigation of the representation of a function by a trigonometric
series without particular assumptions on the nature of the function.

7.

The previous work on this topic served the purpose of proving the Fourier
series for the cases occurring in nature. Hence the proofs could start for an
arbitrary function, and later for the purposes of the proof one could impose
arbitrary restrictions on the function, when they did not impair the goal.
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For our purposes we only impose conditions necessary for the representa-
tion of the function. Hence we must first look for necessary conditions for
the representation, and from these select sufficient conditions for the repre-
sentation. While the previous work showed: ‘If a function has this or that
property then it is represented by a Fourier series’, we must start from the
converse question: If a function is represented by a Fourier series, what are
the consequences for the function, regarding the changes of its values with a
continuous change of the argument?
Hence we consider the series

a;sinx + assin2x + - - -

1
+-2-b0+b1 cosx + bycos2x + - --
as given. For brevity, set
1
3 by = Ag, a;sinz + b;cosz = Ay, assin2z + bycos2xr = A,, .. .;

the series becomes
Ao+ Ay +Ag+ - -+

We denote this expression by 2 and its value by f(z), so that this function
is defined only for values of x where the series converges.

For the series to converge, it is necessary that the terms eventually become
infinitely small. If the coefficients a, and b, diminish infinitely with increas-
ing n, then the terms of the series {2 eventually become infinitely small for
each value of x. Otherwise convergence can only occur for particular values
of z. It is necessary to treat both cases separately.

8.

Hence we suppose, first of all, that the terms of the series ) eventually
become arbitrarily small for each x.
Under this assumption, the series

converges for each value of x. The series is obtained by integrating each term
of Q twice with respect to x. The value F(z) changes continuously with z,
and consequently this function F' of x is everywhere integrable.
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In order to establish both the convergence of the series and the continu-
ity of F(x), one denotes the sum of the terms to —%2& inclusive by N, the
remainder of the series, that is, the series

An+l An+2

T(n+12 (n+2?

by R; and the greatest value of A,, for m > n by ¢. Then, no matter how
far one continues the series, the absolute value of R clearly remains

1 N 1 n < €
€ iy
(n+1)2  (n+2)? n

and R can be enclosed within arbitrarily small bounds if n is sufficiently
large. Hence the series converges. Furthermore, the function F(z) is contin-
uous, that is, its variation can be made as small as we wish, if one imposes
a sufficiently small corresponding change of z. For the combined changes of
F(z) consists of the change in R and in N. Clearly one can first assume
that n is so large that R is arbitrarily small whatever x may be, and con-
sequently also the change of R will be arbitrarily small for any change in x.
Then assume the change of z is so small that the change in N also becomes
arbitrarily small.

It is well to place here some results about the function F(z), whose proofs
would otherwise break the thread of the investigation.

Theorem 1 If the series ) converges, then

Flzta+p8)—Flz+a—-8)—Flz—a+pB)+ Flz—a—4)
43 ’

converges to the same value as Q) when a and 8 become infinitely small while
their ratio remains finite.

Indeed, we have

Flz+a+8)—Flz+a—-8)—Flz—a+8)+ Flz —a—0)
4o

sina sin 8 sin 2« sin 23 sin 3« sin 33

3 T a5 T T3 T35

= Ay + A
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In order to settle the simplest case § = « first,

F(z +2a) — 2F(z) + F(z — 2a) — At A sina\ LA, sin 2«
402 o 200

If the infinite series converges,

Ag+ A+ Ax + ... = f(z),

and we write
AO+A1+"'+An~1 :f($)+€na

then for an arbitrarily given number ¢, there must exist an integer m so that
if n > m we have ¢, < . Now, assume « is so small that ma < 7. We use
the substitution

Ap = €nt+1 — €n,

to put Y -, (M)2 A, in the form

na

[0+ { (—Sin“”‘ - 1)a)2 - (n_"a)}
— (n—1a no ’
and separate this last infinite series into three parts, in which we put together
L. the terms of index 1 to m inclusive,
T

2. from index m + 1 up to the largest integer s less than Z,

3. from s+ 1 to infinity.

Then the first part consists of a finite number of continuously varying terms,
and therefore approaches its limiting value 0 arbitrarily closely when one lets
« become sufficiently small. The second part, since the factor of €, is always
positive, has absolute value

{(sinma)2 (sinsa)z}
<d — )
ma s

In order to enclose the third part within bounds, one breaks up the general

term into
) - (=52}
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and

sin(n — 1)\ > sinna '\ (sin(2n — 1)a) sina
E'ﬂ - - = __6'” .
no no (na)?

Hence clearly it is

<6 ! ! + 0 !
(n—1)2a2 n2a? na

and consequently the sum from n = s+ 1 to oo is

<5{(—;(11—)-5+8ia}4

For an infinitely small «, that number becomes

) {% + %} ,
e{(s) - () )

therefore approaches a limiting value, as « decreases, that cannot be larger

than
1 1
5{1+—+—5},
T m

hence must be zero. Consequently

The series

F(z +2a) —2F(z) + F(z — 2a)

42 ’

which is equal to

sin(n — )a\ > sinna\’
f($)+zf"{( o) ()
converges to f(z) as « tends to 0. This proves our theorem for the case

0= a.
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In order to prove the general case, let

Flz+a+8) ~2F()+ Flz — a—8) = (a+ 8)%(f(z) + &)
Flz+a—0)-2F(@)+ F(r — a+ ) = (a — B)*(f(z) + &),

from which

Fata+p)-Flz+a—-0)-Flz—-—a+ )+ Flz—a—-p)
= 4aff(z) + ( + B)*6; — (a = 5)°6,.

As a consequence of the above result, 4; and d; become infinitely small when
a and (# do. Then

(@482,  (a—pP

408 1 4af

will also be infinitely small if the coefficients of é; and 4, do not become
infinitely large, which does not occur since 3/a remains finite. Consequently,

Fz+a+p8)—Flz+a—-0)—Flz—a+p8)+F(zr—a-p0)
4a3

02

converges to f(z), as we wished to prove.

Theorem 2
F(z + 2a) + F(z — 2a) — 2F ()

20

tends to 0 with « for all x.

In order to prove this, we split the series

Z A (sin na) 2
no

into three parts. The first contains all terms up to a fixed index m, from
which term on the A, are always smaller than ¢. The second contains all of
the following terms for which na < a fixed number ¢. Then the third includes
the rest of the series. It is then easy to see that if o decreases infinitely, the
sum of the first finite part remains finite, that is, < a fixed number @); the
second < ¢ £; and the third
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Consequently

Fz +20) + F(z — 20) — 2F(z) 20‘2’4" (sinna)2
2a no

1
<2 (Qa+c <c+—)>
c
from which the theorem follows.

Theorem 3 Let b and ¢ denote two arbitrary constants with ¢ > b. Let A(x)
denote a function which is always continuous together with its first derivative
between b and c, is 0 at the boundaries, and for which the second derivative
does not have infinitely many maxima and minima. Then the integral

w2 /bc F(z)cos pu(z — a) A(z) dz,

15 eventually less than any given number, if y grows to infinity.

If one replaces F(z) by its series expression, then one obtains for

@2 /bc F(z)cospu(z — a) A(z) dx

the series (®)
c 1:2
,u2/ (C +C'z + AO?) cos pu(z — a) A(z) dz
b
oo 2 c
- Z ,u_2 / A, cos p(z — a) Mz) dz.
n=1 n b

Now A, cos u(z — a) can clearly be expressed as an aggregate of
cos(pu + n)(x — a), sin(p + n)(z — a), cos(u — n)(z — a), sin(pu — n)(z — a).

Denote the sum of the first two terms by B, 1y, and the sum of the last two
terms by B,_,. Then A, cosu(z — a) = Buyn + By,

d’B,in d’B, .
d;g =—(p+ ”)QBqum '7;2— = —(n— n)2Bu~m
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and, with increasing n, B,;, and B,_, becowme infinitely small, whatever x
1.
Thus the general term of the series (®),

pore
) A, cos p(z — a) M(z) dz,
is equal to
2 c J2 2 c g2
% d Bqun U / d BM*"
AMz)d Mz)dz.
n2(p+n)? /b dx? (z) dz + n?(p—-n)? ), dz? (z) dz

After two integrations by parts, in which one first considers A(z) and then
N(z) as constant, we obtain

2 2

C C
since A(z) and X (z), and hence also the terms standing outside the integral
sign, will be 0 at the limits.

It is now easy to convince ourselves that fbc Bjin N'(z) dx becomes in-
finitely small when u grows to infinity, whatever n may be. For this expres-
sion is equal to an aggregate of the integrals

/c cos(pu £ n)(x — a) \"(z) dz, /C sin(p £ n)(x — a) \'(x) dz,
b b

and if u £ n becomes infinitely large, these integrals tend to 0. However,
if 4 &+ n does not become infinitely large because n is infinitely large, their
coefficients in these expressions are infinitely small.

Clearly, to prove our theorem it therefore suffices that the sum

_w
2

extended over all values of n which satisfy n < —¢, ¢ < n < u— ",
it + ¢!V < n, remains finite when p becomes infinitely large for any choice
of quantities c¢. For, except for the terms for which —¢ < n < ', u— " <
n < p+ c'V, which clearly become infinitely small and are of finite number,
the series (®) clearly remains smaller than the sum multiplied by the largest
value of [” B,4, \"(z) dz, which becomes infinitely small.

/!
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However, if ¢ > 1, the sum

w1
2y 2

within the limits above, is smaller than
1 / dx
i) T=ora

Cl—l C“—l C///_l CIV——l
—oo to — ) to 1 — , 1+
K K 7 7

taken from

For if we decompose the whole interval from —oo to oo, starting from 0, into

intervals of length 1/u, and replace the function under the integral sign by

the smallest value in each interval, we obtain all the terms of the series, since

this function does not have maxima anywhere between the integration limits.
If the integration is carried out, we obtain,

1 dz 1 1 1
i = (5 e+ ews — 2leatt =) ) cons,

and consequently between the above limits a number that does not become
infinitely large with p.

9.

We use these theorems to determine the following about the representa-
tion of a function by a trigonometric series whose terms tends to 0 for each
value of the argument.

L. For a periodic function of period 27 to be represented by a trigonometric
series whose terms eventually become infinitely small for each value of z, there
must exist a continuous function F'(z) for which

Feta+p)-Flz+a-p)—Flz—a+p)+Flz—a—f)
4003 ’

converges to f(x) as @ and [ become infinitely small with their ratio remain-
ing finite.
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Furthermore, with increasing p,

e /bc F(z)cos pu(x — a) AM(z)dz

must eventually become infinitely small as p increases, if A(z) and X (x) are
0 at the integration limits and always continuous between them, and \’(x)
does not have infinitely many maxima and minima.

II. Conversely, if both these conditions are satisfied, then there is a
trigonometric series in which the coeflicients eventually become infinitely
small and which represents the function, wherever it converges.

For the proof, determine the numbers C’ and Aq so that

2

F(z)—C'r — AO%

is a periodic function of period 27, and expand this by Fourier’s method into
a trigonometric series

Here we let

1 T , t2

2 ),

’r 2
l/ (F(t) —C't - A %) cosn(z —t)dt = _ﬁ‘

™

-

Then, by agreement,

TL2 ™ t2
A, = -—-/ (F(t) —C't— Ag 5) cosn(xr —t)dt
T Jon

must eventually become infinitely small with increasing n. It follows by
Theorem 1 of the preceding section that the series

A+ A1+ Ay + -+

converges to the function f(xz), wherever it converges.
III. Let b < z < ¢, and p(t) be a function such that o(t) and ¢'(t) are 0
for t = b and t = ¢ and are continuous between those values, and such that
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0" (t) does not have infinitely many maxima and minima, and, furthermore,
such that for t = z, o(t) = 1, ¢'(t) = 0, ¢"(t) = 0, ¢"'(t) and o'V (t) are finite
and coutinuous. Then the difference between the series

Ag+ A1+ -+ A,y

and the integral
aﬁw
1 c Tt

sin
2T

F(t) ———=2—o(t)dt
[P "ot
tends to zero with increasing n. Hence the series
Ao+ A+ A2+ ---

will converge or not, depending on whether

dzsm—*——(z t)
1 ¢ sin 2-t)

27 J, (®) dt?

approaches a limit with increasing n, or not.
In fact,

1 [ 2\ —
A1+A2++An:—/ (F() C,t—AOE>Z—k2COSk(I‘t)dt
- k=1

Since

d2 sin 2ﬂ21 (z—1) (z—1t)

- d? k —t sin (2=t 2
z}j K cosk(a ) =23 coskle ) _ el 7

9 sin ntl 21 (z—t)

n d T—1t
F(t)—C't — A t? __Sﬂ_(L dt
o (t) - 09 dt? ‘

1
A+ As+ -+ Ay = —
2

Now, by Theorem 3 of the preceding section,

9 8in Mf (z—t)

L " (pey—ct— 4 £ 5 () dt
21 079 dt?

—T
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tends to O with infinitely increasing n if A\(¢) along with its first derivative
is continuous, \’(t) does not have infinitely many maxima and minima, and
for t = z, A(t) = 0, N(t) = 0, \'(t) = 0, \(t) and MV (¢) are finite and
continuous.

Set A(t) equal to 1 outside the boundaries b, ¢ and 1 — p(¢) within those
boundaries, which is clearly allowable. It follows that the difference between
the series A; +--- 4+ A, and the integral

in 201 (7

1 e ,
5 |, (F(t)—C’t—A()E)TQ(t)dt

tends to 0 with increasing n. We easily see, by integration by parts, that

in 2ntl (p_¢)

251
L [“(cnsa ST (t) dt
o J, 09 az 2
converges to Ag when n becomes infinitely large, and we obtain the above
theorem.

10.

It has emerged from the investigation that if the coefficients of the se-
ries 2 tend to 0, then the convergence of the series for a particular value
of © depends only on the behavior of the function f(z) in the immediate
neighborhood of this value.

Whether the coefficients of the series eventually become infinitely small,
will in many cases not be decided by their expression as a definite integral,
but in other ways. One case should be emphasized where the determination
can be made immediately from the nature of the function. Namely, suppose
the function f(x) is everywhere finite and integrable.

In this case, we split the whole interval —7 to 7 into a sequence of pieces
of length

01, 02, O3,...

and denote by D, the greatest fluctuation of the function in the first, by D,
the greatest fluctuation in the second, and so on. Then

01Dy + 83Dy + 63D3 + - - -

must become infinitely small when the §’s become infinitely small together.
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Consider the integral [" f(z)sinn(x — a)dz, which, apart from the
factor 1/, gives the coefficients of the series, or what is the same thing,
faﬁ% f(x)sinn(z — a)dz. We split this integral beginning at z = a, into
integrals of range 27/n. Then each integral contributes to the sum a quan-
tity less than 2/n multiplied by the greatest fluctuation in its interval, and
their sum is hence smaller than a number, which by assumption must become
infinitely small with 27 /n.

In fact, these integrals have the form

a+s;';—1 27
/ f(z)sinn(z — a) dz.

+2£2m

The sine is positive in the first half, and negative in the second. Denoting
the largest value of f(z) in the interval of integration by M and the smallest
by m, it is obvious that the integral is bigger if we replace f(z) by M in the
first half and by m in the second. The integral is smaller if f(z) is replaced
by m in the first half and M in the second. In the first case we obtain the
value 2 (M — m); in the other 2 (m — M). Hence the absolute value of the
integral is smaller than % (M — m), and the integral

/a " f(a)sinn(z — a)dz

is smaller than

2 2 2
——(M1—ml)+—(M2—m2)+—(M3—m3)+---,
n n n

where M denotes the largest value of f(z) in the s-th interval and mg the
smallest. However, if f(x) is integrable, this sum must become infinitely
small as n goes to infinity, and the lengths of the intervals 27/n become
infinitely small.

In the case under discussion, then, the coefficients of the series become
infinitely small.

11.

We must still examine the case where the terms of the series 2 eventually
become infinitely small for an argument value z, without this occurring for
each value of the argument. This case can be reduced to the previous one.
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Namely, adding the terms of equal rank in the series for values x + ¢ and
© — t, we obtain the series

2A9 + 2A  cost + 2A5co82t + - - - .

In this series the terms for each value of ¢ eventually become infinitely small,
and the previous analysis can be applied.
For this purpose, denote the value of the infinite series

2 t? cost cos 2t cos 3t
"2+ Ap 4+ Ag— — A A —A
C+Cz+ 02+ 05 177 27 37

by G(t), so that wherever the series F'(x 4+ t) and F(z — t) converge,

F(x+t)+ F(z —t)

. = G(t).

We have the following:

I. If the terms of the series {2 tend to 0 for an argument value x, then

s /bc G(t) cos u(t — a) A(t) dt,

must eventually become infinitely small with increasing u, where X is a func-
tion as designated in §9. The value of the integral consists of the components

s /bc —IT—(QETjL—Q cosp(t—a) A(t)dt and p° /bc F—(—Z—_—Q cos pu(t—a) A(t) dt,

provided that these expressions have a value. Hence the integral tends to 0
because of the behavior of the function F' at two places lying symmetrically
on both sides of z. It should be noted, however, that the positions must be
situated where each component is not itself infinitely small. For then the
terms of the series would eventually become infinitely small for each value of
the argument. Thus the contribution of the positions situated symmetrically
on both sides of z must cancel in such a way that their sum becomes infinitely
small for an infinite pu. It follows from this that the series {2 can converge
only for those values of x at the midpoint of places where

u? /bc F(z)cospu(z — a) AM(z) dz
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does not become infinitely small for an infinite y. Clearly the number of those
places must be infinitely large if the trigonometric series whose coefficients
are not infinitely decreasing is to converge for an infinite number of argument
values.

Conversely,

™ 2
A, = —n? 2 / (G(t) — Ay t—) cosnt dt
T Jo 2

and thus A, tends to 0 with increasing n, if

2 /b " G(t) cos plt — a) (t) dt

always becomes infinitely small for infinite p.

II. If the terms of the series € eventually become infinitely small for an
argument value x, then whether or not the series converges depends only on
the behavior of the function G(t) for infinitely small ¢. Indeed, the difference
between

Ao+ A1 +---+ A,

and the integral

o 2n+41

1 b d2smsin L t

tends to 0 with increasing n, where b is a constant, however small, between
0 and 7, and p(¢) denotes a function such that g(t) and ¢'(t) are everywhere
continuous and zero for ¢ = b, ¢"(t) does not have infinitely many maxima
and minima and for t = 0, o(t) = 1, ¢'(t) = 0, ¢"(t) = 0, and o"'(t), o'V (¢)
are finite and continuous.

12.

The conditions for the representation of a function by a trigonometric series
can certainly be restricted a little further. Hence our examination can be
extended somewhat further without special hypothesis on the nature of the
functions. For example, in the last theorem the condition ¢"(t) = 0 can be
omitted if in the integral

2n+1 t

1 b d sin2£
- G(t)———=2—po(t) dt
- [ ow—g— e
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G(t) is replaced by G(t) — G(0). However, nothing essential is gained.

Therefore we turn to the consideration of particular cases. We will first
examine a function which does not have infinitely many maximna and minima.
We seek to give a complete solution for this case, which is possible by the
work of Dirichlet.

It is noted above that such a function is everywhere integrable where it is
not infinite, and clearly that can only occur for a finite number of argument
values. Also by Dirichlet’s proof, in the integral expressions for the nth term
of the series and for the sum of the first n terms, the contribution from
all intervals eventually become infinitely small with increasing n, with the
exception of those where the function becomes infinite and the infinitesimal
interval enclosing the argument of the series. Further, by Dirichlet’s proof,

z in 2ot (o —
/+bf(t)8m 2 (x t)dt

i T—1
Sin 3

will converge to 7 f(z 4+ 0) as n tends to infinity, if 0 < b < 7 and f(¢) is not
infinite between the integration limits. Indeed nothing more is needed when
one omits the unnecessary hypothesis that the function is continuous. Hence
it only remains to examine, for this integral, in which cases the contribution
of the places where the function becomes infinite tends to 0 with increasing
n. This investigation is still incomplete. But Dirichlet showed in passing
that this takes place if the function to be represented is integrable. This
hypothesis is unnecessary.

We have seen above that if the terms of the series {2 tend to zero for each
value of z, the function F(z) whose second derivative is f(z) must be finite
and continuous and that

Flz+a)—-2F(z)+ F(z - a)

always becomes infinitely small with «. Now, if F'(z +t) — F'(x — t) does
not have infinitely many maxima and minima, then as ¢ tends to zero it must
converge to a limit L, or become infinitely large. It is clear that likewise,

1

_/Q(F’(Ht)—F’(z—t))dt: F(z +a) - 2F(z) + F(z - o)

(07

(67

must converge to L or to infinity and hence can only become infinitely small
if F'(z+1t)— F'(z —t) converges to zero. Therefore f(a+1t) + f(a—t) must
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always be integrable up to ¢t = 0 if f(z) is infinitely large for z = a. This

suffices for a—e ¢
(/ +/ ) dz(f(z)cosn(z — a))
b a+te

to converge with decreasing €, and to tend to 0 with increasing n. Further-
more, since F(z) is finite and continuous, then F’(z) can be integrated up to
z = a and (z — a)F’(z) becomes infinitely small with z — a, if this function
does not have infinitely many maxima and minima. It follows that

d(z — a)F'(x)

D (- (@) + F(a),

and hence (z—a) f(z), can be integrated up to z = a. Therefore [ f(z)sinn(z—
a) dz can be integrated up to z = a. For the coefficients of the series even-
tually to become infinitely small, clearly it is only necessary that

/ f(z)sinn(z — a)dz, where b<a <ec,
b

tends to 0 with increasing n. If one sets

f(@)(z = a) = ¢(z),

then for an infinite n, if this function does not have infinitely many maxima
and minima,

¢ ¢(z) sinn(z — a) gy = o 2a+0) +¢(a—0)

by T —a 2 ’

/ f(z)sinn(z —a)dz =
b
as Dirichlet has shown. Therefore

dla+t)+dla—t)= fla+t)t— fla—1t)t

must tend to 0 with ¢. Since
fla+t)+ fla—1)
is integrable up to ¢ = 0 and consequently
fla+t)t+ fla—1t)t
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also becownes infinitely small with decreasing ¢, then f(a + t)t as well as
f(a — t)t tend to 0 with decreasing t. Apart from the functions which have
infinitely many maxima and minima, it is necessary and sufficient for the
representation of a function f(z) by a trigonometric series whose coefficients
tend to 0, that if f become infinite for x = a, then f(a + )t and f(a — t)t
tend to 0 with ¢ and f(a +t) + f(a — t) is integrable up to t = 0.

A function f(t) which does not have infinitely many maxima and min-
ima can be represented only for finitely many values of the argument by a
trigonometric series whose coefficients do not eventually tend to 0. For

% /bc F(z)cospu(z — a) AN(z)dx

fails to tend to 0 as p becomes infinite, at only a finite number of values.
Hence it is unnecessary to consider this further.

13.

Concerning functions with infinitely many maxima and minima, it is
probably not superfluous to note that there exists such a function f(z),
everywhere integrable, that cannot be represented by a Fourier series. This
occurs, for example, if

d (2:” cos %)

fla) = =——==",

for 0 <ax <27, and 0 < v < 1/2.

For the contribution in the integral f027r f(x)cosn(z — a) dr with increasing

n of those places where z is close to \/g is, generally speaking, eventually
infinitely large, so that the ratio of this integral to

1 —20
3 sin (2\/_ﬁ—na+ %) \/7?71142

converges to 1, as we find by the method just described. In order to generalize
the the example, and bring out the essence of the matter, let

[ @) ds = 6@ cos v(a)

and assume that ¢(x) is infinitely small for an infinitely small z, and ¥(z)
becomes infinitely large, and elsewhere these functions together with their
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derivatives are continuous and do not have infinitely many maxima and min-
ima. Then

f(z) = ¢'(z) cosyp(z) — d(z)y'(2) sin Y(z),
and

/ f(z)cosn(z — a) dz

is the sum of the four integrals

/¢ cos(th(z) £ n(z — a)) da,
1 / #(x)0/ () sin($(z) £ n(z — a)) dz.

Taking ¢ (x) positive, we consider the term

——/gb )sin(y(z) + n(z —a)) dx

and examine in this integral the place where the changes of sign of the sine
follow one another most slowly. Let

() +n(z—a) =y,

then this occurs where % = 0. Thus £ = o with

' (a) +n=0.

We therefore examine the behavior of the integral

——/ d(x)y (z)siny dz

in the case that € becomes infinitely small for an infinite n, and introduce y
as a variable. Let

() +n{a —a) = p,
then for sufficiently small e

(z—a)?

y=p+¢"(a) —
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and, indeed, ¥"(a) is positive, since ¥(z) tends to +oo as z tends to 0.
Furthermore,

Yy — @) = Ay~ D),

depending on whether x — a > 0 or < 0; and

1 a+e€

-5 ¢(z)y'(z) siny dz

2 J-c
_ 1 / _ /"W"( %\ la)'() (Smy dy )
2 \Jprprz s 2y () vy =0

A $(a)y/(a) dy
o S R by v

Let e decrease with increasing n so that ¢ (a)e? becomes infinitely large. If

dy

VI’

which is known to be sin(3+7/4)+/7, is not zero, then disregarding quantities
of lower order,

[t

1 [ote . V() (a)
3/ d(x)yY'(z) sin(y(z) + n(z — a))dz = —sin (ﬁ+ 4) T

Hence, if the last quantity does not become infinitely small, its ratio to

/0 " H2) cosn(e — a)dz

converges to 1 with an infinite increase of n, since the remaining contributions
become infinitely small.

Assume that ¢(z) and 9'(z) are of the same order as powers of z for
infinitely small z, with ¢(z) of the order of z¥ and ¢/(z) of the order of
z7#71, where we must have v > 0 and g > 0. Then for infinite n,

$(a)y’(a)
2¢//(a)
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has the same order as o~ % and hence is not infinitely small when p > 2.
In general however, if z1’(z) or, what is the same thing, if ;ﬁg is infinitely

large for an infinitely small z, ¢(z) can be taken so that ¢(z) tends to 0 with

x, while
SN ol #a)

)
20" —od _1_
v \/ i 7 \/ —2lim 55

will be infinitely large. Consequently fz f(z)dz can be extended to z = 0,
while

27
f(z)cosn(z — a)dz
0
does not become infinitely small for an infinite n. We see that the increases
in the integral fz f(z)dx as x tends to 0 cancel out because of the rapid
changes of sign of the function f(z), although their variation increases very
rapidly in ratio to the change of z. However, the introduction here of the
factor cosn(z — a) results in this increase being summable.

Just as, in the above, the Fourier series does not converge for a function in
spite of the overall integrability, and the terms themselves eventually become
infinitely large, it can happen that, despite the overall non-integrability of
f(z), between each two values of z, no matter how close, there are infinitely
many values for which the series €2 converges.

An example is given by the function defined by the series

which exists for each rational value of x, where the meaning of (nz) is taken
as in §6. This can be represented by the trigonometric series

[

2% —(—1)f
Z—— sin 2nxT,
nmw

n=1

where 6 runs over the divisors of n. The function is not bounded in any
interval, no matter how small, and hence is nowhere integrable.
Another example is obtained if in the series

o0 o0
E ¢, cosnix, E cn sinn’z
n=0 n=1
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o, C1, Ca, . . . are positive numbers which always decrease and tend to 0, while
S ", ¢s becomes infinitely large with n. For if the ratio of z to 27 is rational
and in lowest terms has denominator m, then clearly the series converges or
tends to infinity depending on whether

m-—1 m—1
cosn r E Sin n2£

are zero or not. Both cases arise, by a well known theorem?? on partitioning
the circle, for infinitely many values of z between any two bounds, no matter
how close.

The series {2 can converge in a range just as large, without the value of

the series L dA
Ot Agr— 3 — 44

n? dr
which one obtains by termwise integration of (), being integrable on any
interval, however small.
For example, we expand the expression

oo

1 —log(1—¢")
ZE 1—¢")log (q—” ;

n=1

where the logarithms are taken so that they vanish for ¢ = 0, by increasing
powers of ¢, and replace ¢ by e**. The imaginary part is a trigonometric
series whose second derivative with respect to z converges infinitely often on
any interval, while its first derivative becomes infinite infinitely often.

In the same range, that is, between any two argument values no matter
how close, a trigonometric series can also converge infinitely often when its
coefficients do not tend to 0. A simple example of such a series is given by
> o2 sin(nlzm), where as usual,

nl=1-2-3--.n

This not only converges for each rational value of z, for which it changes
into a finite sum, but also for an infinite number of irrationals, of which the

_1
simplest are sin 1, cos 1, 2/e and their multiples, odd multiples of e, %, and
SO on.

33Disquis. ar. p. 636, §356. (Gauss, Werke, vol. I, p. 442.)
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XIIT.
The hypotheses on which geometry is based.

(Koniglichen Gesellschaft der Wissenschaften zu Géttingen, vol. 13.)

Plan of the investigation.

It is known that geometry takes for granted the notion of space as well as
the fundamental first principles used in constructions carried out in space.
Only nominal definitions are given of these basic concepts, while the essential
role in determining their properties is played by the axioms. The relation-
ships between the assumptions embodied in these axioms, however, remain
obscure. It is not clear whether, and if so to what extent, they are necessarily
linked; or whether, a priori, they are even possible.

This obscurity has existed from Euclid to Legendre, to name the most
famous of recent geometers, but neither the mathematicians nor the philoso-
phers who have concerned themselves with this problem have dispelled it.
The reason for this may well be that the general concept of quantities having
several dimensions, which incorporates the notions that we use in geometry,
remains a field in which no work has ever been done. T have accordingly set
myself as a first task the construction of the concept of a multi-dimensional
quantity from the general concept of magnitude. It emerges from this study
that a multi-dimensional object is capable of being measured in different
ways and that space is only a particular example of the case of a three-
dimensional quantity. It necessarily follows from this that the theorems of
geometry cannot be deduced from the general notion of magnitude alone,
but only from those properties which distinguish space from other conceiv-
able three-dimensional entities, and these properties can only be found ez-
pertmentally. This raises the problem of seeking out the simplest facts which
enable us to determine the metric relationships of space—a problem which
by its very nature can never be completely decided, because there are sev-
eral different systems of “simple facts” which suffice to determine the metric
relationships of space. The most important of these for our present purposes
is the system of axioms laid down by Euclid. These, like all facts based
on observation, are not necessary truths, they have only empirical certainty
and are indeed hypotheses. We can therefore investigate their probability,
which is undoubtedly very great within the limits of observation, and from
there form a judgment as to the admissibility of extending them outside the
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limits of observation, in the realms of both the immeasurably great and the
immeasurably small.

I.
The notion of an n-dimensional quantity.

As I try to solve the first of these problems, that of developing the concept
of multi-dimensional entities, I feel obliged to ask for indulgence on the part of
my listeners, because I am unused to dealing with matters of a philosophical
nature where the difficulties reside in the concepts themselves rather than
in their constructs. Apart from a few brief indications mentioned by Privy
Councillor Gauss in his second memoir on biquadratic residues published
in the Géttingenschen gelehrte Anzeigen, in his Jubildumschrift, and some
philosophical researches of Herbart, there has been no previous work which
I could use.

1.

The idea that an entity has a magnitude is possible only where the entity
falls under some more general concept which allows its size to be defined in
a variety of different ways. Depending on whether or not it is possible to
make the transition from one mode of determination to another in a contin-
uous fashion, the modes of determination constitute a continuous or discrete
manifold. In the former case, these individual modes of determination are
called points and in the latter case, the elements of the manifold. Concepts
whose modes of determination form a discrete manifold are so frequent that
in all the more highly developed languages it is always possible to find one
which includes them. Mathematicians were therefore, in the theory of dis-
crete magnitudes, able to regard given things as belonging to the same class,
without hesitation. On the other hand, occasions which give rise to notions
whose measurement involves the consideration of continuous manifolds are so
rarely encountered in everyday life that the location of material objects per-
ceived through the senses, and colors, are perhaps the only simple examples
of concepts whose modes of determination constitute a multi-dimensional
manifold. Not until we enter the realm of higher mathematics does the need
to create and develop such concepts make itself felt.

Well-defined parts of a manifold, distinguished by some characteristic
feature or boundary, are called quanta. Their quantitative comparison is
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made, in the discrete case, by counting, and in the continuous case, by mea-
suring. Measurement is done by superimposing one of the quantities to be
measured on the other. To measure something, therefore, requires a means
ol transporting one of the quantities which can act as a scale against which
the other can be compared. If this means is not available, we can compare
two quantities only when one of them is a part of the other, and even then
we can only compare greater and lesser; we cannot say by how much. The
investigation of this case forms a branch of the theory of quantities indepen-
dent of measurement. Here quantities do not exist independently of their
position in space, and cannot be expressed via an unit but must be regarded
as regions in a manifold. Such studies have become a necessity in various
parts of mathematics, notably in the treatment of multi-valued analytic func-
lions. The lack of these studies may well be one of the main reasons why
Abel’s famous theorem and the contributions of Lagrange, Pfaff, and Jacobi
to the general theory of differential equations have remained unfruitful for so
long. From this general theory of multi-dimensional entities, in which noth-
ing more is assumed than is inherent in its axiomatic definition, it will suffice
for our present purpose to emphasize two points. The first concerns the cre-
ation of the concept of a multi-dimensional manifold. The second relates to
the reduction of the determination of position within a given manifold to
quantitative determinations, and will make clear the essential character of
an n-dimensional entity.

2.

If, in a concept whose modes of determination constitute a continuous
manifold, we pass from one mode of determination to another in a well-
defined manner, then the modes of determination utilized form a simply-
extended manifold whose essential feature is that a continuous progression
from one point to the next is possible in only two different directions, forwards
or backwards. Now imagine that this manifold is moved into a completely
different one, again in a well-defined manner (that is, in such a way that each
point of the one is transformed into a well-defined point of the other). Then
the various modes of determination so obtained constitute a two-dimensional
manifold. In a similar fashion we obtain a three-dimensional manifold if we
imagine a two-dimensional manifold moving into a completely different one
by some specified transformation; and it is easy to see how this process can
be extended. If, instead of taking the notion of a quantity that can be
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determined, we treat the conceived object as the variable, then we could
describe this construction as the composition of a variety of n+ 1 dimensions
from a variety of n dimensions and a one-dimensional variety.

3.

I shall now show how, conversely, a variety in a given domain can be
broken down into a variety of fewer dimensions and a one-dimensional vari-
ety. For this purpose, let us visualize a variable segment of a one-dimensional
manifold (measured from a fixed point, so that the lengths of these variable
segments can all be compared one to another) and suppose that the points of
this given manifold each have a well-defined associated value which varies in
a continuous fashion. In other words, we assume that a continuous function
of position within the manifold has been defined; in fact, a function which is
never constant along any part of this manifold. Every set of points for which
the function has a constant value then defines a continuous manifold which
has a smaller number of dimensions than the given manifold. Whenever the
function changes, so does this corresponding manifold and in a continuous
manner. Thus we can assume that from one of these manifolds all the others
can be derived continuously, and, generally speaking, the correspondence will
be such that every point of one manifold is transformed into a definite point
of the other. There are exceptions to this general rule, which need careful
investigation, but we may ignore these for the present. By this means the
determination of position in the given manifold is reduced to the determina-
tion of a parameter and the determination of position in a manifold of lesser
dimensions. It is now easy to show that this latter manifold must be one of
n — 1 dimensions, when the given manifold has n dimensions. By repeat-
ing the process n times, the determination of position in an n-dimensional
manifold can be reduced to n quantitative determinations. Accordingly, the
determination of the position of an element in a given manifold, when this is
possible, can be reduced to the determination of a finite number of quantities.
There are also manifolds in which the determination of position requires not
merely a finite number of quantitative determinations but rather an infinite
series or even a continuous manifold of them. Such manifolds are, for exam-
ple, the possible determinations of a function in a given domain, the possible
shapes of a figure in space, and so on.
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II.

Metric relationships which can exist in a manifold of n
dimensions, on the assumption that the lines have a length which
is independent of their situation, so that every line can be
measured by every other line.

After having constructed the concept of an n-dimensional variety, and
having found as its essential characteristic that defining the position of its
clements can be reduced to the determination of n quantities, we turn to
the second of the problems posed earlier. This is the study of the metric
relationships which can hold in such a manifold and the conditions which
suffice to determine these relations. These metric relations can only be stud-
ied by using symbols representing abstract quantities and representing their
dependence by means of formulae. Under certain hypotheses, however, the
relationships can be broken down into simpler relations which can be indi-
vidually interpreted geometrically, so that the result of the calculation can
be expressed in geometric language. In order to remain on terra firma we
cannot avoid working with abstract formulae, but the results of the inves-
tigation can be expressed in a geometric form. The foundations for these
two aspects of the question were laid down by Privy Councillor Gauss in his
celebrated memoir on curved surfaces.

1.

Measurement requires that the measure of the entities being measured
must be independent of their location, and this can be the case in more than
one way. The assumption which first suggests itself, and which I intend to
pursue here, is that the length of lines is independent of their position, so
that every line can be measured by comparing it with any other line. If the
determination of the position of a point in a given n-dimensional manifold is
reduced to the determination of n variables x,, z2, x3, . . ., T,, then a line may
be defined by the statement that the quantities x are given functions of a
single variable. The problem then is to find a mathematical expression for the
length of a line, and for this purpose we need to consider the quantities x as
expressible in terms of units. I shall handle this problem only under certain
restrictions, and confine myself in the first place to lines in which the relations
between the quantities dr—the associated variations of the variables z—vary
in continuous fashion. We can then visualize the line as being divided up into
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elements, within which the ratios of the increments dr can be regarded as
constant, and the problem reduces to finding a general expression for the line
element ds starting from a given point, which will involve the variables z as
well as the variables dx. Secondly, I shall assume that the length of the line
element, disregarding quantities of the second order of magnitude, remains
unchanged if all its points undergo the same infinitesimal displacement. This
assumption implies that if all the variables dz are proportionally increased
in size, the line element will increase in the same proportion. Under these
assumptions, the line element could be an arbitrary homogeneous function of
the first degree in the variables dz, that remains unaltered by changing the
sign of all dz, and such that the arbitrary constants are continuous functions
of the variables z. In order to find the simplest cases, I first seek an expression
for the (n — 1)-dimensional manifolds which are everywhere equidistant from
the point of origin of the line element; that is, I look for a continuous function
of position which can be used to distinguish one such manifold from another.
This function will have the property that it either continually decreases or
else continually increases as we move away from the origin in any direction.
I shall suppose that it increases in every direction, so that it has a minimum
at the origin. It must then, if its first and second derivatives are finite,
be a function whose first derivative vanishes and whose second derivative is
never negative. I shall suppose that it is always positive. This differential
expression of the second order therefore remains constant when ds remains
constant and increases in the same proportion as the square of dx if the
variables dz and hence ds are all increased proportionately. Thus the function
can be written as const. ds?, and consequently ds is the square root of an
everywhere positive quadratic form in the variables dr whose coeflicients are
continuous functions of the variables x. For space, when the position of a
point is expressed in rectangular coordinates, we have

ds =/ (dz)2.

Thus space falls under this simplest case. The next simplest case would
comprise manifolds in which the line element can be expressed by the fourth
root of a quartic differential expression. The study of this more general class
would not, it is true, require any essentially new principles, but would be
time-consuming and probably throw relatively little new light on the theory
of space, particularly since the results would not lend themselves to geomet-
ric form. I therefore restrict myself to manifolds in which the line element is
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expressed as the square root of a quadratic differential expression. Such an
expression can be transformed into a similar one by substituting, for the n
independent variables, functions of n new independent variables. Not every
such expression, however, can be transformed into any other in this way; for
clearly the expression contains n(n + 1)/2 coefficients which are arbitrary
functions of the independent variables. By introducing n new variables, we
can only satisfy n different relations and thus can only make n of the coeffi-
cients assume specified values. The other n(n — 1)/2 coefficients are already
completely determined by the nature of the manifold to be represented, and
to define its metric properties n(n — 1)/2 functions of position are required.
The manifolds in which, as in the plane and in space, the line element can be
expressed in the form /> (dz)? thus constitute a special case of the mani-
folds under investigation here. They merit a special name, and I designate
those manifolds in which the square of the infinitesimal line element can be
brought into the form of a sum of the squares of the individual differentials
as flat. In order to review the essential differences between the diverse flat
manifolds, we need to put aside differences which arise from the particular
mode of representation. This will be achieved by choosing the variables in
accordance with a certain principle.

2.

To this end, imagine that given an arbitrary point of the manifold, a
system of shortest lines be constructed emanating from this origin. The
position of an indeterminate point will then be defined by the initial direction
of the particular shortest line on which it lies, and its distance from the origin
measured along this shortest line. This position can therefore be expressed
by the ratios of the quantities dz°, that is, the initial values of dz at the origin
of this shortest line, and the length s of the line. We now introduce, instead
of dz°, new linear expressions formed from them, do, such that the initial
value of the square of the line element is equal to the sum of the squares of
the da. The independent variables are now: the length s, and the ratios of
the da. Finally we replace the da by quantities z,,zs,. .. z,, proportional
to them, which have s as the sum of their squares. If we introduce these
quantities as the new variables, then for infinitely small values of x, the square
of the line element will be Y (dz)?, but the term of the next higher order
of magnitude in the expression will be a quadratic form in the n(n — 1)/2
quantities x1dzry — Todxy, T dx3 — 23dX,, ..., that is, an infinitesimal of the
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fourth dimension. Thus we obtain a finite number if this expression is divided
by the square of the area of the infinitesimal triangle at whose vertices the
values of the variables are (0,0,0,...), (21, 29,23, ...) and (dz|, dxs, dzs, .. .).
This number remains unchanged as long as the quantities x and the quantities
dx are contained in the same binary linear forms, or in other words, as long as
the shortest line from (0,0,0,...) to (z1, Z2, 3, . ..) and the shortest line from
(0,0,0,...) to (dz1,dxy,dxs,...) remain in the same surface element, and
thus the number depends only on the position and orientation of this element.
Its value will obviously be zero when the manifold is flat, that is, when the the
square of the infinitesimal line element is reducible to the form " (dz)?, and
can therefore be regarded as a measure of the departure from flatness of the
manifold at the point in question in the surface-direction concerned. When
multiplied by —3/4, it is equal to the quantity called by Privy Councillor
Gauss the curvature [Krimmungsmass| of the surface. To determine the
metric relations in an n-dimensional manifold susceptible of representation in
the assumed form, we found earlier that n(n—1)/2 functions of position were
needed. If, therefore, the curvature at each point is specified for each of n(n—
1)/2 surface-directions, then all the metric relations in the manifold can be
deduced, unless there are some identical relations between the specified values
which, generally speaking, will not be the case. The metric relationships
of those manifolds in which the line element is represented by the square
root of a quadratic differential expression can thus be expressed in a form
which is completely independent of the variables. An entirely analogous
method can be employed to achieve the same goal in the case of manifolds
in which the line element has a less simple form, for example, the fourth
root of a quartic differential expression. Generally speaking, the line element
would then no longer be capable of being expressed as the square root of
a sum of squares of differential expressions. Consequently in the expression
for the square of the line element, the departure from flatness would be
an infinitesimal quantity of degree 2, rather than degree 4, as in the case
previously considered. This characteristic property of the latter manifolds
might well be called planarity in the smallest parts. For our present purposes,
the most important property of the manifolds which we have considered so
far, and indeed the main motivation for this investigation, is that the metric
relationships in 2-dimensional manifolds can be interpreted geometrically
by surfaces, and those in higher dimensional manifolds can be reduced to
relations in the surfaces which are contained in them. This calls for a brief
further explanation.
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3.

In apprehending the concept of a surface, besides the intrinsic properties
which yield the lengths of paths in the surface, there are extrinsic properties
which concern the positions of the points in the surface in relation to points
outside it. We can, however, abstract these latter properties by considering
at the same time as the given surface all those surfaces into which it can be
moved by a transformation which leaves unaltered the lengths of lines lying
wholly within the surface, and regarding such surfaces as equivalent. We
think of such surfaces as being derived by bending but not stretching. The
surface of a cone or a cylinder are examples of surfaces which are equiva-
lent to a plane. For they can be formed from a plane merely by bending,
which does not alter metric relationships within the surface, and the results
of planimetry remain valid. The situation is essentially different in the case
of the surface of a sphere, as it cannot be transformed into a plane surface
without stretching. From the foregoing investigations, it is clear that in a
2-dimensional manifold, where, as is the case with surfaces, the line element
is the square root of a quadratic differential expression, the intrinsic metric
relationships at each point are characterized by the curvature. This number
has a simple intuitive interpretation in the case of surfaces; it is the product
of the two principal curvatures of the surface at the point. Alternatively, the
product of this number by the area of an infinitesimal triangle whose sides
are lines of shortest length in the surface is half the excess of the sum of its
angles over two right angles. The first definition assumes the theorem that
the product of the two principal radii of curvature at any point on a surface
remains unaltered by a mere bending operation. The second definition as-
sumes that at this point the total angle, less 7, of an infinitesimal triangle is
proportional to its area. In order to obtain an easily grasped interpretation
of the curvature in the case of an n-dimensional manifold for a given point
and a given surface direction, we begin from the idea that a shortest line
emanating from the given point is fully determined by its initial direction.
With the help of this notion, a well-defined surface is obtained when all the
lines emanating from the given point, in every possible initial direction (and
lying within the given infinitesimal surface element), are prolonged into lines
of shortest length. The surface formed in this way has at each point a definite
curvature which is the curvature of the n-dimensional manifold at the point
in question and in the given surface direction.
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4.

Before applying the foregoing to space, it will be necessary to consider a
few matters concerning flat manifolds in general, that is, manifolds in which
the square of the line element is expressible as the sum of squares of complete
differentials.

In a flat n-dimensional manifold, the curvature at every point and in ev-
ery direction is zero. In accordance with our earlier investigations, in order
to specify the metric relations, it suffices to know that at every point of the
surface, the curvature is zero in n(n—1)/2 different surface directions (whose
curvatures are independent). The manifolds whose curvature is everywhere
zero can be regarded as a particular case of those whose curvature is every-
where constant. Manifolds with constant curvature can also be characterized
by the property that geometric figures within the variety concerned can be
freely moved around without stretching. For it is obvious that figures within
the variety could not be translated and rotated unless the curvature at each
point of the surface and in each direction were the same. On the other hand,
the curvature completely determines the metric relations of the manifold, so
that all the metric relations within a manifold with constant curvature at
every point and in every direction are completely defined by this constant
and are the same at each point in all directions. As the same constructions
can be carried out in each direction starting from a given point, the figure
can be moved so that it occupies an arbitrary position in the manifold. The
metric relations of these manifolds depend only on the value of the curvature.
As far as their analytical expression is concerned, it may be noted that the
expression for the line element can be given the form

! 2
Ty V2

where « is the curvature.

5.

To elucidate the foregoing in a geometric context, the case of surfaces
with constant curvature may serve as an example. It is easily seen that the
surfaces with a constant positive curvature can always be applied without
stretching on the surface of a sphere whose radius is the reciprocal of the
square root of the curvature. However, in order to embrace the whole class
of surfaces of constant curvature, let us give to one of them the shape of a
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sphere, and to the others the shape of the surface of a solid of revolution,
touching the sphere along its equator. The surfaces whose curvature exceeds
that of the sphere will then be in contact with the sphere on the inside, and
in the neighborhood of the line of contact will have a shape similar to the
external surface of a torus at the points furthest from its axis. They could
be applied along zones of a sphere of smaller radius, but would cover these
zones more than once. The surfaces with a smaller positive curvature can be
obtained by cutting out of the surface of a sphere of larger radius, a piece
of surface bounded by two halves of great circles, and fitting together the
lines of the cuts. The surface of zero curvature is the curved surface of a
circular cylinder whose base is the equator of the sphere. The surfaces with
a negative constant curvature will touch the cylinder externally and have a
shape similar to the surface of a torus nearest the axis. If we regard all these
surfaces as regions in which a piece of surface can be moved around from one
position to another, in the same way as space is a region in which rigid bodies
can be moved from one position to another, then in all these surfaces, the
pieces of surface are freely mobile without stretching. The surfaces of positive
curvature can moreover always be given a form such that the movable surface
elements can be moved arbitrary without undergoing any bending, and this
form will be that of a sphere. This will no longer be possible for surfaces
of negative constant curvature. In addition to this independence of surface
elements from position, there is, in the case of surfaces of zero curvature,
an independence of orientation from position which does not hold for other
surfaces.

I1I.
Application to space.

1.

After this investigation into the determination of the metric relations
between n-dimensional entities, it is now possible to indicate a set of nec-
essary and sufficient conditions for the determination of these relations in
space. We make the hypotheses that the lengths of lines are independent of
position, and that the length of the infinitesimal line element is expressible
as the square root of a quadratic differential expression, so that flatness in
the smallest parts is assumed.
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Now in the first place, this property can be expressed by saying that the
curvature at any point in three different surface directions is zero. The metric
relations in the space are, in particular, fully determined if the sum of the
angles of a triangle is always equal to two right-angles.

If, secondly, we assume, as did Fuclid, an existence not only of line seg-
ments whose lengths are independent of their position in space but also of
solids whose dimensions are likewise independent of their position in space, it
follows that the curvature is everywhere constant, and the sum of the internal
angles of a triangle is determined by its value for any given triangle.

Lastly, we could, instead of assuming that the length of line segments
is independent of their position and direction, assume that their length and
direction is independent of their position. If we adopt this point of view,
changes of position or differences in position are expressions in three inde-
pendent units.

2.

In the course of our presentation we have taken care to separate the
topological relations [Ausdehnungs- oder Gebietsverhdaltnisse] from the met-
ric relations. We found that different measurement systems are conceivable
for one and the same topological structure, and we have sought to find a
simple system of measurements which allows all the metric relations in this
space to be fully determined and all metric theorems applying to this space
to be deduced as a necessary consequence. It now only remains to discuss
the question of whether and to what extent the assumptions which we have
made are confirmed by experience. In this connection there is an essential
difference between topological and metric relations. The various possible
cases of the former constitute a discrete manifold where the facts revealed by
experience can be expressed by statements of whose truth one can never be
certain but which are at least not inexact. However, the latter relations form
a continuous manifold where the measurements revealed by experience must
necessarily be inexact, no matter how great the probability of the measure-
ment being correct. This circumstance becomes important when empirical
determinations based on experimental observations are extrapolated outside
the limits of observation, to the regions of the immeasurably large and the
immeasurably small. It is obvious that within the limits of observation the
measurements in the latter case become less and less precise, but not in the
former case.
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When we extend constructions in space to the immeasurably large, a
distinction has to be made between the unlimited and the infinite; the first
applies to relations of a topological nature, the second to metric relations.
That space is an unlimited three-dimensional manifold is a hypothesis that
is applied in all our conceptions of the external world, at all times allowing
us to complete our perception of the universe by extending the domain of
which we are truly aware, and to construct the possible positions of some
particular object. It is a hypothesis which is constantly being verified in its
applications. The property of the unboundedness of space possesses therefore
a greater empirical certainty than any other fact established by observation.
However, the infiniteness of space does not in any way follow from this. On
the contrary, if one assumes that the size of solid bodies does not depend
on their position, and in consequence ascribes to space a constant curvature,
then space is necessarily finite, whenever this constant is positive, no matter
how small. If we were to extend the infinitesimal line elements in each initial
direction in an element of surface into line segments along paths of shortest
length, the lines would lie in an unbounded surface of constant curvature.
This surface in a flat three-dimensional manifold would take the form of a
sphere, so that it would be finite.

3.

QQuestions relating to immeasurably large quantities have no relevance to
the elucidation of natural phenomena. Questions relating to the immeasur-
ably small are, however, another matter. The degree of accuracy with which
we can pursue phenomena toward the infinitely small has a profound effect
on our knowledge of the causal relationships between them. The advances
during the last few centuries in our knowledge of the mechanism of Nature
have been almost entirely due to the accuracy of the models which have been
constructed, following the discovery of infinitesimal analysis, and the simple
basic concepts found by Archimedes, Galileo, and Newton, which are used
in present-day physics. In those natural sciences where the simple concepts
needed to construct such models are not yet available, we try to extend the
examination of phenomena into ever smaller regions of space as far as the use
of the microscope permits, in order to understand the causal relationships
involved. Hence questions about metric relations of space concerning the
immeasurably small are not superfluous.

If we assume that bodies have a size independent of their position, the
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curvature is everywhere constant, and it follows from astronomical measure-
ments that it cannot be other than zero. At any rate, the reciprocal of the
curvature would correspond to a surface compared with whose radius the
range of our present telescopes would be negligibly small. If, however, the
independence of the size of bodies from their position is not assumed, no de-
duction can be made as to the metric relations in the small from those in the
large. At every point in space the curvature in three directions could have
arbitrary values, provided that the curvature of every measurable portion of
space did not differ markedly from zero. Even more complicated relationships
could obtain if we suppose that the line element cannot be represented as the
square root of a quadratic differential expression. Now it seems that the em-
pirical concepts on which the metric determination of extent are based, the
concept of a rigid body, and the concept of a light ray, cease to be meaning-
ful in the realm of the infinitely small. It is therefore quite conceivable that
metric relations in the infinitesimal domain do not obey the usual axioms of
geometry, and we ought to modify our assumptions accordingly, if thereby
observed phenomena can be explained more simply.

The question of the validity of the axioms of geometry in the infinitely
small is bound up with the fundamentals of metric relations in space. The
latter question can be regarded as belonging to the theory of abstract spaces,
and the remark made earlier applies. In any discrete manifold, the principle
used for the measurement of the size is already present in the definition of
the manifold; but where the variety is continuous, this principle must come
from somewhere else. Accordingly, either the physical reality on which space
is founded must be a discrete variety, or else the foundation of its metric
relations must be sought from some outside source in the forces which bind
together its elements.

The answer to these questions can be found only by starting from the
existing theories, whose foundations were laid by Newton and which were
derived from a study of phenomena. These theories and concepts must then
be gradually modified whenever facts are encountered which cannot be ex-
plained on the existing basis. Investigations such as the present one, which
proceed from concepts of a general nature, can only be helpful in prevent-
ing this work from being hindered by too narrow a view of the possibilities,
so that advances in our understanding of the universe are not hampered by
traditional prejudices.

This takes us into the realm of another science—physics—which the na-
ture of today’s occasion does not allow us to explore.
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Summary.
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I. The notion of an n-dimensional quantity.! ........... ... ... . ... ... ... . ... ......

§1.

§2.

§3.

IL.

Continuous and discrete manifolds. Defined parts of a manifold are called quanta.
Division of the theory of continuous quantities into a study of

1) purely topological relations where no assumption is made that quantities are
independent of position.

2) metric relations, where such an assumption has to be made. ..................

Construction of the notion of a 1-dimensional, 2-dimensional, . .., n-dimensional man-
HOld. o

Reduction of the determination of position in a given manifold to quantitative deter-
minations. Characterization of an n-dimensional manifold. ........................

Metric relations which can exist in a manifold of n dimensions, on the assumption

that its lines have a length which is independent of their situation, so that every line can

be
§1

§2.

§3.
4.

§5.

measured by every other line.2 ... ... . . ... ..

. Expression for a line element. Manifolds in which the length of the line element can

be expressed as the square root of a sum of squares of complete differentials may be
regarded as flat. ... ...

Investigation of n-dimensional manifolds in which the length of the line element can
be expressed as the square root of a quadratic differential expression. The measure
of its departure from flatness (curvature) at a given point and in a given surface
direction. To determine the metric relationships which hold within the manifold, it
is necessary and sufficient (subject to certain limitations) that the curvature be given
at every point in n(n — 1)/2 surface-directions. ................... ... ...

Geometric INterpretation. .. ..........o.uiutont ittt i

The flat manifolds (in which the curvature is everywhere zero) can be regarded as a
particular case of those with a constant curvature. The latter can also be defined as
those in which n-dimensional quantities have a size which does not depend on their
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! Article I serves equally as a preface for contributions to analysis situs.
2The investigation into the possible metric relations of an n-dimensional manifold is

very far from complete, but probably sufficient for our present purposes.
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§1.

§2.

§3.
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Sets of facts which suffice to establish the metric properties of space as assumed in
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To what extent are facts discovered empirically likely to be valid for immeasurably
great quantities beyond the limits of observation? ........... ... .. ... ... ... ...

To what extent does this apply to the immeasurably small? Connection of this ques-
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383 of part III requires reworking and further development.
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XIV.
A contribution to electrodynamics.

(Poggendorff’s Annalen der Physik und Chemie, vol. 131.)

I take the liberty of communicating a remark to the Royal Society that
brings the theory of electricity and magnetism into a closer connection with
that of light and radiant heat. T have found that the electrodynamic influ-
ence of galvanic currents may be explained if we suppose that the influence
of one electrical mass on another is not instantaneous. Rather, it propagates
towards it with a constant velocity (equal to the velocity of light within the
limits of observational error). With this hypothesis, the differential equa-
tion for the propagation of electrical force will be the same as that for the
propagation of light and radiant heat.

Let S and S’ be two conductors, through which constant, galvanic currents
flow, that are not in relative motion. Let € be a particle of electrical mass in
the conductor S whose position at time ¢ is (z,y, z), € an electrical particle
of S" with position (2’,y’,2') at time t. Now consider the motion of the
electrical particles with opposing effect for positive and negative electricity
in each small portion of the conductor. I assume that these motions are
distributed at any given instant so that the sums

Zef(‘r7 y’ Z)? Zelf(‘r/,yl, ZI)’

taken over all particles of the conductor, are negligible compared to the
corresponding sums taken over either positive or negative particles, provided
that f and its partial derivatives are continuous.

This hypothesis can be fulfilled in a variety of ways. For example, suppose
the conductor is crystalline in the smallest parts. Relative to these parts, the
distribution of electricity repeats periodically at definite distances infinitely
small compared to the dimensions of the conductor. Denoting by 3 the
length of such a period, each sum becomes infinitely small like ¢8" if f and
its partial derivatives up to order n — 1 are continuous, and like e=¢/? if all
these derivatives are continuous.
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Empirical law of electrodynamic influences.

Let the specific current intensities per unit mass at time ¢ at the point
(x,y, z), parallel to the three axes, be u,v,w, and at the point (z’,y,2")
be (u/,v',w"). Denote by r the distance between these points, and by ¢ the
constant determined by Kohlrausch and Weber. Empirically, the potential
of the forces of S acting on S’ is

_g//uu’+vv’+ww’deS,;

C r

the integral is taken over all elements dS and dS’ of the conductors S and 5.
We introduce the product of the velocities with specific densities in place of
the specific current intensities, and then take the product of these with the
masses contained in the volume elements. The expression becomes

Z ee’ 1 dd'(r?)
2 r di2
if the variation of 72 during time dt’ arising from the motion of ¢ is denoted

by d, and that from the motion of ¢’ by d'.
On neglecting

dzzzz_ % d’(r
dt ’

which vanishes via the summation over ¢, this expression becomes

ee’ d d’
ZZ t).

On adding

Iy e i)
dt

which vanishes via the summation over €, this is transformed into

2 de (3
Z Eelg dt2 .
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Derivation of this law from the new theory.

With the previous assumptions on the electrostatic influence, the poten-
tial function of arbitrarily distributed electrical masses having density p at
the point (z,y, 2) is determined by the condition

U U U
o2 | o2 Bz T

We have the further condition that U is continuous and is constant at infinite
distance from the masses exerting influence. A particular integral of the
equation
*U  0*U  O*U
ox? + oy? + 022

continuous except at the points (z’, ¢/, 2’), is

ft)

r

=0,

This function forms the potential function arising from the point (z’,y', 2’)
if the quantity located there at time ¢ is — f(¢).

Instead of this, I assume that the potential function is determined by the
condition

FU (U U PU

ot? or? = oy*  0x?

Thus the potential function arising from the point (2/,7/, 2') is
F-g)

7

) + o4mp = 0.

if the quantity — f(t) is found there at time t.
We denote the coordinates of the quantity € at time ¢t by zy, v, 2; and
those of € at time ¢’ by x},, y,,, z;,. For brevity, let

1
((zt —zy)’ + (v — yp)? + (2 — 24')2) ? =
With this hypothesis the potential of € on € at time ¢ is

—ee'F (t - g,t) .
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The potential of the totality of forces from the masses e of the conductor
S, acting on the masses € of the conductor S’ from time 0 up to time ¢, will

then be .
.
pP=— 'F(t~—, )d,
/02266 Lr)dr

the sums being taken over all masses of both conductors.

The motion is opposite for opposing electrical charges in each small por-
tion of the conductor. Hence the function f(¢,t'), on differentiation with
respect to t, undergoes a sign change with €, and, on differentiation with
respect to t', a sign change with ¢’. By our hypothesis on the distribution of

electricity, the quantity
S B (r ),

taken over all electrical masses, will be infinitely small compared to the cor-
responding sum over electrical masses of one type if n,n’ are both odd. Here
differentiation with respect to t is denoted by an upper accent, with a lower
accent for ¢'.

We now suppose that the electrical masses travel only a very small dis-
tance during the propagation of force from one conductor to the other. Con-
sider the influence during a time interval relative to which the time of prop-
agation vanishes. In the expression for P, we can begin by replacing

7
F (7’ — E,T)
f(r— 1,7') - f(r,7) = ——/a F'(t — 0,7)do.
a 0
For Y €€ f(7,7) may be neglected. We obtain

P:/thZZCEI/T/aF,(T—O‘,T)dO‘.
0 0

If we now interchange the order of integration and substitute 7 + o for T,

r/a t—o
P= ee'/ da/ drF'(1,7 + o).
D2 e | do [ drF

If we transform the limits of the inner integral into 0 and ¢, then at the
upper limit the expression

z 0
H(t):ZZee'/ da/ dTF'(t + 1,t + 7 + o)
0 -0
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is added; at the lower limit, the value of this expression for ¢t = 0 is subtracted.
Thus we have

P:/OthZZee'/fdaF'(T,T—ka)—H(t)+H(0)-

In this expression, we may replace F'(r,7 + o) by F'(r,7+0)— F'(1, 1),

since ,
Z Z €€ —a—F (1,7)

may be neglected. In this way we obtain as a factor of e€/ an expression
which changes sign with both ¢ and ¢, in such a way that the terms do
not cancel each other out on summation, while infinitely small fractions of
the individual terms may be neglected. If we now replace F'(r,7 + o) by
F'(r,7 +0)— F'(r,7), since

Z Z ee'gF'(T, 7)

may be neglected. In this way we obtain as a factor of e/ an expression
which changes sign with both € and ¢, in such a way that the terms do not
cancel each other out on summation, while infinitely small fractions of the

individual terms may be neglected. If we now replace
dd' (%
F'(r,7+0)— F'(1,7) by a—(r)’
dr?

and integrate with respect to o, this yields

P:/0 S s ‘i‘f;%?) dr — H(t) + H(0)

up to a negligible quantity.
It is easy to see that H(t) and H(0) may be neglected. For
dd’ (%)

r

d—t2 (T+U)‘+‘...,

d (1 d? (1
F’(t+7,t+7+a)=d—t(;>+%;)7+

so that
(Al e ) ()
H{t) =3 ) e (2a2 it 6ad dz o 6a® a7
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However, only the first term of the factor of e’ in this expression is of the
same order of magnitude as the first term of P, and will be negligible in
comparison on account of the summation over €.

The value of P that emerges from our theory coincides with the empirical
if we take a? = c2

quantity
2alal’
/ ZZ o2 d7-2 dT
2

The value determined by Weber and Kohlrausch is

1.2

¢ = 439450.10° millimeters per second,

giving 41949 nautical miles per second for a. The velocity of light found by
Busch from Bradley’s aberration observations is 41994 miles per second, and
Fizeau’s value found via direct measurement is 41882 miles per second.
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XV.

A proof of the theorem that a single-valued periodic function of n
variables cannot be more than 2n-fold periodic.

(Extract from a letter from Riemann to Weierstrass. )

(Borchardt’s Journal fir reine und angewandte Mathematik, vol. 71.)

... I feel that I probably did not make myself quite clear in our conver-
sation about the proof of the proposition, to which you have recently lent
your support, that the existence of periodic functions of n variables that are
more than 2n-fold periodic is an impossibility. As I mentioned only briefly
the basic underlying ideas, I should like to return to the subject here.

Let f be a 2n-fold periodic function of n variables 1, x5, ..., z,, and—if
I may use my terminology, with which you are familiar—Ilet the modulus of
periodicity of z,, for the u-th period be a,. It is then known that the variables
x can be expressed in the form!

2n
zV:ZaZ@‘ (v=12,...,n)
p=1

in such a way that the quantities £ are real.

Suppose now that the variables £ run through all real values between 0
and 1, with the exception of one of these two limits. Then the resulting region
of 2n-dimensional quantities has the property that every set of values of the
n variables is congruent, with respect to the 2n systems of moduli, to one
and only one set of values lying within this region. In order to express myself
more concisely later, I shall call this region the periodic recurring region for
these 2n systems of moduli.

Suppose now that the function has a (2n+ 1)-th system of moduli, which
is not a combination of the first 2n systems of moduli. Any of the points
[Grissensysteme| congruent modulo this system of moduli can be reduced to
a congruent point, modulo the first 2n systems, in this region. Clearly we
obtain arbitrarily many points in this region, congruent modulo the 2n + 1
systems, provided two points congruent modulo the (2n + 1)-th system are

!This is not always the case, but only when the 2n equations which determine the
quantities £ are independent of each other. The exceptions are easily handled.
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not also congruent modulo the first 2n systems. In that case there would
have to be equations of the form

2n+1

Z a,m, =0

pu=l1

between the 2n + 1 systems in which the numbers m are integers, and conse-
quently, as I shall show later, the (2n + 1)-th system would be a combination
of the first 2n systems of moduli.

For each of the quantities £, we divide the interval from 0 to 1 into ¢
equal parts, so that the periodic recurring region for the first 2n systems
of moduli breaks up into ¢** regions, each of which the quantities £ vary
only up to i. Clearly any set of more than ¢*® points in the larger region
which are congruent with respect to the (2n+1)-th system must contain two
points in one of the smaller subregions, so that the values of the quantities £
corresponding to these two points never differ by more than L. The value of
the function therefore remains unchanged, while the £ are varied by amounts
which do not exceed %, and it follows from this—since ¢ can be chosen to be
arbitrarily large—that the function (if it is continuous) is a function of fewer
than n linear expressions in the quantities x.

It remains to be shown that 2n + 1 systems of moduli, connected by the

n equations
2n+1

v po—
5 a,m, =0,
p=1

are combinations of 2n systems of moduli.
Firstly, it can easily be shown that if for one system of moduli we have

2n

v Iz
E a,m, = by,
p=1

where the m are integers without common factor, then we can always find
2n — 1 other systems of moduli by, bs, ..., by,, such that congruence with
respect to the systems is equivalent to congruence with respect to the systems
b. Let 8, be the greatest common divisor of m; and m, and let «, 3 be two
integers satisfying the equation

ﬂnzl——a7n2:=91.
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II' we now put
aimy + asmy = ¢t
and
aal + PBay = by,

then we have

ma
a; = —ac] + —by,.

6

v Ma

ay = pey bs,

01 2n>
The systems of moduli a; and ay are therefore conversely combinations of
the systems by, and ¢;, and congruence with respect to either system has the
same meaning. Thus one can substitute the systems of moduli ¢; and by,
for the systems of moduli a; and a,. Similarly, if 6, is the greatest common
divisor of 8, and ms, the systems ¢; and az can be replaced by the system

9—2 (ch’f + m3a'§) = Cg
and the system b,,,_;. By repeating this process we clearly obtain the theorem
to be proved. The volume of the periodic recurring region is the same for the
new systems of moduli b as for the old.

With the help of this theorem, the first 2n systems of moduli in the

equations
2n+1

Z a,m, =0
1
can be replaced by 2n new systems by, b, ..., b, in such a way that these
equations take the form
pby — qag,;, =0

where p and ¢ are relatively prime integers. If now 7, are two integers
satisfying the equation

pd+qy =1,
then obviously the two systems b, and as,;; can be replaced by the single
system

agn-}—l blll
Y + bay, = =1
1 In+1 D p
All systems of moduli which are combinations of the systems a, as, . . ., as,41,
are also therefore combinations of the systems %1, by, b3, ..., by, and con-

versely.
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The volume of the periodic recurring region for these 2n systems of moduli
amounts to only é of that for the first 2n systems of moduli a. If therefore
the function possessed, in addition to these systems of moduli, another one
related to these systems by similar linear equations with integral coeflicients,
then it would be possible to find 2n new systems of moduli of which all of
these systems are combinations. The volume of the new periodic recurring
region would thus be reduced to a fraction of the old one. If this region
becomes infinitely small, the function must be a function of fewer than n
linear expressions in the variables. In fact, the number of these expressions
will be n — 1 or n — 2 or n — m, depending on whether one, or two, or m
dimensions of this region become infinitely small. If this is not the case, then
the process must terminate and thus one obtains 2n systems of moduli, of
which all systems of moduli of the function are combinations.

Gattingen, 26th October 1859.
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XVI

Extract from a letter written in Italian on January 21, 1864 to
Professor Enrico Betti.

(Annali di Matematica, Ser. 1, vol. 7.)

Dearest friend,

... To find the attraction due to any homogeneous right ellipsoidal cylin-
der, T consider the infinite cylinder whose points, in rectangular Cartesian
co-ordinates z, y, z, are those satisfying the inequality

2 2
Y
1-— ? — ﬁ > O,
filled with matter whose constant density is +1, when z < 0, and —1, when
z > 0. If we then, as usual, denote by V the potential at the point z,y, 2
and write 5V oV 91
L =X, =Y, —
or T Oy 0z
then, for z=0,V =0,X=0,Y =0.
Now Z is the potential of the ellipse

=27

2 2
1———y—>0

a? b2

of density 2, and can be found by Dirichlet’s method. Denote by o the larger
root, of the equation

and write D for

Then Z is given by

Now X and Y can be determined from the equation

ox _oz ov _oz
9z 0z’ 0z Oy
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and the conditions

X=0,Y=0 forz=0.

To carry out the calculation, it is convenient to substitute for the line
integral 4 faoo the contour integral 2 f;o, taken around a contour in the s-
plane which includes the point ¢, but no other point of discontinuity or
branch point of the integrand. Denote the roots of the equation F' = 0 in
order of magnitude by o,0’,6”. Then the singularities of the integrand are

all real and, in order of magnitude, are o,0,0’, —b%, 0", —a® with
c>0>0 >-b>0" > —ad’
Let
F=t-2"/s,
so that
[ @] t _ 2
7 — 2/ vis— = ds,
w Dvs
8X_8Z_/ _g_(S_ZQ)—l/Qd
0z 0 Ju D/s >
Now
z zts —-1/2
/ (ts — 2%) V22 = / (1— %) V2de = / (— — 1) d logé,
0 0
and

ot
S5 ds 2 o322 | on_1/2,.  Adabx b2+ s
Dy/s = ~2abr(a® + )0 + %) /dS&bQ—an a’+s

Hence, after integration by parts:

2abxz [ [b2+s .
—_— s
b2 —a? J a’+s

X = 227124 logts.

If the same path of integration is taken as in the expression for Z, the value
of the integral will always satisfy the condition

ox _oz
8z  Or
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[lowever, the integral may differ by a function of z and y, because the in-
tegrand is also discontinuous for t = 0. It is therefore necessary to choose
another contour of integration.

In the expression of %)5 = %;4, the integrand is continuous for s = 0; and
s0 the part of the s-plane inside the contour has to contain the point s = o,
and may or may not contain the point s = ¢, but must not contain any of
the other singularities listed above. In the expression for X, the interior of
the contour must be determined in such a way that X = 0 when 2z = (. In
order for this to occur, it will also—since it has to include s = o—have to
contain the largest root of the equation ts = 0. This is the largest root of
L =0if

2 2
Yy

e sh
but 0 if ) )
Yy

The interior must contain no other root of ts = 0. This is because, when z =
0, the roots of the equation F' = 0 coincide with those of the equation ts = 0.
If the path of integration were to pass through two points of discontinuity
which coincide when z = 0, it would have to do so in such a manner that
although the integral in the expression for X would become infinite, the value
of X would still remain finite, thanks to the factor z.— —

Your affectionate friend Riemann.
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XVII.
On the surface of least area with a given boundary.

(Koniglichen Gesellschaft der Wissenschaften zu Gdéttingen, vol. 13.)

1.

A surface can be specified, in the sense of analytic geometry, if we rep-
resent the rectilinear coordinates z, y, z of an arbitrary point as well-defined
functions of two independent variables p and ¢. If p and ¢ assume a partic-
ular constant value, that combination always corresponds to a single point
of the surface. The independent variables p and ¢ can be chosen in a great
many different ways. For a simply connected surface this can be done ex-
podiently as follows. We shrink the surface along the whole boundary by
iscarding a strip of surface whose width everywhere is infinitely small of
the same order. By continuation of this process the surface will inexorably
shrink until it becomes a point. The series of boundary curves arising from
this are closed curves separated from each other. We can distinguish among
them by associating to each curve a particular constant value of the variable
p which takes an infinitely small increase or decrease depending on whether
we pass to a neighboring enclosing or enclosed curve. The function p then
has a constant maximal value on the boundary of the surface and a minimal
value at the point in the interior to which the gradually shrinking surface
reduces. We can think of producing the passage from one boundary of the
shrinking surface to the next by replacing each point of the curve (p) with a
particular infinitely close point of the curve (p + dp). The path of the indi-
vidual points then form a second system of curves, which form a ray running
from the point of minimal value of p to the boundary of the surface. In each
of these curves we assigh a particular constant value to the variable ¢, which
is smallest at an arbitrarily chosen initial curve and grows continuously if
we pass from one curve of the second system to another when going along a
curve (p) in a particular direction, chosen for this purpose. In passing from
the last curve (gq) to the first curve, ¢ jumps by a finite constant.

In order to treat a multiply connected surface, we can decompose it into
a simply connected one by transverse cuts.

In this manner, any point on the surface can be understood as the inter-
section of a particular curve of the system (p) with a particular curve of the
system (q). The normals erected at the point (p, ¢) run out from the surface
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in two opposite directions, positive and negative. To distinguish them, we
have to determine the mutual positions of the increasing positive normal,
increasing p and increasing q. If nothing else is stipulated, we assume that,
looking down the positive z-axis, the shortest rotation that takes the posi-
tive y-axis into the positive z-axis is from right to left. The direction of the
increasing positive normal lies with respect to the direction of increasing p
and increasing q as the positive z-axis lies with respect to the positive y and
z axes. The side on which the positive normal lies will be called the positive
side of the surface.

2.

Let an integral be taken over the region of the surface whose element is
the element dp dg multiplied by a functional determinant, thus

// 9f 99 _0f 99\ .
op 9q  oqop) T

For brevity we write this as .
/ / (df dg).

If we consider f and g as new independent variables, the integral becomes
Jf df dg, and the integration can be carried out with respect to f or g.
However, to actually establish f and g as independent variables presents
difficulties, or at least extensive splitting into cases, if the same combination
of values for f and g exist at several points of the surface or in a line. It is
quite impossible when f and g are complex.

Hence it is expedient to carry out the integration with respect to f or
g by the procedure of Jacobi (Crelle’s Journal vol. 27, p. 208), in which p
and g will be retained as independent variables. In order to integrate with
respect to f, we bring the functional determinant to the form

%) (%)

Op 0q

and obtain first of all

[2us), .,

dq

since the integration is taken over a closed curve.
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On the other hand,

(%)
/ o

is to be taken in the direction of increasing p, that is from the minimal point

in the interior along a curve (g) to the boundary. We obtain f %3 and indeed

the value that this expression assumes on the boundary, since at the lower

limit of the integral %3 = 0. Consequently

@ag)= [ 1Lag= [ rdg
// /8q

and the integral on the right is taken in the direction of increasing g along the
boundary. On the other hand we have, from the notation, (df dg) = —(dg df).

o [[w@ran =~ [[asapn =~ [oar

where the integral on the right is also to be taken in the direction of increasing
q along the boundary of the surface.

3.

The surface whose points are given by the system of curves (p), (¢) will
be mapped in the following way to a sphere of radius 1. At the point (p,q)
of the surface whose rectilinear coordinates are z, y, z, we draw the positive
normal and place its parallel at the center of the ball. The endpoint of this
parallel on the ball’s surface is the image of the point (z,y, z). If the point
(x,y, z) runs along an arc in the continuously bending surface, the image
will be an arc on the sphere. In the same manner we see that the image of a
piece of the surface will be a piece of surface on the sphere. The image of the
whole surface is a surface that covers the sphere, or part of it, one or more
times.

The point on the sphere which is in the direction of the positive z-axis
will be chosen as the pole, and the O-meridian is put through the point
which corresponds to the positive y-axis. The image of a point (z,y,z) on
the sphere will then be determined by its distance r from the pole and the
angle ¢ between its meridian and the 0-meridian. To determine the sign of
¢, let the point corresponding to the positive z-axis have coordinates r = Z,
¢ =+3.
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From the above, we obtain
(1) cosr dx + sinrcos¢pdy +sinrsingdz = 0,

the differential equation of the surface.
If y and z are the independent variables, we have the equations

1

o\ oz 2’
o i+(2) + (2)

Q{

Oy

L %QJF % 2’
+ oy 0z
Oz
0z

W (5) 0 (3)

for 7 and ¢, in which either the upper or the lower signs are simultaneously
valid.

A parallelogram on the positive side of the surface, bounded by the curves
(p) and (p + dp), (¢) and (g + dg), projects on the yz-plane into an element
of surface whose area equals the absolute value of (dy dz). The sign of this
functional determinant depends on whether the positive normal at the point
(p, q) subtends the z-axis in an acute or obtuse angle. In the first case, the
projections of dp and dq into the yz-plane lie with respect to each other just
as do the positive y-axis and the positive z-axis. In the second case this is
reversed. Thus the functional determinant is positive in the first case and
negative in the second. The expression

COS T =

sin rcos ¢ =

sin rsin ¢ =

1

cos T

(dy dz)

is always positive. It gives the area of an infinitely small parallelogram on
the surface. Thus to obtain the area of the surface itself, we take the double
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o
S = / / (dy dz)
Cos T
over the whole surface.

For this area to be a minimum, the first variation of this double integral
i set equal to 0. We obtain

oz 8(5:17 oz Obzx

oy oy "9z 07 =0,
// \/ (8y)2+(g_j)2(dyd) 0

and the upper or lower sign holds for the root depending on whether (dy dz)
I8 positive or negative. The left side may be written

// (%(— sinr cos ¢ dz)(dy dz)

+//%(~sinrsin¢5a¢)(dyd2)
_/ 5$%(-sinrcos¢)(dydz)

mtegral

- / ox %(— sinr sin ¢)(dy dz).

The first two integrals reduce to a line integral taken in the direction of
increasing ¢ around the boundary of the surface, namely

/5:1:(— sinr cos ¢ dz + sinr sin ¢ dy).

‘I'he value is 0 since d z = 0 in the boundary. Thus the condition for mini-
mality appears as

// ( sin rcos 9) | (smarzsin ¢)) dydz) = 0.

1. is satisfied if

(2) —sinrsingdy +sinrcos¢dz = dr

is a complete differential.
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5.

The coordinates r and ¢ on the sphere may be replaced by a complex
quantity 7 = tan 3 e®, whose geometric significance is easy to see. If we place
a tangent plane to the sphere at the pole whose positive side is opposite from
the sphere and draw from the antipodal pole a line through the point (7, ¢),
then this meets the tangent plane at a point which is represented by the
complex quantity 27. Then 7 = 0 corresponds to the pole and n = oo to the
antipodal pole. We have 7 = +1 and 7 = +: for the points in the direction
of the positive y and 2z axes respectively.

If we also introduce the complex quantities

o r —¢i . . r_ -
n_tanie , S=y+z, §=y-— =z,
then equations (1) and (2) become

(1*) (1 —nn)dz + 7' ds+nds' =0,
(2%) (L4 nn)dri —n'ds+nds' = 0.

These may be combined by addition and subtraction. We obtain
r4+p=2X, z-—r1i=2X

so that conversely £ = X 4+ X’. Then the problem can be expressed analyti-
cally by the two equations

1

(3) ds —ndX + - dX' =0,
1

(4) ds' + X = 7dX’' =0.

If we consider X, X’ as independent variables and impose the conditions
that ds and ds’ are complete differentials, then
on 0 on'
oxX’ 70X

0,

that is, 7 depends only on X, 7’ only on X’, and hence, conversely, X is a
function only of 7 and X’ only of 7.

Consequently the problem reduces to determining 7 as a function of the
complex variable X, or conversely X as a function of the complex variable 7,
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while also satisfying the boundary conditions. If we have 7 as a function of
X', then 1’ is given by changing each complex number in the expression of 7
to its conjugate. At this point we only have to integrate (3) and (4) in order
Lo attain expressions for s and s’. Finally we obtain through elimination of
} an equation between z, y, z, the equation of the minimal surface.

6.

If equations (3) and (4) are integrated, the area of the minimal surface
can easily be found, namely

S = // (dy dz) = // +7777 dz).
cos T 1—7777

'I'he functional determinant (dy dz) is rewritten in the following way:

' (ds ds')
=3 (""' - —) g—f; 3—; (dndn’).
We obtain
s [ (2wt + 55) 5 g o)
- /[ (5 + $%+$§ywm
// (g; g; Zﬁ; % + ‘;7 377) (dn dy).

For another transformation of this expression, we construct y from Y and
Y" and z from Z and Z’ just as x was constructed from X and X’. Then the
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equations

or " Ox
X= [ —d X' = [ —dn
/an 7}7 an, 777
Ay 9y
Y= [ =d Y'= | —=dn
an 1, o UR
0z 0z
Z= | —d Z'= | —dn
r=X4+X, pi=X-X,
y=Y+Y, pi=Y-Y
2=7Z+27, y3=72-27'
hold. We obtain finally:
(5) S—— / / (dX dX") + (dY dY") + (dZ dZ")]

- / / [(dx dg) + (dy dy) + (d=d3)].

7.

The minimal surface and its images on the sphere and on the planes
whose points are represented respectively by the complex quantities n, X,
Y, Z are similar to one another in the smallest parts. We see this easily by
expressing the squares of the linear elements in these surfaces:

on the sphere sinr?dlogndlog,
in the plane of dndy,
. Ox Oz ,
in the plane of X — —— dndn’,
an on'
in the plane of Y @ @ ’,
on on'
0z 0
in the plane of Z s ndn,
on on'
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on the minimal surface itself

dr® +dy* + d2* = (dX +dX')? + (dY +dY")? + (dZ + d7')?
= 2(dX dX’ +dY dY' + dZ dZ')

(22 ouin 0e e
on On' = Onon  On oy

) dndn'.

By equations (3) and (4), if n and n’ are considered as independent variables,
we see that

dX 0Os 5 08’

77% = 8_77 = -1 8_77’
,dX’ 0§ 2 0s

Tay “oy =T oy

and therefore

dX*+dY? +dz? =0,
dX"”? +dy"* +dz7% =o.

The ratio of any two of the above squares of linear elements is independent
of dn and dr/, that is, the direction of the elements. The similarity of the
mapping in the smallest parts rests on this. Since the linear expansion by
the mapping at any point is the same in all directions, we obtain the sur-
face magnification as the square of the linear magnification. The square of
the linear element in the minimal surface, however, is twice the sum of the
square of the corresponding linear elements in the planes of X, Y and 7.
Hence the surface element in the minimal surface is also twice the sum of
the corresponding surface elements in those planes. The same holds on the
entire surface and its images in the planes of X, Y, and 7.

8.

An important consequence can be drawn from the theorem on similarity
in the smallest parts. We introduce a new complex variable n; which puts
the pole at an arbitrary point (n = «) and chose the O-meridian arbitrarily.
If n, has the same meaning for the new coordinates as 1 had for the old,
we can now map an infinitely small triangle on the sphere to the plane of 7,
just as to the plane of 1. The two images are then also mappings of each
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other and are similar in the smallest parts. In the case of direct similarity,
it follows at once that %};— is independent of the direction of the shifting of
1. That is, n; is a function of the complex variable 7. In the case of inverse
(symmetrical) similarity we can go back to the preceding, where instead of
m we take the conjugate complex quantity. Now, in order to express 7, as
a function of n, we must observe that 7, = 0 at the point on the sphere for
which 7 = «, and 1; = 0o at the antipodal point, that is, for n = —1/a/. It
follows from this that n; = ¢ ﬁ%’,‘; To determine the constant ¢, we remark
that if n; = 8 when 1 = 0, then we find that n, = —1/8" when 7 = co. Thus
B = —ca and —1/8 = c/d’, that is, 3 = —a/c’. Hence cc’ = 1, and ¢ = &%
for some real 6. Arbitrary values can be chosen for the quantities a and 8:
« depends on the position of the new pole and 8 on the position of the new
0-meridian. This new coordinate system on the sphere corresponds to the
directions of the axes of a new rectangular coordinate system. In the new
coordinate system z, sy, s} can be given the same interpretation as z, s, s’
in the old. Then the transformation formulae are

m= %em,
(6) (1+aad )z, =(1—ad)z+ad's+as,
(14 ad)sie™ = —2az + s — a?s,
(14 ad)se? = —2d/z —a’s+ 5.
9.

From the transformation formulae (6), we find that

<%)2%~m%
dn) om n On

or

ox
dlogn’

oz
2 1 _ 2
(dlogm) Tlogm (dlogn)

Accordingly, it is expedient to define a new complex quantity u by the equa-
tion

. Ox
(7) u—/”zalogndlogn,
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which is independent of the position of the coordinate system (z,y, z). If we
sticceed in determining v as a function of 7, we obtain

(8) 2 ij/ du \* ) —r‘j/ W N o
: = — i ogn'.
dlogn 81 dlogn’ &1

Here x is the distance from the point on the minimal surface, corresponding
{o 1, to a plane which goes through the origin of coordinates perpendicular
to the direction n = 0. If we replace n by ﬂ——ne‘% in (8), we obtain the
distance of the same point of the minimal surface from the plane through the
origin of the coordinates which is at right angles to the direction 7 = . In

particular, then, for « = 1 and o = ¢,

7 du 2 1
- - — ) dl
y / (o) (13 s
U
dl
dlog?ﬂ) <n ) o8’

(9)

The quantity u is to be determined as a function of 7, that is, as a
single-valued function of position in that surface, spread over the 7n-plane, to
which the minimal surface is mapped similarly in the smallest parts. Thus it
depends primarily on the discontinuities and branchings in this mapping. In
investigating these we must distinguish points in the interior of the surface
from boundary points.

To deal with a point in the interior of the minimal surface, put the origin of
the coordinate system (z,y, ) at the point and place the z-axis in the positive
normal. Consequently the yz-plane is tangential. Then in the expansion of
x there are no constant term and no terms multiplied by y and z. By a
suitable choice of directions for the y and z axes, we can also make the yz
term vanish. Under these conditions, the partial differential equation of the
minimal surface reduces for infinitely small values of y and z to 2 a7 z49 57 = 0.
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Hence the Gaussian curvature is negative, and the principal radii of curvature
are equal and opposite. The tangent plane divides the surface into four
quadrants, when the radii of curvature are not oo. These quadrants lie
alternately over and under the tangent plane. If the expansion of z starts
with terms of degree n (n > 2), then the radii of curvature are oo and the
tangent planes divide the surface into 2n sectors, which alternately lie above
and below the plane, and will be bisected by the curvature lines.

Now, if we regard X as a function of the complex variable Y, then in the
case of four sectors

log X = 2logY + funct. cont.,
in the case of 2n sectors

log X =nlogY +f.c.

Since 4% = 1:2n2 follows from (8) and (9), the expansion of 7 in the first case
starts with the first power of Y, and in the second with the (n—1)th power of
Y. Conversely, if Y were considered as a function of 7, the expansion in the
first case progresses in integer powers of 7, in the second in integer powers of
nﬁ. That is, the mapping on the n-plane has at the relevant point either
no branch point or an (n — 2)-fold branch point, depending on whether the
first or second case occurs.

With respect to u, we get dlggy = dl‘é’;n jll(‘:ggg. Hence with the aid of

du QW_%dY " (dnp\® Y2
dlogY ] dn 1—n2\dY ) n?

Consequently, at a (n —2)-fold branch point of the mapping into the n-plane,
either

equation (9),

du n
1 = — logY +f.c.
8 Jlogy o o8¥ Hic

or 4
u n

o (- f
log %G (2 l)logY—i— c

11.

Further investigation will initially be restricted to the case where the
given boundary consists of straight lines. Then, the mapping of the boundary
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onto tlie n-plane can actually be constructed. All of the normals erected at
points of one of the straight boundary lines lie in parallel planes. Hence the
nnage on the sphere is an arc of a great circle.

In order to examine a point in the interior of a straight boundary line,
we place, as previously, the origin of the coordinates at this point, and the
positive z-axis in the positive normal. Then the entire boundary line lies in
1he yz-plane. Therefore the real part of X is 0 on the whole boundary line.
If we move around the origin of the coordinates, within the interior of the
minimal surface, from a preceding to a succeeding boundary point, then the
argument of X changes by nw, an integer multiple of 7. The argument of Y
changes at the same time by w. Hence we have, as previously,

log X =nlogY +f.c.,
logn=(n—1)logY +f.c,
du n

log < = (5 = 1) log ¥ + fec.

% ay T \2 ogY Hic
'I'he boundary points considered correspond to an (n — 2)-fold branch point
in the mapping to the n-plane. In this mapping, the points of the succeeding
houndary segment make an angle of (n — 1)m with those of the preceding
olie.

12.

In passing from one boundary line to the next, we must distinguish two
cases. Either they meet at a finite point, or they stretch to infinity.

In the first case, let am be the angle in the interior of the minimal surface
hetween the two boundary lines. Place the origin of the coordinates at the
vertex in question, with the positive z-axis in the positive normal, then in
hoth boundary lines the real part of X is 0. In passing from the first boundary
line to the next, the argument of X changes by mm, an integer multiple of
7, the argument of Y by am. Hence we have

2 log X =logY +f.c,
m
(1 — ﬁ) log X =logn+f.c.,
m

du m
1 3 _— 1 . -
og (2 1) ogY +f.c
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If the surface between two consecutive boundary lines extends to infinity,
we set the positive z-axis in the shortest line connecting them, parallel to
the positive normal at infinity. Let the length of the shortest connecting line
be A, and let am be the angle which the projection of the minimal surface
fills in the yz-plane. Then the real parts of X and ¢logn remain finite and
continuous at infinity and take constant values on the boundary lines. It
follows (for y = 0o, 2z = oco) that

A
X =- logn + f.c.,
2am
[ A
u =1/ —logn+fc.,
2am
A
Y:——Zl—l-fc
dam n

We set, the x1-axis of a coordinate system in one of the straight boundary
lines, the xo-axis of another coordinate system in the second straight bound-
ary line, .... Then in the first line, logn; is pure imaginary, in the second,
log 12 is pure imaginary, and so on, since the normals are perpendicular to

the respective axes of x;, xo,... Thus ¢ Blﬂl_ is real in the first boundary

hne i alﬂz— in the second, and so on. However, for any coordinate system

l' 'Y, 2
ogm = ” 81 0% 112 0gTs = )

d —
V Blogn 08T =

so that on each straight boundary line

oz

d —
v Blogn

dlogn

has either real or pure imaginary values.

13.

The minimal surface is determined as soon as one of the quantities u, 7,
X, Y, or Z has been expressed in terms of one of the others. This succeeds
in many cases. Particular notice is deserved for those cases in which dlo
is an algebraic function of 7. For this, it is necessary and sufficient that the
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mapping on the sphere and its symmetric and congruent extensions form a
closed surface, which covers the whole sphere one or more times.

In general, however, it is difficult to express one of the quantities u, 1, X,
Y, or Z directly in terms of one of the others. Instead of this we can deter-
mine each of them as functions of a new, expediently selected, independent
variable. We introduce such an independent variable ¢, so that the image of
the surface in the ¢-plane covers the half-infinite plane once, and indeed, the
lialf for which the imaginary part of ¢ is positive. In fact, it is always possible
to determine t as a function of u (or any one of the other quantities 1, X,
Y, Z) in the surface, so that the imaginary part is 0 in the boundary, and is
infinite of first order at an arbitrary boundary point (u = b). That is,

const.
1=

+ fc. (u =b).

u—b ’

The argument of the factor of —= is determined by the condition that

the imaginary part of ¢ is 0 on the boundary and positive in the interior of
the surface. Hence in the expression for ¢ only the modulus of this factor and
an additive constant remain arbitrary.

Let t = a;,as,..., for the branch points in the interior of the image on
the n-plane, t = by, by, .. ., for the branch points on the boundary which are
not vertices, t = ¢1, ¢o, . . ., for the vertices and t = ey, e, . . ., for those in the

unbounded sectors. We assume for simplicity that all the quantities a, b, c, e
lie in the finite region of the ¢t-plane. Then we have

du n

log i (5 — 1) log(t — a) + f.c. for t = a,
du n

log - = (5 = 1) log(t — b) + f.c. for t = b,
du m

log i (5 — 1) log(t — ¢) + f.c. for t =c,

[A
u= 2—: log(t —e) +f.c. for t =e.

The investigation can be restricted to the case n = 3, m = 1, that is, to a
simple branch point. The general case can be deduced from this by allowing
several simple branch points to coincide.

In order to form the expression for Z—;‘ we must observe that dt is always

real along the boundary, and du is either real or pure imaginary. Hence (%%)2
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is real when t is real. This function can be continuously extended over the
line of real values of t by the condition that, for conjugate values t and ¢
of the variable, the function will also have conjugate values. Then (%)2 is
determined for the whole t-plane and turns out to be single-valued.

Let af, d),. .. be the conjugate values to a, as, . .. and designate the prod-
uct (t —a1)(t —azg)--- by II(t — a). Then

(t — a)II(t — a")II(t — b) const. dt
(11) u = const. +/\/ ) M —e)

The constants a, b, ¢, ... must be determined so that, when t = e,

A
u= \/—alog(t—e) +f.c.
2w

For u to be continuous and finite for all values of ¢ except a, b, c or e, a relation
must exist among the numbers of the latter values. Namely, the difference
between the numbers of vertices, and branch points lying in the boundary
is 4 larger then twice the difference between the numbers of interior branch
points and infinite sectors. We use the abbreviations

I(t — a)I1(t — a')II(t — b) = §(t),
II(t — o)II(t — €)* = x(1),
that is,
du o)

= const. .
dt x(t)
Then the polynomial ¢(t) is of degree v — 4 if x(t) is of degree v. Here v
denotes the number of vertices plus twice the number of infinite sectors.

14.

We still need to express n as a function of £. We only succeed in doing this
directly in the simplest cases. In general the following method is adopted.
Let v be another function of ¢, yet to be determined, but assumed to be

known. In equations (8), (9), (10), v appears essentially in dl‘ggn, which can
du

- dl . The last factor may be regarded as the product

also be written as
of the factors

[dv [ dv
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that satisfy the first order differential equation
(13) ki —— —ko— =1,
v

as well as the second order differential equation

1 d%k 1 &%k
(14) lak _1dk
k, dv? ko dv?

If we can express one or the other side of this last equation as a function
of ¢, then a second order linear homogeneous differential equation can be
set up for which k; and k, are particular solutions. Let k& be the complete
integral. We replace % by its equivalent

dt_dt2 dt _dt?

NG
(%)
and obtain the differential equation for k
2 2 3 2
1
) dodh  Pudk (d\'(1dhY,
dt dt2  di? dt dt ky dv?

By equation (15) there are two independent particular solutions K and
Ky, whose quotient Ky : K; = H gives an image bounded by arcs of great
circles of the positive t-half-plane on the sphere. The same occurs for each
expression of the form

o H—«

16 _ et
(16) n=e T

where @ is real and «, o’ are conjugate complex quantities.
The function v is to be chosen so that, for finite values of ¢, the disconti-
oy 2 .
nuities of % 3712“ only occur among the points a, a’, b, ¢, e.
If we set

@ _ 1 _ 1
dt \/etx(®) VI
1 d%k

then the function 3 9= will have discontinuities at finite values only for the

points a,a’, b, ¢, and, indeed, is infinite of the first order for each of these.

(17)
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Namely, for t = ¢, we have
2/t —c
f'(e)

n — n. = const.(t — ¢)”.

V— Uy =

4

Consequently

d
ky = & const.(v — v,)V/277,

dn

so that
1d% 1(y*—1)f (0
kdv? 4 t—c
We obtain corresponding expressions for ¢ = a,a’, b, in which ¢ is replaced
by a,a’, b respectively and v by 2.
A similar observation shows that for ¢ = e the function %Zj}—’; remains
continuous.
For t = oo, we obtain

FCTEIGIES

2
% % appears as follows:

Hence the expression for
1d% 1 -/
k dv? 4 t—g
The sum is over all the points g = a,a’, b, ¢ and for a,a’ and b, ~ is replaced
by 2. Here F(t) is a polynomial of degree 2v — 6 in which the first two
coefficients may be determined in the following way. We bring dv into the

form
t—l/+4@5_

dv = ———L— =t du,,
f(t)t—2u+4

or briefly, adv;.
Differentiation yields

L BT VA BN AR O
dv? |\ dv dv? | \ dv, du, dv?
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Hence
d 1/2 d2 dT} —-1/2
<dv) dv? (dv)
e (@@ (T el
dv, dvi |\ dv; dv?
dy /2 g dy ~1/2 . ois L &k &3/2M
dv, dv, 2 dv, k dv? dv?
or
d)'] 1/2 d2 dn —1/2
d’Ul d012 dUl

_ o8 Z '7 —1 fl(g) YRR — 3/2d2( 1/2).

dv?

or

The function on the left side is finite for ¢ = oco. Hence we have to
equate the coefficients of #2, respectively ¢, on the right in the expansions
2 2 2
of t 8P (t) and of a3/2d—%12/—). The expansion of QB/Q%/—), by a simple
calculation, is

oo L) Lo

) ois 210
dv? 2 ‘

dt

Now F(t) still has 2v — 7 undetermined coefficients. However, it is im-
portant to note that these must be real. For we found in §12 that du is real
or pure imaginary on all straight boundary lines of the minimal surface and
hence also everywhere on the boundary of the images. By (17), the same
holds for dv. We can prove from this that ,lc 3 4k must have real values for real
values of ¢.

In order to carry out the proof, we consider the image on the sphere of
radius 1 and take any piece of the boundary, hence the arc of a particular
great circle. We place the tangent plane at the pole of this great circle and
call it the plane of 7. Then the constants «;, o, #; can be determined so

that

G
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and we obtain two functions kj = /7~ d” - and kjy = Wthh are particular
solutions of the differential equation (15). Consequently we have

1d’k 1 d°k]

k dv?  ky dv?’

The part of the boundary just considered is mapped on the 7;-plane by

the equation
T = 6¢117

turns out to be real

d 2
on the piece of boundary under consideration. The same follows for }c fii k

1 d%k
d2

and if we insert this into k7, it is easy to see that ,

Since this observation can be made for each piece of the boundary, is

real on the entire boundary.

. . . a2k, .
Now, however, for dv real or pure imaginary, the function 7:,- 72 is also
1

real, if we set in general
= Ql€¢”

and take the modulus g, to be constant. For the real ¢ axis to be mapped,
in the sphere of radius 1, onto an arc of a great circle, we must have p; = 1
for each part of the boundary. This gives just as many conditions as there
are individual boundary lines.

For this investigation, as in the preceding paragraphs, the values a, b, c, e
are all assumed to be finite. If this were not the case, the treatment would
need a small adjustment.

Remark: The problem is fully formulated above. In particular cases it
comes down to merely setting up and solving the differential equation (15).
Incidentally, it is important to note that the number of arbitrary real con-
stants appearing in the solution is exactly the number of conditions which
must be satisfied by the nature of the question and the data of the prob-
lem. We denote the number of points a, b, ¢, e respectively by A, B, C, E and
note that 2A + B+ 4 = C + 2E = v. In the differential equation (15),
2A + B+ 4C + 5FE — 10 arbitrary real constants appear. Namely, the angles
v, whose number is C; the 2v — 7 constants for the function F(t); the real
quantities b, ¢, e, of which one may assign three values arbitrarily by making
a linear substitution with real coefficients for ¢; the real and imaginary parts
of the quantities a. To these arbitrary constants we add 10 more by integra-
tion, namely, if n = %, the three complex ratios o : #: v : § account for
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4ix real constants, a (real or pure imaginary) factor of du, and a real additive
constant in the expressions for each of z, y, z. The constants, however, must
atill be subject to conditions which must be satisfied if our formulas are to
teally represent a minimal surface. Of these conditions, 2A + B correspond
to Lhe points a, a’, b. They assert that no logarithm appears in the expansion
ol the solution of the differential equation (15) valid in a neighborhood of
these points. Further C + F equations signify that the pieces of the real ¢
nxis which lie between the individual points ¢, e are mapped into C + E arcs
ol great circles on the sphere of radius 1. Thus the number of remaining
undetermined constants in the solution is 3C + 4F.

The data of the problem consists of the coordinates of the vertices and in
the angles which give the directions of the boundary lines that go to infinity.
These data are expressed in 3C + 4F equations, for the fulfillment of which
we have the correct number of constants available.

Examples.

15.

The boundary consists of two infinite straight lines that do not lie in a
plane. Let A be the length of the shortest line segment between the lines,
and let am be the angle which the projection of the surface fills in on the
planie perpendicular to that shortest line segment.

We take the shortest connecting line as the z-axis, hence = has a constant
value in each of the boundary lines. Similarly, ¢ is constant on each of the
(wo boundary lines. At infinity the positive normal for one sector is parallel
to the positive z-axis, for the other sector parallel to the negative z-axis.
The boundary is mapped on the sphere into two great circles through the
poles n = 0 and 1 = oo that enclose an angle am.

Hence
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and consequently

e % (7)
T=—t—log | —
2am 7

(a) — il log (—f) :

20 s

which we recognize as the equation of the helicoid.

16.

The boundary consists of three straight lines, of which two intersect and
the third runs parallel to the plane of the first two.

Place the origin of the coordinates at the intersection of the first two
lines and the positive z-axis in the negative normal, then the intersection
point maps to the point 7 = 0o on the sphere. The images of the first two
lines are great half circles running from 7 = oo to n = 0. Let their angle
be am. The image of the third line is an arc of the great circle which runs
from 17 = 0 to a certain point, reverses itself and returns to 7 = 0. This
arc forms angles of —(G7 and 7 with the first two great half circles, where
(§ and vy are positive numbers, 8 + vy = . In order to obtain the mapping
onto the t-half-plane, we specify that ¢t = oo when 1 = oo, that t = b will
correspond to the infinite sector between the first and third lines, that t = ¢
will correspond to the infinite sector between the second and the third lines,
and that ¢ = a will correspond to the reversing point of the normals on the
third line. Then a, b and ¢ are real and ¢ > a > b. These specifications
correspond to 7 = (¢ — b)?(t — ¢)7. The value of a depends on b and c¢. We
have, namely,

dlogn _ B(t— <) +4(t—b)
dt (t —b)(t—c)

and this must be 0 at the reversing point, thus a = %7- Furthermore, from
sections 12 and 13,

Al =b)(B+y) (t—a)dt
d“‘\/ o (-0t —o)
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or, if we take ¢ — b = %7

_ (t —a)V/%dt
du= VBT Ty

du: 1
dlogn — /(B+ )t —a)

v\ flogno
dlogn T =t —o)

Consequently,

I——i/LJﬂ./ dt’
R I ()

T2 G-b)(t=0)
N R e M G R G
(b) + 5/ (t/ — b)(tl _ C) dt R
L[ =h) -+ (=) P
#= 2/ t—b)(t - c) dt

dt’.

B l/ (' =Pt —c) + (' —b) Pt —c)
(t' = b)(t' — ¢

17.

The boundary consists of three skew lines, whose shortest distances apart
are A, B, C. Between each two boundary lines the surface stretches to infinity.
Let am, O7, ym be the angles of the directions in which the boundary lines of
the first, the second, and the third sectors run towards infinity. We specify
that the quantity ¢ will be respectively 0, 00, and 1 at infinity for the three
sectors of the minimal surface. Thus we obtain

du _ Vé(t)
dt  t(1—t)
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Here ¢(t) is a polynomial of degree 2. Its coefficients are determined by

du Ao
=4/ — for t = (
dlogt - ort =0,
du Bg
= 4/ — for t = o0
dlogt 2w
_du Cy fort = 1.
dlog(1l —t) 27
From this it follows that
Aa Cy Bp
1—t —t— —1t(1 —1t).
P(t) = Qﬁ( )+27T o (1-1)

Depending on whether the roots of the equation ¢(¢) = 0 are imaginary
or real, the image on the sphere has a branch point in the interior or two
reversing points of the normals on the boundary

The functions k; = 1/ and ky = 7 w1ll only be discontinuous for

the three sectors, if we take 37—7 = ¢(t). Indeed, the discontinuity of k; is such
that

t—%“L%kl for t =0,
%—Zkl, for t = 0o

t
(1—t)"2%3k, fort=1

are single valued, with finite nonzero limits. The functions k; and k, are
particular solutions of a homogeneous linear second order differential equa-
tion, which is obtained if we represent ,lc g k except at its discontinuities, as
a function of ¢, and substitute ¢ instead of v as the independent variable in
%’;. If we have found the particular solution ki, then k, is found from the

first order differential equation

dks dk;
R )
The complete integral of the second order homogeneous linear differential

equation will be denoted by
t} |

(c) ky ——

(d) k= Q{

I o
N DR

D= NI—

wIR MIQ
|

N N
+

NI D=
+

_+_
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This function satisfies essentially the same conditions as in the definition of
the P-function in the paper on the Gauss series F(«, 3,7, x).' Tt differs from
the P-function in that the sum of the exponents is —1 instead of +1 as for
P.

We can express the function () with the help of a P-function and its first

derivative. First,
N (i
2() te.

—a+f-y-1
[0 5 Y

oy
i
o~
=
|
©IR
—~
—
|
o~
SN—
[SI

If we set

0 =gl g
c=P 2 t )
o —a+ﬁ2*1+1 ~y

the constants a, b, ¢ can be determined so that

o d
(e) k=t2"%(1—t)2 3 ((a+bt)o+ct(1 — 1) d—j)
In fact, we have only to substitute this expression into the differential equa-
tion (c) and consider the second order differential equation for ¢ in order to
obtain the equations

H(t) =t (1 — )" (01% — 09 %) F(t),
Ft)y=ala+ca)(l—t)+ (a+b)(a+b—cy)t

o (b_?‘_tﬁ%l*_lc) <b_a_“i‘2t7:_10)_

By the properties of the function o, we can set
d d
(1 — ) (01 22 _ o fl) =1,

and hence F'(t) = ¢(t). From this we obtain three equations for a, b, ¢, which
take a very simple form if we set

c=gq, a—{—b—lc:—r.

o' a+vy—1
a+-—c=p, e 5

2 2

!Contributions to the theory of the functions represented by the Gauss series
F(a, 8,7v,z) (IV in this collection).
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The equations are then

2 2 e Aa
p—a“(p+q+r) —2—7r,
P - P+ gt = oL,

27
2= p+g+r)t =2
2m

With the help of the function

whose branches A; and A; satisfy the differential equation

dAs dA;

A —A =1
Ydlogt ?dlogt
we can express k even more simply, namely,
dA
(f) k=2 ((p+qt))\+ct(1 —~ 1) d_t) :

It would not be hard to produce the individual branches of the function
k in the form of definite integrals. The method is shown in §7 of the paper

on the P-function.
In the particular case where the three boundary straight lines run parallel
to the coordinate axes, a = =y = % Then we obtain

-1 _ 1)\ /4 0 =1 0
t—1 _
A:P( 4 t):(————) P( 4 t).
101 t 11
4 4 4 2

The branch \; of this function is

t—1\"*
(T) \/tl/‘2 + (t — 1)/2 const.,

W f—
A
N =

so that
_ 1/4 1/4 1/2 1/2 ¢ ¢
k= VR - DY 02 4 (- 1)) {p+qt—Z—Z\/t(t—1)},
— Vay _ 1\V/4, /4172 _ (+ _ 1)1/2 e, ¢ - }
by = —VE( - 1)V 0 — (- 1) {p+at—2+SVAE=1}.
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With the aid of these two functions, dX,dY,dZ can be expressed in the
following way:

, dt
dX = *Zklkg m,
i, dt
dY = —= (k2 — k?) =
2( 2 l)tg(l_t)Qa
1 dt
A7 = —= (k2 + k) ——
2( 2+ 1) t2(1——t)2’

. t t—1
iX=(p+tq-r) t_—1+(—P+q+7‘)2 —

t1/2 + (t - 1)1/2

1
+=(p+3q+71)(p—q+r)log

2 t1/2_(t_1)1/27
(2) WY =—(p—q+ T)2t1/2 ~(-p+q+ T)2t—1/2
1 1+ t/?
—§(P+Q+3r)(p+q—-r)log T

iZ=(p-q+r)'Q-t)"+(p+q-r)(1-1)""

1+vV1—1t¢

1
+~(3p+q+r)(-;0+q+r)10g,~1 —.

2

If p, g and r are real, then twice the coefficient of ¢ in the three quantities
on the right gives the rectilinear coordinates of a point in the surface.

18.

The boundary consists of four intersecting line segments which we obtain
by removing two edges that do not touch from the edges of an arbitrary
tetrahedron. The image on the sphere is a spherical quadrilateral, whose
angles may be taken to be aw, 7, ym, and dw. It follows that

C dt _ Ct
Vi—a)t=bt -t —d AW

where the real values t = a,b, ¢, d designate the points on the ¢-plane into
which the vertices of the quadrilateral are mapped.

du =
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If the methods developed in §14 aro applied to determine 7, then we have

u

here, in particular, ¢(t) = 1, x(¢ ). Consequently v = % and

3,
by = Id dv ky = 1 /dv
77

The functions k; and k, satisfy the differential equation

and are particular solutions of the second order differential equation

(-8 (A

k dv? t—a t—b

(G- DA | (=D AW
t—c t—d

+ + h.

The polynomial F'(¢) of §14 is of degree 2 here, but the coefficients of ¢ and
t are zero. Thus h is a constant. On the left side of the last equation, we
introduce ¢ as an independent variable and obtain

(o (805 +520%)
L@ )@, (PoDAm | (-8 |, (¢ Da
B t—a N t—b * i—c T i-a *h

as the second order linear differential equation which k£ must satisfy.

If z,y, z are actually expressed as functions of ¢, then 16 undetermined real
coefficients enter into the solution. These are the four quantities a, b, ¢, d of
which, as above, three can be taken arbitrarily, the four quantities «, 3,7, 9,
the quantity h, six more real constants in the expressions for 7, a constant
factor in du and an additive constant in each of z,y, 2. To determine these
16 numbers there are 16 equations at hand. Namely, 4 equations which
express that the 4 boundary lines in the 7-plane map into great circles on
the sphere, and 12 equations which state that z,y, z have given values at the
four vertices.

In the special case of a regular tetrahedron, the image on the sphere is a
regular quadrilateral in which each angle is %w. The diagonals bisect it and
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are perpendicular to each other. The points that are diainetrically opposite
to the vertices on the sphere are the vertices of a congruent quadrilateral.
Between the two lie four quadrilaterals congruent to the original, cach of
which has two vertices in the original and two in its opposite. These six
(uadrilaterals fill the surface of the sphere once. Thus dl‘f;én is an algebraic
function of 7.

The minimal surface we are seeking can be coutinuously extended across
the original boundaries by rotation of 180° about each of the original bound-
nries, using those boundaries as rotation axes. Along such a boundary line
Lhe original surface and the extension have a common normal. By repetition
ol this construction on the new pieces of surface, we can extend the original
surface arbitrarily far. Whichever extension we consider, however, always
maps on the sphere in one of the six congruent quadrilaterals. In fact, the
itage of two pieces of surface either have a side in common, or lie opposite to
one another, depending on whether the surface pieces themselves adjoin at
n boundary line, or abut opposite boundary lines of a piece of surface lying
hetween them. In the last case the relevant surface pieces can be made to

du
dlogn

2
coincide by parallel translation. Hence ( ) must remain unchanged if

7 and —1/n are interchanged.

If we set the pole (n = 0) at the midpoint of a quadrilateral, and the
(-meridian through the middle of a side, then for the vertices of this quadri-
lateral,

_ C\ +mija ( c ) +3mi/4
n (tan 2)6 , tan 5 e

and
c \/§ -1

tan — =
2 V2

P’oints which correspond to opposite values of 7 have the same z-coordinates.

2
Thus ( dl‘f):ﬂ) must remain invariant on interchanging n and —n. We obtain

( du )2 B C,

dlogn Vit 14

The constant C} must be real, since du? has real values on the boundary.
We get the same result in the following way. The substitution

3
4+ ?-2v3i| (7&2—1)2
N+~ + 2V/3i t2+1
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yields an image on the t-plane which is bounded by a closed continuously
bending line. The computation shows that dlogt is pure imaginary on the
boundary. Consequently the image of the boundary in the ¢-plane is a circle
with center at ¢ = 0. The radius of this circle is 1. The vertices

n== (tan E) g™/
2
correspond to t = £1; the vertices
n== (tan %) e~/

correspond to t = +i. If we pass, within the interior of the minimal surface,
at any of these four places from one boundary line to the next, then the
argument of dt changes by w. Thus, as in §13, we can set here

du____G
dt B+ 1)

and C? must be pure imaginary since du? is real on the boundary. It turns
out that C, = 3v/3 C%i.

2
This expression agrees with the previous one for ( dl‘f;én) . For further

simplification we take

t2_1 ’ 3 2 2
(t2+1) =w’, n°+n =2

du \?2 du\? dr
dlogn = | — d\
(dlogn) oET (dA) dlog 7

Then a very simple calculation gives

X:i./ (ds’zn>:dlogn=0/\/w(lQﬁ(lg?w)’
® Y:_%/(dﬁ:;n) (n—%)dlogn:CQQ/ﬁu—Z;}(l—g?w)’
Zz_%/(dfﬁén) (H%)dlognzcg/\/w(1—iu)}(1—gw)’

where p = —2(1 —iv/3) denotes a cube root of 1. The real constant C = 5 C1
is determined from the the given length of the edges of the tetrahedron.

and observe that
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19.

Finally we will consider the problem of the minimal surface for the case
where the boundary consists of two arbitrary circles that lie in parallel planes.
'I'hen one does not know the direction of the normals on the boundary. Hence
Lhese can not be mapped to the sphere. However, we succeed in solviug the
problem by the assumption that all cross-sections parallel to the plane of the
houndary circles are circles. It will be shown that under this assumption the
minimality conditions can be satisfied.

Place the z-axis at right angles to the planes of the boundary circles, then
the equation of a cross section by a parallel plane is

(k) F=9y"+22+2ay+268z+v=0.

nnd «, 3, v are to be determined as functions of z. For brevity we set
OF 24_ OF 2*_ OF\* 1
ox Oy oz) n’

oF . oF L OF
COST =N —, smrcosgbzna—y, sinrsing =n —.

oz 0z

%0 that

Then the minimality condition may be brought into the form

o) (%) i)
oz Oy 9z

or after carrying out the differentiation,

PF OF\®  OF 8

Z—(F 2 2 il Y, Il 2 2

483:2( +a”+p 7)+4(ax) 15 ax(F—FOL + 8% =)
+4-2(F+a*+ 32 —7)=0.

If we write a® 4+ 3% — v = —q and observe that F' = 0, the last equation
hecomes

M G5 — 5 re+20=0
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and gives after one integration

10F d:

——+2/—£+const‘—0.
q

The integration constant is independent of x. If on the other hand we take

il iql independent of y and z, then the integration constant must be a linear

function of y and z, since 1 2£ is. Thus we have
Yy ) q 0w

d
___+2/-—":U-+2ay+2bz+const.=(].
q O0x q

If we compare this with the result of the direct differentiation of F, namely

) Vo TR YOl L Nl

gz Yar Far T aw
we obtain

de 4B _

dr 7 dr ’

and if we set [¢q daz =m:
a=—-am+d, [=-bm+e.

Accordingly we have

oF d~y
97— oagy—2bgz+ 2
52 aqy — 2 qz+dw,
O*F dq dq d*y
AL P Y Yot Pt
0x? aydx de+d:c2’

and these expressions are inserted into equation (1). After simplification we

obtain e o d

Y q ary

87 M 9g=0
qu2 dxdx+ 1 ’

an equation which can be further simplified if we observe that
dm

y=qg+a’+ 3 =q+ f(m)= o+ f(m),

Fm) = (a® + b*)m? — 2(ad + be)m + d? + €.
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2 . . . .
If we take g—z— and % from these expressions, then the differential equation
which expresses the condition of minimality becomes

d*q dq ’ 2 2y .3
(Ill) E - d—l' + 2q + 2((l + b )q = 0.
To carry out the integration, we set 3—2 = p and consider g as an indepen-

dent variable. In this way, we obtain for p? as a function of ¢ a linear first
order differential equation, namely,

1 d(p?
or 2d 2 2d 2 4
q q
The solution is
2
4
(n) %=5—4(a2+b2)q+80.

Replacing p by %3, we obtain

_ dg
B 24/q + 2cq® — (a® + »)g3’
_ qdq
- 2/ + 2cq? — (a2 + 02)g3

dx

dm

Hence

/ <
r = 3
2\/q + 2¢g? — (a® + b?)g?

d
(0 m= [ 144 ,
2y/q + 2cq® — (a® + b?)¢d
y=am—d++/—q cos,
z=bm—e+ /—qsiny.

Hence we have expressed z,y, z as functions of two real variables ¢ and .
The expressions are, except for algebraic terms, elliptic integrals with upper
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limit ¢q. By the general method developed above, we have obtained z, ¥y, z as
sums of two conjugate functions of two conjugate complex variables. This
suggests the conjecture that these complex expressions can be combined into
a single integral expression with the variable ¢, using the addition theorem
for elliptic functions.

This is easy to confirm. Namely, from the formulas for the direction
coordinates r and ¢ of the normals, we have

OF | OF . . .
N asi oy Tezt  ytzita+fi 4
ST T eF _oF; T T —3 ¢
n Wl Yy—ato 67

If we combine this with the defining equation of g, namely:
(y+zi+a+ Bi)y—zi+a— Bi) = —q,
we obtain

(y + 2i) + (a + Bi) = (—q)"/2" 2 ~V/2,
(y — 2i) + (o — Bi) = (—q) /2212,
Furthermore, we have

oF

= 1

cotr = Ox = {p — 2aq(y + a) — 2bq(z + )}

ORIC

y or
or
1 cos? L —gsin® L 1
— V= —= 2 = {p — 2aq(y + o) — 2bg(2 + B)}.

' sin 5 cos 3 vV—4q

On the right side, the expressions in 7 and 7’ that we just found are inserted
for y + a and 2z 4+ 3. The equation becomes

=0 l(a + bi) (%) e (ﬂﬁ) 1/1
+(—g)"? ( '+ J%) .
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We square both sides of this equation and replace 2’—2 by its value from (n).
After simplifying, we obtain

o (§) " oom(3) gL ]
— 8c— 2(a + bi) <n'~%) — 2(a — bi) ("‘%)'

The equation so obtained, which gives the relation between ¢, n, and 7', can
be considered as the solution of a differential equation in 7 and 7', and ¢
can be understood as the integration constant. The differential equation is
lransformed by a direct differentiation into the form

(—q)
(p)

-2l ()
~V=q ((a + bi) (%) R (%)Uj ]
4L (e )

+v=q ((a + bi) (%) " (a — bi) (nﬁ) W) } .

With the aid of the primitive equation (p), the factors of %;1 and d—n',’i can be

expressed differently. We merely use the left side from (p) in two ways to
form a complete square, in which we insert the missing doubled product one
time as positive and the other as negative. We obtain

U N [ [
ﬁ(nn+m)+ﬁ(<+m>\ﬁ< bi) n,)

= iz\/[zw (a+ bi) % - (a—bi)n},
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Tq(‘/”"+ _7)77,) Vv q(( +b,)\/77 (a — bi) n’)
N o
:iZ\/[Zc#—(a—bz)W~(a+bz)n}.

If we take the square roots with the same signs, then the differential equation
becomes

_ dn
o . 1 B
277\/20+ (a+bi), — (a—bi)n
dn’
/ 1 Ny
2n \/20+ (a —bi);; — (a+bi)y

0

(a) +

Its solution in algebraic form is expressed in equation (p), or what amounts
to the same thing, in the two equations

L (1+ 1) = V/7'[(a + bi) + 2cn — (a — bi)n?]

V=1
(v) +y/nla — bi) + 20 — (a + biY?),
v=a((a+biyf —(a—bi)n) = v/ifl(a+bi) + 21— (a — bi)]
— \/nl(a — bi) + 20n' — (a -+ biyr?).

In transcendental form the solution is

_ dn
= / 2\/77[((1 + bi) + 2cn — (a — bi)n?]

(S) dn'
i / 2y/1[(a = bi) + 2e1f — (a + bi)y”]

and the integration constant can be expressed via

d
const. :/ g .
2\/q[1 + 2¢q — (a? + b2)¢?|

This follows easily from equation (r), if we take n or 7’ to be the constant 0.
We recognize here the addition theorem for elliptic integrals of the first kind.
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XIX.
An attempt to generalize integration and differentiation.

In the following essay an attempt is made to define an operation which
yiclds from any given function of a single variable, another function of this
variable, whose dependence on the original function can be expressed by a
numerical parameter, and in the case where this number is a positive integer,
0 negative integer, or zero, the new function coincides respectively with a
repeated derivative, a repeated integral, or the original function. The known
results of differential and integral calculus will be taken as a foundation. It
will not be assumed that results for derivatives and integrals valid in the
integer case remain valid for fractional orders. Such results serve on the one
hand as the foundation for the operation indicated above, and on the other
hand as a guide to finding it.

With the latter aim in view, let us consider rather more closely the se-
quence of successive derivatives. Clearly we cannot simply utilise the usual
definition based on a recursive law of formation, because this cannot yield
anything other than the terms corresponding to integers. We are thus obliged
to look for an independent determination. One possible means is the devel-
opment derived from the original function by increasing its argument by an
arbitrary increment, and expanding in positive integer powers of the incre-
ment. For, since the well-known expansion,

o0

1 dPz
— hntladl ¥ )
(1) Hoth) = Z 1.2...p dxp h
p=0

(where z(; 45y denotes the result of replacing x in the function z(;) by z+h) is
valid for arbitrary values of h, the coefficients must have well-defined values.
Thus these coefficients can be used to define the derivatives. Accordingly we
propose the following definition:

the nth derivative of the function z(,) is equal to the coefficient of
h™ in the expansion of z(,) in positive powers of h, multiplied by a
constant depending only on n, namely 1.2....n.

This interpretation of the derivatives leads very easily to the definition of
a general operation which includes, as particular cases, differentiation and
integration. We shall denote the operation, in whose definition the limit of
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ratio of vanishingly sinall quantities plays no part, by 97, and call this a
derivation. Here we follow Lagrange, who used the term ‘fonctions derivées’.

Thus we shall take 97z, or the expression “the vth derivation of z(,) with
respect to z” to mean the coefficient of h” in the expansion of z(;4) as an
infinite series in powers of h ascending and descending by integer amounts,
multiplied by constants depending only on v. That is, we define 0%z by the
equation

(2) Z(z+h) = Z k, 07z h”.

p=—00

In this definition the factors k, depending only on v must naturally be
defined in such a way that when the exponents of h are integers, the series
(2) becomes the series (1). Only then will the derivatives truly be included as
particular cases of derivations. If this were not possible, our aim of defining
an operation which includes differentiation as a special case would not be
achieved, and we should have to look for another approach.

However, before attempting to determine this factor, we make some pre-
liminary observations concerning series of this form. We see that they form
the foundation of this whole attempt at a theory of derivations.

It is generally accepted that no firm conclusions can be drawn from infinite
series, unless the values assigned to the variables are such that the series
converges. That is, the value of the sum of the series can be found (or at least
approximated) by an actual numerical addition. Assuming—as we always
shall here—that the coeflicients obey some definite law, we can calculate the
precise value of each term. The series is consequently a quantity determined
in all its parts, hence a definite quantity. I see no reason why the rules of
numerical addition, although insufficient to yield an exact value, should not
be applied to the series, and the results regarded as correct.

To show by an example that one can find a value for the sum of a series
of form (2), we use a process applicable in many cases for this purpose. We
expand the function z* in fractional powers of £ — b; we need this in any case
in the course of our investigation.

Let the series which represents xz#, which for brevity we denote by z, be

o0

Z colz — b)“.

a=—00
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H ') then
dz
== gttt
dx /
and consequently
dz 0
z—xz— =0.
a dx

Henee
Dl = a)ea = bla+ Veanl(z ~ ) = 0
minst hold.
Obviously this condition is satisfied whenever

(b — a)eq, —bla+1)cay = 0.

Now all the expressions which satisfy the differential equation are contained
in the different values of kxz#. The series z obeying the law

(u—a)eg —bla+1)cay; =0
must necessarily be one of these. In order to find it, we write

it o (=0 ey (z —b)* = p,

pl = Ca+l(l‘ - b)a+l + Ca+2(l‘ — b)a+2 “+ .- ,

a0 that
p+p =z=ka
nnd consequently
dp dp’
—rz— = (p—a)ea(z—b)* =X, —r— = -X.
pp — @ = = (b= a)ca(z — b) A

These differential equations have as their general solution
/ Xz # e+ by =pa ™" =co(z —b)* Pz H +cui(z—b)* o HF 4.
/X;r*“"lda: tky =paH = copr(z — )z cqro(z — B)*PPrE 4
Il we substitute the value of X, and set x = b/y, we obtain

pr = co(p — a)ba““/y““a_l(l —y)%dy + k;

= b H(1 = ) Y+ ot TE(L = ) Ty
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and

prt=—co(pp— )b * / " N1 - y)¥dy + ky

= Ca+1ba+17“(1 _ y)a—i-lyu-afl 4 Ca+2ba+27u(1 _ y>a+2yu~a—2 NI

Now in the case where ;4 > a > —1, the right sides of these equations
vanish for y = 0,1 respectively. Thus the two integrals, the first between 0
and y, and the second between 1 and y, have the same value provided they
are continuous between these limits. It might seem that this condition would
be violated as soon as some or all of the terms of the series were to increase
or decrease beyond all bounds; but this would not prevent us from finding a
definite value for the series by actual addition, since the terms could cancel
each other. As we shall not draw the conclusion that, in such cases, the series
has no definite value, we can only decide the continuity or discontinuity of
the series pr™" and p'z* by considering the corresponding integrals.! It is
known, however, that an expression can only become discontinuous when its
derivative becomes infinite; the expression (1—y)*~*"!y* has a finite value for
all finite values of ¥y when the exponents ;1 — a — 1 and « are positive. Hence
the integrals vary continuously, and by considering the singular integrals for

= 1 and y = 0 we see that this is true as long as both exponents remain
greater than —1.
Hence, in the case where u > oo > —1 and v is finite®,

1
k=zr " =pr™" +pr™H = (u—a)e b / (1 =y o lydy
0
{o)II(p — o)
()

(where II denotes the well-known definite integral). This result holds, as
noted above, only when y > a > —1, but it can be extended to all values

= cob*#

'Tf one deals with the integrals before the substitution of z by b/y, then they are
discontinuous for x = 0. However, it is easily seen that in this form the associated
constants of integration must have the same value for positive and negative values of z,
because the value of the integrals changes in a continuous fashion as z passes from +oo
to 0o.

In the case where y = Zo00, and therefore 2 = 0, both integrals have the value
0o. Consequently k& = oo — 0o, that is, k is arbitrary, which is obvious from a direct
consideration of this case.
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of g and o if (as we assume throughout) we extend the definition of II to
negative numbers by the rule II(n) = n+r1 [I(n + 1). For firstly, by the law
assumed to hold between the terms of the series, the result must be valid
[or every value of « for which one of the inequalities o < p, a > —1 holds.

T'hus, if > 0,

b N ) puar, e
k= 2 F i@

a=—00

or

o b (z—b)™
() QZZ_OO Op—o) M)

Differentiating n times, we obtain

ot

B e (g —b)en
(= n) _Zﬂ(u—a) (= n)

which proves that the rule is also valid when p is negative.
We have thus shown in general that

) Tt > e (z—b)"
®) M = 2 e T

a=—00

[t is worth noting that this formula does not yield a series for 2# when p is a
negative integer, because the expression on the left side becomes zero. This
is a point to which we return later. We also observe that there are series of
this form which have the value zero, or are constant, for every value of .
After this protest against the condemnation which has been pronounced
on divergent series, we pursue the above method of defining the notion of
derivation. The goal which we have set, namely that differentiation should
be a particular case of derivation, will be achieved provided that the function
k, has the value 1_21“‘11 for every positive integer value of v, and 0 for every
negative integer; for then the series (2) becomes the series (1). This con-
dition can obviously be satisfied by infinitely many different functions of v.
Moreover, we cannot assume that there exists only one single expansion of
such a function in powers of h; that is, that only one system of coefficients of
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a series of the specified form gives a definite value. Rather, we must assume
that infinitely many distinct systems are possible. Without detriment to our
objective, we must choose k, from among the different possible functions of
v, at the same time making a choice from the different possible systems of
coefficients. Clearly it is best to make the choice so that the derivations obey
several laws which otherwise would be valid only for integer indices.

The following treatment accords with this.

Since we wish the expression ) k,0%zh” to include all possible develop-
ments of z(;,p) in this form, it follows that

de@zh Zku@”zh”l

dZ(zyhn)
dh

Ay k,zh vz
. - Z k, —=Z h

must include all possible developments of in this form. Similarly,

d

must include all possible developments of ——@;ﬁ Now dz(;,’: 2 and dz(;;h) are
known to be identical; therefore both expressions include exactly the same
set of series. Consequently k,.(v + 1)0%*1z and k, === da have exactly the
same values, or in other words are equal. If we set kl,+1(1/ + 1) = k,, which
clearly does not contradict the basic assumption, because this relation must
hold for integer values of v, we obtain, even for derivation with fractional

indices,

do¥ z
8l/+1 — x )
z ? dx
Consequently, for all natural numbers 7,
d"o¥ z
4 Oy = —2°,
(@ iy =

From the law which we have assumed for k£, it follows that
H(v)k, = 1I(v + 1)kyi.

Hence the function 1I(v)k,, which we denote by ¢,, has the same value for
all arguments v differing from each other by integers. We would thus make
the most suitable choice of the function ¢,, not from the consideration of a
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siiple form of development, but from a combination of distinct conclusions.
Accordingly we investigate whether we can make our choice so that

VAW, . Qutu
Az = s,

'To this end, let the variable x in the formula (2) increase again, and
denote the increment by k, so that

K+ hY
(”) Z(z+h+k) = Z Z E E 8#8’/ (/1/) -ﬁ—(—l-/—)—j

p=—00 V=—00

where the expression represents all possible developments of z(;y44x) iIn pow-
ers of h and k. But then

(1)
h+ kMt hYk#
_S_ 0, 082 ( _S_ E 0,1, 082
(x+h+k) pt /1/ + V pt (V)H(/L),

ptr=—00 P=—00 V=—00

hy virtue of (3).
Now this last expression () does not represent all possible representations
of 2(z4hk) Of this form, because the equation (3) gives only one expansion of

(h + k)#tv
(p+v)

and this is not necessarily the only possible one. Nevertheless all the possible
developments it includes are included in (@) . If we stipulate that the function
¢ satisfies

£u+u = E;;,Eu

then all values of 0kt will also be values of 0£0%z, even though the latter
expression may also have other values.
Hence

(5) 0Lz = O 2

under the restriction stated.
It follows, however, from ¢,,,, = ¢,¢, that

Cpiin = yroln = L, 0,0
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and more generally that the product of any ¢-numbers is equal to the ¢-
number of their sum. Taking the individual factors equal,

gmu = glr/n
for a natural number m. If we write * = 7, then
by = lp =0 =00

or
bme = (7",

Thus the rule ¢, = ¢% is valid for all rational values of ;1 and consequently—
by the known law for interpolation—uvalid in general. Now since for integer
v, ¢, =1, it follows that ¢, = 1".

If therefore the laws (4) and (5) are to hold for derivations in general, and
differentiation is to be included as a particular case of derivation, we must
choose the derivations among those functions of z which satisfy the equation

I/ hu 14
Z(z+h) ZH zz:ZH—(V—)Bz

The most convenient choice is one that is most flexible for calculations. If
we examine the expansions of a few functions of z + h in fractional powers of
h, we see that the simplest and easiest expansions in series of this type are
those in which the coeflicient of

hu+1

(v + 1)
is the derivative of the coefficient of
hl/
II(v)
Thus we restrict the operation of derivation assuming that the symbol 0%z
does not represent the coefficient of 1n every pos&ble expansion of z(z1p),

but only those for which the coefﬁ(uent of h is the derivative of the

+1)

3
coefficient n(u) .

31t follows, in fact, from (4), that if > 9%z ﬁh(% is an expansion of z(;1), then so is

%‘ﬁ % , but not that these two expansions are identical. By making the assumption

described above, we also achieve the result that derivations with a negative integer index,
to which no meaning has so far been ascribed, coincide with integrals, as we prove later.
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It follows immediately that to one value of 0%z belongs only one expan-
wion; for if any particular value, say p,, of 0¥z had two expansions, a and b,
then these two expansions would coincide in all their subsequent terms, be-
caise these would be derived from p, through differentiation. If we denote by
/M 1\ Pu-2,... the preceding terms in the expansion a, and by ¢, 1,q, o, ...
those in b, then p,_; and ¢,_; must each have derivative p,. Hence they
difler by a constant, that is,

Q-1 =DPv-1+ Kla

nnd similarly
72
Qo2 =Dv2+ Kiz+ Ky, q-3=p,—3+K, m + Kez + K.

I'he expansion b is thus

llnwcver, for all values of x + h we require a = b, and as is well-known this
implies that all the constants are 0. Hence the two expansions are identical.
If p, is a value of 0¥z, then so is p, + Iff(‘” :_:) (where n is a positive integer

and K a finite constant). For

Kz \ R R K(z+h)™
2 ( v H(—u—n)) o) =~ 2™ H(u) T T(En)

= Zpu = Z(z+h),

and the following law holds:
:L.—u—n—l

d v
— ,+ K ——— | =p, K .
dzx ( + H(u—n)) Prar ¥ H(—v—n-1)

We shall call a set comprising the different values of 0¥z, obtained from

one another by addition of expressions of the form £ n_(_u'n—)’ a system of values.
'T'hus all the values of 9%z belonging to the same system are contained in the

expression

(6) PU+ZK _U_n)
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(where the K, denote finite constants).
We now seek to determine one value of 07 z.
It is well-known that

dz d*z (r — k)?
Z(I)ZZ(k)—{—(—) (l’*k)-f- (—) Yt
dz ) 4 dz? ® 12

provided that 2y is continuous between the limits z and k. If x + h is
substituted for z and the terms are expanded in powers of A using (3), then

L @k (dz\ (@R
(@+h) = n(u)((’“) T (—p) +(dz>(k) I(—p+1)

Hn=—00
d?z (x — k) #12
\@z), Mpro 7
L%/ (k) (= +2)
and in this series the coefficient of h*/II() is the derivative of the coefficient

of h#~1/T{p — 1). It is consequently a value of 9%z, which we denote by p,,.
Differentiation with respect to k yields

dp, (z — k)_”‘l / (x — k)_”_l
— = — —_ 1 = | — —4——dk.
p 2(k) il Ik consequently p, 2(k) ( 0

Now all the terms of the above series vanish for £ = z; and so the integral
from k to z is equal to p, if it is continuous between these limits. This is
obviously the case, because 2 is assumed to be continuous between z and k
and —p — 1 > —1. Thus

k (.’L’ - k)—ﬂ—l . 1 * —pu—1
(7) /z ROk T dk = m/k (z —8)"  zpdt

is a value of 0¥z if z is continuous between x and k and p is negative. The
value of 047"z associated to this same expansion is equal to

1 z
—t —ptn—1 )
H(—,u+n— 1) v/k (.’L’ ) Z(t)dt

It is easily seen that different expansions of z(;45) can be derived from this
one by giving different values to k, but they all belong to the same system.
For, from the value

1 /I -
_ T —t) Tz dt
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wir obtain

1 /I e
_— r—t) Py pdt
(—p—1) Jy, ( ) v

tw the addition of

1 k B —pu—1l-n k (_t)n
= /kl (z —t) P Ly pdt = ZH —1—n)/k ) 2yt

1

Heenuse z is continuous between z and k; and thus between &k and k;, all
the integrals are finite and moreover constant with respect to z. The process
necordingly always leads to the same system of values. Thus, if we restrict the
voncept of derivations to this system of values, we reduce their determination
1o known values. With the help of this definition, we can find their properties
uid determine the derivations of given functions.

Accordingly, we have

14 — 1 ’ _
. BIZ——H(_V_U/IC(I t)y " z(tdt—I—ZK n-l/)

where the K, are arbitrary constants®, v is negative, and z is continuous
hetween z and k. For any v > 0, 8%z denotes the expression® which is
ublained by differentiating m times with respect to x (where m > v) the
expression for 82~™. This value always satisfies the equation®

00 hv—n (n) , . hY o0 hytn dnazuz
“ath) ;H(V—n % II(v) Z+Zﬂv+n) dz™

We denote these arbitrary functions by ¢,; we note that for positive integer n, each
lunction ¢, is also a function ¢,_,.

“The definition
(T (@R
Oz = v
a? ;:;( dz™ )k I(n —v) e

which is identical with that given, would certainly be valid for all values of v. We have
vhosen the above because of its greater flexibility.

“The question of whether formula 1 includes all the values which can satisfy the equation
learly depends on whether the functions ¢, are the only ones which, when substituted
lor 9% z, make the series 2 vanish. Now it can be shown without difficulty that there are
o algebraic functions not contained in the ¢, that do this; but I have not so far been able
to decide whether there is no such function at all.
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Hence
xz(m) pntm
3. 0 Mz = (pdt" + K,
= /k “ Z (—n+m)’
4 2 =z,
d™z

5 My = 7

xZ dz™
and furthermore
6. oMoz = OF Yz + bu-

Thus every value of 0Y ™"z is also a value of KO 2.

The converse, however, is true only when y is a positive integer or v is a
negative integer. In this case the two expressions are identical. It also follows
from the definition (¢ denoting a constant) that

7. 9 (p+q) = 0;p+ 9,

8. 07 (cp) = cdp,

9. 0y .2 =05z,

10. Oz =05zc™.

Two values of 0¥z and 0¥z, with the same constants K, K, ... are said to

be corresponding values. All the values associated to the same expansion of
2(z+n) are corresponding values.

We now turn to the determination of the derivations of some specific
functions of x. This naturally amounts to finding one value of one derivation.
From this value, the general value can immediately be deduced by adding a
function ¢. Generally, after using the transformation 1 of the expression, we
obtain a simpler expression, that is an explicit function of = in finite form.
Generally, the transformation amounts to taking x outside the integral sign.

Consider first of all the function z#.

If p is positive, z* is continuous for all values of z. Hence

1 * —v—1ypu
H(T—l)/o (x — )™V thdt
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is always a value of 0% (z#). This integral, however, is equal to

1 1
_— hY(1 — )V rdy = =—— 1
ey RN - v)

Since the mth derivative of this last expression is

T(p) phvem _ grAm (L

by (4), it follows that, for every value of v,

I(p)
(p —v)

If 1 is negative, z* is discontinuous for x = 0, but continuous for all other
values of z; and so x and k must always have the same sign in the expression
I. Now integration by parts m times yields

o (z) = Y+ @,

1 ! —v—1lgpu

_ T1(11) P
—H(“V-l—m)l'[(u-l—m)/k (z—1) tdl + ¢y

as long as —v — m > 0. In this way, when —v > —pu, those integrals where
it < —1 can be reduced to integrals in which the exponent of ¢ is > —1. If
the exponent is > —1, then

k
0
belongs to the set of functions ¢,. Hence

1) gy )
M(—v—1 ——m)H(qum)/O (z—1) Tt = M{p — v)

is a value of 9%(z#), when —v > —p, and this result must be valid for all v

by the law
_doyz

8u+lz — )
r dz
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If, however, u +m = —1, then
/I:E(l — t)*u*lfmtu+mdt
e [
k
0

1, p—v __
= (logz)z" ™ + :z:"_”/ y _~y dt
o Ll—vy
= (logz)z*™ — (¥(p — v) — ¥(0))z*™".
If we generalize this result by differentiation, we obtain the following value
for 0% (z*):
I
1. () = ) s

when g is not a negative integer;

11 (1)
I(-1I(p - v)

12.  of(z*) = [(log )™ — (¥ (p — v) — ¥(0))z" ]
when 4 is a negative integer.

It should be noted that the formula 11 follows from formula 12, provided
that those constants which become expressions of the form oo/oo are treated
appropriately, which will also be required when p— v and p are both negative
integers. It is easy to see that the values given by these formulae for different
values of v are corresponding values. This is also the reason why, in 12, we
are unable to absorb the term containing z#~* in the function ¢,, as in the
case where p is a negative integer.

If we apply a similar process to the function e®, we obtain
13.

14 T — _t 14 — x Yy v d — x
02 (e”) T / e'(x—1t)™" " dt TTE—) e i e Yy y=e

—00

The derivations of log  can be found by the same method, or more easily
and even for all values of v, from 6 and 12:

14.  8%(logz) =850, 'zt = ((logz)z™ — [¥(—v) — ¥(0)]z™").

1
(=v)
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By applying rules 7 to 10, the derivatives of sinz, cosz, tan z and arc tan
r ¢an be deduced with the greatest of ease from 13 and 14.

Finally we remark that the theory set out above can, with equal trustwor-
thiness, be extended to the case where the quantities concerned are assigned
imaginary values.
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XX.

New theory of residual charge in apparatus for static charge.

1.

Preliminary remarks.

Professor Kohlrausch has succeeded in subjecting the formation of resid-
unl charge in apparatus for static charge to precise measurements. This
was the basis of a theory that accords with these observations published in
Poggendorff’s Annalen'. The exactitude of these measurements stimulated
me to test against them a law for the motion of electricity, that is plau-
sible on other grounds. In the form of the law given for this purpose, it
applies to the motion of electricity in all ponderable bodies, but only under
the hypothesis that the bodies considered are relatively at rest, and that no
noticeable thermal and magnetic (or electrically induced) effects and influ-
ences occur. For the purpose of unrestricted applicability, some reworking
and supplementation are required, which T will take up elsewhere.

In the following article, drawn from a written communication to Pro-
fessor Kohlrausch, this new theory of residual change is not self-contained,
but developed in conjunction with his theory. T did not attempt to reduce
phenomena directly to that theory. Accordingly I have used the concepts
nsed by Professor Kohlrausch in his paper (electrical moment of an isolated
wall, tension, total charge, disposable charge, residual charge) to express the
underlying ideas here. I have further taken into consideration his method of
treatment in several respects.

2.

The law on which the calculation is based.
Let t denote time, x, y, z rectangular coordinates, p the density of electric
charge at time ¢ at the point (z,v, 2). Let u be (47)~! times the (Gaussian)
potential of all electrical quantities acting at (z,vy, 2) at time £,

/ pdxdydz
V(z y—v)2+(E-2)°

11. vol. 91, p. 56.
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where p'da’dy’ dz’ denotes the electric charge of the element dx'dy’dz’ at time
t. Then
0 0t 0%
52 o o2 P
The laws to be applied here for the motion of electricity interior to a
homogeneous ponderable body, with the conditions under discussion, are as
follows.

I. The electromotive force at point (x,y, z) at time ¢ is made up of two
terms: one conforming with Coulomb’s law, with components proportional

to
du Ou  Ou
ox’ oy 0z’
and another with components proportional to
Op  Op  Op
oz’ oy’ 8
Together the components become
ou ap dp  Ou op
ﬂQ ___ﬂ2 _——_ﬂ2_—~
s ox’ 0Oy oy’ 0z 0z

Here 8 depends only on the nature of the ponderable body.

II. The current intensity is proportional to the electromotive force. Thus
ou op
20 20 2
—— ’ _—— —— — = (.
| B o o, =on —5-—F - =a

Here « is a constant depending on the nature of the ponderable body, and
&,m, C are the components of the current intensity.
With the inclusion of the kinematic law
op O oC

E+%+Fy+&:0’

we obtain the equations

Pu 0w *u
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lor? .
It we take the length § and the time « as unity, we have

dp Pp  0%p  Ip
E‘Fp—('a“—‘i‘w—i-@) = 0.

This gives a partial differential equation for u of first degree with respect
to t, and of fourth degree with respect to the space coordinates. The de-
termination of w interior to the ponderable body at a given time requires,
in addition to this equation, one condition at each point of the body at the
start time, and two conditions at each point of the surface at all subsequent
{times.

3.

Plausible interpretation of the above law.

In the previous section the law of motion of electricity is expressed in
concepts that are customary in our present theory of electricity. However,
this interpretation admits a reworking, apparently leading to a somewhat
more accurate and complete picture of the actual context.

2 Accordingly the equations for equilibrium (in an electronically isolated conductor) are

__8_11, 2@:0, _%_/@2@:0’ _%_ﬁQ@:()’
oz oz Oy Oy 0z 0z
or
0%y 82 0%u
U — ﬂQ( 3 +62):const.

I'or current equilibrium or moving equilibrium in a constant closed circuit, the equations
are

op

£ _0

ot
or

8% % 0%
2
— =0.
p=h <8x2+8 o2 2)

If the length (3 is very small compared to the dimensions of the body, then u - const. (in
the first case) and p (in the second) decreases very rapidly away from the surface and is
very small throughout the interior. Indeed, these quantities change with distance p from
the surface approximately of order e=?/#| as long as the radius of curvature remains very
large compared to 3. This must be assumed to be the case for metallic conductors.
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Instead of assuming a natural cause that strives to move positive electric-
ity at the point (z,vy, z) in the direction of the three axes with force

‘52

dp
ox
and negative electricity in the opposite sense, we may assume a natural cause
that strives to decrease positive electrical charge, and increase negative elec-
trical charge, with intensity 3?p at (z,v, z). One can regard this cause as a
resistance of ponderable bodies to the holding of static electrical charge, or
resistance to an electrified state.
Likewise, the elecromotive force with components

Ou Ou JOu

or’ Oy Oz
can be replaced by a cause, having intensity u at the point (z,y, z), which
strives to reduce the density of electricity having the same sign, and to in-
crease density in the case of opposite signs.

However, we need not assume the existence of two different kinds of elec-
trical charge, and treat pdrdydz as the excess of positive over negative
charge for the element dr dydz, in order to give the quantity p physical sig-
nificance. Rather one can essentially go back to Franklin’s interpretation of
electrical phenomena, perhaps in the simplest form via the following hypoth-
esis.

The ponderable body that is the location of the electrical charge fills space
continuously and with uniform electrical capacity inversely proportional to
its resistance, which the density of the actual electrical charge contained
in it steadily approaches indefinitely closely. With an excess or a defect of
electricity (positive or negative electrical charge) the ponderable body takes
on a positive or negative electrical state according to which it strives to
increase or decrease the density of the electricity it contains, and does so
with a force equal to the density of electrical charge p multiplied by a factor
depending on the nature of the body (its antielectric force). For its own part
the electricity takes on a state, tension, with the appearance of electrical
charge, according to which it strives to decrease its density (or for negative
tension, to increase it). This tension is measured by a quantity u depending
on all elements of electrical charge according to the formula

1 / pldx’dy'dz’'
u=— )
) =P+ -y P+ (=P

op 5 Op
, =B 3y’ -
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or also via the law
Pu 0w O B
62 "o T2 T
together with the condition that u remains infinitely small at infinite distance
Irom electrical charge. Electricity moves relative to the ponderable body with
n velocity which is equal, at a given instant, to the electromotive force arising
[rom this cause.
However, this law of motion of electricity, if we take account of its relation
to heat and magnetism in the calculation, would have to be modified and
recast, and a modified interpretation of these phenomena would be needed.

—p,

4.

Treatment of the problem of formation of residual charge.
Expression of the quantities to be determined in terms of the
potential.

I now turn to the study of the formation of residual charge. I concern
myself first with expressing the quantities to be determined in terms of the
potential or rather, in order to simplify the calculation, in terms of the func-
lion u proportional to the potential. For greater convenience of physicists
less accustomed to the abstract approach, I have treated the potential as
the measure u of a force, the tension, which at the point (z,y, 2) strives to
decrease the density of electricity. Thus at (z,¥, z), the components of the
clectromotive force arising from the potential are

ou ou ou

ox’ Oy 0z
We must take as unit of tension that which occurs interior to a sphere of
racdius 1 due to the distribution of electricity on its surface with density 1;
or, as the unit of electrical force, the force produced by the quantity 47 of
clectricity at unit distance. To simplify the calculation, we further introduce
«v as unit time, B as unit length. If we let the unit of electromotive force

depend on the unit of electricity in the fashion assumed here, then o and 3°

electromotive force
current intensity

are measures of electrical resistance ( ) and contraelectric

force ( force of the body
"~ \density of electric charge
As a discussion of the above observations, the solution of the following

problem will suffice. We determine the variations of electrical charge in the

) of the ponderable location.
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interior of a uniformly thick homogeneous wall when the surfaces, covered by
perfect conductors, take up equal quantities of electricity of opposite signs
and possess no electromotive force (no contact effects are found in them).
We further suppose that the dimensions of the surfaces may be treated as
infinitely large compared to the thickness of the wall (that is, the influence
of the boundary and the curvature are negligible).

We take the origin of coordinates in the center of the wall, the z-axis per-
pendicular to its surfaces, and denote its half thickness by a. The expression
for the wall is a > £ > —a; u is a function of z only, and

_“82u
p= ox?’

Hence

/xu o @ B Qg
o P o (9.27 ! 3.27 z”.

The quantity of electricity per unit area contained between two values of
x, expressed geometrically, is equal to the difference between the slopes of
the tangents to the tension curve, that is, the curve whose ordinate is u for
abscissa z. If no static charge exists, this curve is piecewise linear. It is
continuous, convex from above (that is, for locations with greater ordinates)
where the static charge is positive, and convex from below where negative.
It changes direction for values of x comprising a finite set.

Thus the tension produced by charging, or destroyed by a discharge, will
always be represented by a curve of form A (see Figure 1). That is, if its
value at the plates is u,, u_,, and therefore in the center is

Ug T+ U_q
9 = Uyg,

then in the interior the value is
z
Ug + ZL— (Ua - Uo).

With the penetration of electricity into the interior, the tension curve
takes the form B. The combination of opposite electricities per unit area is
equal to the slopes of the tangent to B in the center,

(%),
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A B C D

1) Tension curve of the total charge.
2) Tension curve of the disposable charge.
3) Tension curve of the residual charge.

Total charge = ac, disposable charge = ab, residual charge = be.

Figure 1: tension curves.

The electrical moment is

/a TdT = Uy, —U_, — Q ?E + @ =u, — U
wap — Ug —a o1 . o . — Ug —-a»

that is, the tension difference between the surfaces.
The tension at the plates is neutralized by a discharge. The tension
destroyed is thus u,,u_, at the plates, and

T
UO+ (—1' (ua —UO)

in the interior. The disposable charge is

1
= (ua — uo)
a
per unit area. The tension remaining in the interior is
x
U—Uo—z(ua—uo)

and the latent residual charge per unit area is

(%)O (e — o)
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The quantity of electricity passed on at the surface x = a with the discharge
is
1

*E (ua - UO).

5.

Solution of the problem in the simplest case, where no outflow
and inflow occurs through the surfaces.

After this outline, and geometrical representation of the quantities to be
found, I pass to their calculation according to the stated laws. First I treat
the case where initially no free electricity exists in the interior, and a unit
quantity per area passes through the surfaces, while afterwards there is no
outflow or inflow through the surfaces.

The conditions for the determination of u are:

0*u op *p

8_:z2:_p’ 8t+p—m—0 fort > 0,a > x> —a;
0

—u=1 fort =0,a >z > —a;

or

ou Oou Op

— =0, =0 fort>0,z=*a.

= +=—

oz dr ' Oz

The last condition expresses the property that in the surfaces the quantity

of electricity, as well as the flow, and hence the electromotive force, vanishes.

These conditions are satisfied by two expressions, one useful for small
values, and the other for large values, of ¢.

For brevity, let
/ e M dA = ¢())
A

/ H(> MM = ().

and

Then the expressions in question are firstly

S (S) ()
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secondly

_1\n-1 3 . . ;
u—uy=e" Z (1)—2(1 e (n=3) /et gy (n — %) o

72 (n — 5)2

The determinations that ensue are:

for the distribution of electricity,

( a(2n—1)—z)%/4t (a(2n—l)+z)2/4t>

P=—5'x—2 \/—Z

2" n—1,—(n—1/2)*m%t/a? ¢
= (=1) in(n —1/2)x7/a;

for the total charge

- (), (1+ e (£522))

L=t {1——(”42 ( >>}

Z 2 1
—t —(n—= 2 .
= e 2—F6 (n 2) ™ /a :




XX. New theory of residual charge in apparatus for static charge.

6.

Reduction of the general problem to this simplest case.

We now reduce the general case, where outflow and inflow occur through
the surfaces, to this simplest case. Let x(t) be the expression for the tension
difference u — ug at time ¢ in the simplest case; for negative ¢, let x(¢) = 0.

If we now determine the tension produced when the charge £ passes
through the surfaces x = +a at time 0, then ' at time ¢/, 4" at time
t’,..., we have

u—up = px(t)+ pu'x(t — )+ p"x(t = t") +- -

since this value satisfies all the conditions specified for its determination.
In the case of continuous outflow and inflow of electricity, we have

t d,u
e — — 24
U — Uy /Ox(t T) e T

where £+ %% denotes the flow of electricity into the interior through the sur-
faces x = +a during the time element dr.
One can combine the two expressions into the expression

t
u~u0:/ x(t —T1)du
0

where +dpu denotes the electricity arriving at the surfaces z = +a in the
time element d7, where this is either a finite quantity, or proportional to dr,
depending on whether a sudden charge or discharge, or a continuous outflow
or inflow, occurs.

From these expressions for the tension, it follows that

t t t
Q= [ Qi L= [ L o= [ o du
0 0 0

In these formula, the time units have duration «, the length is in units
B. In order to introduce familiar units, we need only replace a and z by %,

. it T
%,tandTby o o
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7.

Comparison of the calculation with observations.

We now compare the formula obtained with the actual course of resid-
ual charge formation, as established very precisely in Professor Kohlrausch’s
measurements published in Poggendorff’s Annalen. Perhaps it is most conve-
nient to proceed from the fact that the charge curve approximates a parabola
with gradually decreasing parameter; that is, the quantity EJTLL gradually
decreases.

By virtue of the formula derived for L;, Ly — L, is proportional to V't for
very small values of ¢, indeed,

Li—L _, 2 (8"
Vi 0 /7 \a2a )

As a consequence of the measurements, one must assume that this propor-
tionality still occurs approximately throughout the observations.
. . . . . 2
Accordingly we can give a rough approximation to the time 7o from
observations. In fact,

Ly—e/*Ly 2 ([ 1/12 a2a\ '? aa\ '/
ez () (e((F) ) 2 (%)

(o))

is then a function that decreases slowly with increasing ¢t. Nevertheless, @}TL‘

N——

would increase with ¢ if one assigned a suitable value to é The same thing
also appears to occur if one assumes a considerable loss through the air, at
least if one takes Coulomb’s law as a basis for this.

Hence for the first treatment of the observations, we take the time «a
(that is, the resistance of glass for the electromotive force conforming to the
Coulomb law) to be infinitely large, neglect the loss through the air and
at first restrict ourselves to the investigation of how far the corresponding
determination of a®a/3? satisfies the observations.

Once we have convinced ourselves that the hypotheses of the calculation
are approximately correct, a more precise comparison with observations is
wasted labor if we do not have the opportunity to find the source of the dif-
ferences between calculation and experimental observation in order to make
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the necessary corrections to the calculation due to departures from our as-
sumptions. Since I lack the means for experimental study of the subject, I
must forego its further pursuit for the present.

8.

Relation of this problem to electrometry and the theory of
related phenomena.

The quantity %, approximately Wloﬁ for the bottle b, gives the quotient

contraelectric force ¢ e glass of the bottle in absolute measure, if we take
resistance

the thickness of the glass as unit of length and the second as unit of time.
For this determination it does not matter how the unit of electromotive force
is made to depend on the unit of electrical charge. The constants o and (3*
would, however, give the resistance and the contraelectric force in different
units from those of Weber, where the unit of electromotive force is specified
via the influence of a unit charge according to Ampere’s law.

For comparison of the case investigated here with phenomena on good
conductors, the treatment of the steady state with tension difference held
constant at the surfaces (or, constant inflow) serves. For this, we have

L o d*u -
the density in the interior: p= ——=——= =€ — e 7,

ox?

the tension: wu= 1wy —e*+e % + (e +e7?),

the difference in tension of the surfaces:

Uy —U_q = 2(a(e® +e7) — (e —e™?)),

0
the total charge: (—2> =e’+e -2
oz /,

2a a

8u> Uy —U_q €2—e?
/g

the residual charge: ( 3

and the quantity of flow in unit time:

Ou 0Op

£+'8—$——(6 +e )

or the proportionate quantities, where for simplicity we have as above taken
« as unit of time, § as unit of length, and the unit of tension as the tension
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interior to a ball of radius 1 when electricity is distributed on the surface
with density 1.

It seems to me particularly important to test the proposed law, or alter-
natively to determine the constants o and 3, for gases. The observations
of Riess® and Kohlrausch?®, according to which the electrical loss in air in a
closed space does not obey Coulomb’s law, can perhaps serve as a starting
point for this investigation. For this purpose it would certainly be desirable
to have a set of measurements on the electrical loss interior to a somewhat
regular closed space.

3Pogg. Ann., vol. 71, p. 359.
4Pogg. Ann., vol. 72, p. 374.
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XXI.

Two general theorems on linear differential equations with
algebraic coefficients.

(20th February 1857.)

It is well-known that every solution of a linear homogeneous differential
equation of order n can be expressed as a linear combination, with constant
coefficients, of n independent particular solutions. If the coefficients of the
differential equations are rational functions of the independent variable z,
then each branch of the (generally) multi-valued functions which satisfy the
equation can be expressed for each x as a linear combination of n single-valued
functions, though admittedly these must be discontinuous along certain sys-
tems of lines. If, however, the coefficients are algebraic functions of x, which
can be expressed rationally in terms of x and a p-valued algebraic function
of z, then there will be, for each branch of this p-valued algebraic function,
a group of n independent particular solutions. In this case, every branch of
a solution of the differential equation can be expressed as a linear combina-
tion of at most un single-valued functions, but of these only n can belong
to the same group. After these preliminary remarks it will be clear that the
following theorems apply to all linear differential equations with algebraic
coefficients, because every non-homogeneous linear differential equation can
easily be transformed into a homogeneous equation of the next higher order.

Let y1,%2,...,yn be functions of x which for all complex values of this
variable are single-valued and finite except at a, b, ¢, . .., g, which, when z en-
circles one of these branch points, become linear combinations with constant
coefficients of their former values.

In order to determine these combinations more precisely, let us separate
the complex domain into two regions by means of a closed line passing suc-
cessively through all the branch-points (g,...,¢,b,a) so that within each of
these regions the individual functions vary continuously. Suppose that the

values of the functions in the region on the positive side of the line have been
n

n
given. A circuit of z around a now takes y; to Z Agl)yi; Y2 to Z AZ@)%; cel

i=1 1=1]

n
Y tO Z Ag")yi. A circuit around b takes y,, to Z Bi(")yi, ...; a circuit around
=1

g takes y, to Z Ggu)yi.

353



XXI. Two general theorems on linear differential equations etc.

For brevity, we write (y) for the system (y1, 2, ..., yn), (A) for the system
of n? coefficients

A§]) Agl) AW
A(12> Aé2> LAY
A(ITL) Aén) . Agln)

and (B), ..., (G) for the corresponding systems of B’s, ..., G’s. Write (A)(y) =

(A)(y1,...,yn) for the system of values Z Agl)yi, Z Agg)yi, e Z Agn)yi
formed from (y) via the system of coeflicients (A). Thus the following equa-
tion holds between these coefficient systems:

(1) (G)(F) ... (B)(A) = (0).

Here (0) denotes a coefficient system which changes nothing, that is the
coefficients in the diagonal from top left to bottom right are 1, and the
others are 0. In fact, if x travels along the positive edge of the boundary
between one branch-point and the next, and then encircles in a positive di-
rection the branch-point itself, the functions (y) successively become (G)(y),
(G)(F)(y),..., and finally (G)(F)...(B)(A)(y). The same result is achieved
if £ moves along the negative edge of the boundary, or runs over the whole
boundary of the region on the negative side, which must take (yi,...,yn)
into its former value since it is single-valued in this region.

A system of n functions having the above properties will be denoted by
a b c ... g
Q(A B C - G ‘”)

We shall now consider as belonging to the same class all systems whose
branch-points, and corresponding linear substitutions satisfying the equation
(1), take given values. As will soon become clear, there are infinitely many
systems in a class. By an easily proved theorem often used by Jacobi, every
linear substitution can, generally speaking, be decomposed into the product
of three substitutions, of which the last is the inverse of the first, and the
middle one has zero coeflicients except on the diagonal. The effect of the
diagonal substitution, applied to given variables, is simply to multiply each
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ly a factor. For example one can write

W=@q " Y e
0 0 An

where (a)~! is the inverse of (a).

The quantities A are the n roots of an equation of degree n, determined by
(A). In the case where this equation has equal roots, the middle substitution
has to be given a modified form. For simplicity we exclude this special
case for now, and assume that it does not arise in the decomposition of the
substitutions (A),(B),...,(G). The substitution («) can be transformed
into

60 ... 0
0 & ... 0
(a) ----- 2 ---------
0 0 l,

by post-multiplication by a diagonal substitution. In this form, all possi-
ble values are included, as is clear from the equations that determine the
substitution.

When z makes a positive circuit around the branch-point a, the values
of the functions y change from (pi, ps,...,p,) into (A)(p). The values of the
functions derived from (y) by the substitution (a)™!,

(21,2, ., 2z) = (@) (y),

change from (a)~(p) to

M O 0
_ 0 A 0 _
() M) =9 7 (a) ' (p)
0 0 An
or, in other words, from (21, 22,.. ., 2,) to (A121, Aa22, - . ., Anzn)-

If a function z is multiplied by a constant factor A when x makes a
positive circuit around a branch point a, then z can be transformed through
multiplication by a power of x — a into a function of z — a that is single-
valued in the neighborhood of a. In fact, (x — a)* acquires the factor e#?™
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when r makes a positive circuit around a. Thus if one determines p so that
et2m = X taking p = ]—375”.1, then z(z — a) * will be a single-valued function
for x = a. This function can be developed as a series in integral powers of
x — a, and the function z itself in powers that differ from g by integers.
Thus 2y, 20,...,2, can be developed as series in powers of r — a with

exponents of the form

log A\, log A log A, m
m m,...
27 T 2mi T 2m ’

where m denotes an integer.

We shall now assume that the functions y are never infinite of infinite
order, so that these series have only a finite number of terms with a negative
exponent. Denote by py, io, ..., 4, the lowest exponents in these series, so
that

z(x—a)™, ... 2z —a) Hn

have finite non-zero values. Obviously the difference between any two of
the quantities py, po, ..., 4, can never be an integer because the values of
A1, ..., A are all distinct. On the other hand, the values of the corresponding
exponents in two systems belonging to the same class must differ by integers,
because the quantities A, ..., A, are determined by (A). These exponents
therefore serve to distinguish the different systems of functions belonging to
the same class, or rather to arrange them in groups, and it is sufficient, when
the system is known, to give the substitution («) rather than (A), because
the quantities Ay, ..., A, are already determined by (A). We therefore use the

following notation to characterise the system (yi, yo, ..., ¥,) more exactly:
a b g
(@) (B) (6)
QS m n pL
Hn  Vn Pn
Here the quantities in the columns have the meanings for b, . . ., y correspond-

ing to those in the first column for a. It is readily seen that every system
can be regarded as a particular case of another system, in which some or all
of the corresponding exponents are smaller.

It is not difficult to show now that, between any n + 1 systems belonging
to the same class, there must exist a linear homogeneous equation whose
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cocflicients are polynomials in z. We distinguish the corresponding quanti-
ties in these n + 1 systems by upper indices. Suppose that the following n
equations connect them:

aoy1 + aly§l) + o any " = 0,
(2) agys2 + alyél) +e 4+ anyén) =0,

Then the quantities ag, ay, ..., a, must be proportional to the determinants
of the systems obtained by omitting from the n(n + 1) quantities y the first,
second, ..., (n + 1)-th columns respectively. A determinant

Z :ty(l) ) (n)

of this kind acquires a factor Det A when x makes a positive circuit around
a, and cannot become infinite of infinite order for x = a. It can therefore
be expressed as a series in powers of z — a that increase in steps of 1. To
determine the smallest exponent in this expansion, the determinant can be

put into the form
Det(a Z:I: (), ( "),

In the last determinant, the first term z(l) ( Yo z,(l") is

(z — a)p s+t

(n)
multiplied by a function which has a non-zero finite value for r = a. Thus
the smallest exponent in the expansion of this term in powers of z — a is

(1) (2)

Myt py +M(n)-

By permuting the upper indices, the terms with the lowest exponents in
the expansions of the other terms can be found. It is clear that, generally
speaking, the exponent sought is the smallest of these values, and in any case
cannot be smaller. If we denote by 7 the smallest of these values, and by

U,...,p the corresponding values for the other branch points, then
1 2 — -0 —p
doEn @) @) (r - g)
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is a function of z, finite and single valued for all finite complex values of z,
which becomes infinite of an order not exceeding —(fi+v+---+p) for z = oc.
Hence it is a polynomial of degree at most —(u + o + --- + p). This degree
must be a non-negative integer if the function does not vanish identically.

The minor determinants, which are proportional to the quantities ag, a1, . . .

an, thus behave like polynomials multiplied by powers of x—a,z—b,...,x—g,
whose exponents in the various minor determinants differ by integers. The
quantities ag, ay, . . ., a, behave like polynomials and can be replaced by these
in the equations (2), and the theorem is proved.

The derivatives of the functions y;,yo,...,y, with respect to z obviously
constitute a system belonging to the same class. For the derivatives of the
functions (A)(y1,y2, - . -, Yn), into which (yi1, yo, . . ., ¥, ) are transformed when
x makes a positive circuit around a, are

dy: dy» dyn
(A)<dz’ dz’ " dz )’

since the coefficients in (A) are constants. This remark yields two corollaries
of the above theorem:

“The functions y of a system satisfy a differential equation of order
n, whose coefficients are polynomials in x.”

and

“Bvery system of functions belonging to one class can be exrpressed
as a linear combination, with rational coefficients, of these functions
and their first n — 1 deriatives.”

With the help of the latter corollary, we can give a general expression
for the systems which constitute a class, from which it can immediately
be seen that, as mentioned above, the number of systems is infinite. We
apply this result here only to find the systems which have in common not
only the same substitutions but also the same exponents. For an arbitrary
system Yi,Ys,...,Y, with the same substitutions and the same exponents
as Yy1,Y2, - - -, Yn, it follows from the corollary that, denoting derivatives in
Lagrange’s manner, we obtain n linear equations of the form:

coY1 = boyr + bly’l 4+t bnﬂ@/%n_l),
coYa = boya + bryh + - + bn_lyén—l)’

oY = botn + bryly + - -+ + by,
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where the coeflicients are polynomials in z.

The function ¢y depends only on the functions y, and there is a finite
upper bound to the degree of the polynomials b, so that they have only a fi-
nite number of coefficients. Conversely, in order that the functions Yy, ..., Y,
produced by these equations should have the desired properties, the coefhi-
cients must be such that, for the branch points, their exponents must not
be less than those of the functions y, while for all other values of = they re-
main finite. These conditions give a set of simultaneous linear homogeneous
cquations for the coefficients of the powers of z in the polynomials b. The
solution, in the case where these equations suffice to determine the coefhi-
cients, shows that the most general value of the functions (Y') is of the form
const. (y). Otherwise, the general solution takes the form

with arbitrary constants k, k1, ..., k,,. These arbitrary constants can always
be determined successively as functions of the others in such a way that the
initial term in the development of the functions (o) ' (Y), (8)~(Y), ..., (6) (V)
vanishes, thereby ensuring that the sum of the exponents increases each time
by at least 1. The final exponent sum is increased by at least m, reducing
the number of arbitrary constants by the same amount. In this way, we
can always derive from every system of n functions another one with greater
exponents whose character is fully determined, apart from a constant factor
(common to all functions) by the matrix of substitutions and the exponents.
This common factor is now also determined if the coefficient of the lowest
power of z — a in the expansion of the first of the functions (@)~!(y) is set
equal to 1, so that the functions y are uniquely determined.

If we take care to note how the behavior of the functions varies with the
position of one of the branch-points, for example a, we arrive at the theorem
that the quantities y constitute an analogous system of functions of a as of
x, whose branch points are b, ¢, d, ..., z, and whose substitutions are formed
by the composition of (A),(B),..., (F).

In the case where it is not possible to make the functions vary with a
in such a way that all the substitutions stay constant (because the number
of arbitrary constants in these substitutions is smaller than the number of
conditions necessary to achieve this), we can regard the system as a particular
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case of a system with smaller exponents in which for these special values
of a,b,...,g the coefficients of some of the initial terms in the series for
()" (9). (8) '(¥).... () (y) vanish.

It follows from this theorem that the quantities yi, yo,. .., y, represent
functions of the p variables a,b, ..., g, x, which when all variables resume
their original values, either take their original values or are transformed into
linear combinations of the original values. The substitution with constant
coeflicients in question is a certain composition of the p — 2 arbitrarily given
systems (A), (B),(C),..., (F).

I refrain for now from further study of these functions of several variables
and the various aids afforded by this last theorem in the solution of linear
differential equations. I merely remark that an integral of an algebraic func-
tion can be regarded as a special case of the functions treated here. Applying
these principles to an integral of this kind leads to functions which represent
general #-series with arbitrary moduli of periodicity.

Determination of the form of the differential equation.

Our next task, in developing the theory of linear differential equations
via these principles, is to find the simplest system in each class. To this
end we need to determine more closely the form of the differential equation.
Following Lagrange, let y» y@® ... 4™ denote successive derivatives of y;
then the equations (2) represent the differential equation which they satisfy.

The degree of the polynomials that can be taken as coefficients can be
determined in the following manner. Each differentiation with respect to =
reduces by 1 each of the exponents of the characteristic, assuming that none
of these exponents is an integer. Thus

Zﬂ:y Yo YDz —a)Fz—b)" - (z—-g)P =X,

remains everywhere finite and single-valued. Here

i= Zﬂz n—l)’yzzw_n(nz—l = sz n—l).

For x = 00, since the functions y remain finite and single-valued,
> :tyly(l) -y Y is infinitely small of order n(n — 1). The degree of the
polynomial X is therefore

n(n — 1)

r=(m—2)T—s,
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where m denotes the number of branch points and s the sum of the exponents
in the characteristic.

If, in the in the matrix of the n(n-+1) elements y, one omits column n+1—t
instead of the last column, the corresponding determinant has, in general, to
e multiplied by powers of z—a, x—b, ..., z—g whose exponents are increased
by ¢. The determinant becomes a polynomial of degree r + (m — 1)t, [for
t = n, however, this degree has the value r + (m — 2)n|.

The differential equation can therefore be put in the form

Xoy +wXp 1y + -+ w"Xoy™ = 0.

Here
w=(zx—a)(z-0b)...(x—g).

The X, are polynomials of degree r + (m — 1)t. [X,, has degree r + (m — 2)n].

We now consider what conditions have to be satisfied by the coefficients
of these polynomials if a,b, ..., g are to be the only branch points and the
exponents of discontinuity have assigned values. A branch point does not
occur, if and only if all the solutions of the differential equation can be
expanded in a series in integral powers of the increment of z, or as long as
the expansion by Maclaurin’s theorem of the function y contains n arbitrary
constants. This is always the case when a,, is nonzero. Only the case a, = 0
needs further investigation. We write the differential equation in the form

boy + by(z — )y + by(z — a)%y" + - + bp(z — a)"y™ = 0.

In order that the function y should have the prescribed character in the
neighborhood of z = a, u1,..., 1, must all be roots of the equation

bo+bipp+ -+ bopu(p—1)...(p—n+1)=0.

This gives n conditions for the functions X. Moreover, since all the y must
be finite and distinct, b, must be non-zero for x = a. The same must hold
for the other roots b,c,...,g of w = 0. Hence the equations Xy = 0 and
w = 0 can have no common root.

Now if, (for some root of Xy = 0) a,, = 0,a,-1 # 0, then for this root
v,y ...,y 2 can be assigned arbitrarily, while y®1 is determined by the
differential equation

any(") + an_ly("_l) + - 4 apy =0.
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Thus while there will be n — 1 arbitrary constants in the first n — 1 terms
of the Maclaurin expansion, the last constant appears at the earliest in the
(n + 1)-th term. Let us assume that it first appears in term n + h.

We now eliminate the quantities 4+~ . 41 in the h-th derivative
of the differential equation:

any(n+h) + (ha;-t + an—l)y(n_%h;l) +er= 07

using the previous derivatives and the differential equation itself. The coef-
ficients of y(*th=1 4(=2) ,(=3) 4 must all vanish, since these functions
are linearly independent. We obtain

ha,, + an-1 =0,

and so a;, # 0. There are n— 1 further equations, giving n conditions for the
coefficients of the functions X.

Let us now, secondly, suppose that a, and a,_; vanish simultaneously,
while a,,_, remains finite, so that the first n — 2 terms of the Maclaurin series
contain n — 2 arbitrary constants. Suppose that the next constant appears in
term n + h — 1 and the last in term n + A’ — 1. For y**#=2) and y"+"~2 to
be independent of the values of the derivatives of lesser order, the following
equations must hold:

a, =0,
h(h -1
—(2—) a, +ha), | +ap_o =0,
h'(h -1
(T) a:; + h'a;l_l +an_9 = 0.

Thus a) and a,_; must be different from zero, and there are 2n — 3 other
equations. Consequently two linear factors of a, are 0, and there are 2n
conditions for the functions X.

Similarly, consider the case where a,, a,_1,a,_o vanish simultaneously,
but a,_3 remains finite, while the last three arbitrary constants first make
their appearance in terms n+h — 2, n+ k' — 2, and n + h” — 2 respectively.
We find the conditions

h(h—1)
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for h, h', h" together with 3n — 6 other equations, so that a, has three and
ouly three equal roots, and 3n conditions have to be fulfilled. By an obvi-
ous generalization of this argument, each linear factor of X, gives rise to n
conditions between the functions X.

We now suppose that one of the singular points, for example g, is at
infinity, and denote by w the polynomial of degree m — 1,

w=(zx—a)(z—0b)...

We denote the minor determinants of order n formed from the matrix
with n rows

YiYy--- Y

] (”)
Yo Yy Ys
Un Yl Y

by Ag, Ay, ..., Ay, so that y1,ys,. . ., y, are particular solutions of the differ-
ential equation

yDo+ Y A+ Ay 4+ y™MA, = 0.
The function
Ak(fL‘ _ a)—z,u,(w _ b)*Zl/ .. _w—k+n(n+l)/2 = X, &

is then, as noted above, a polynomial in x whose degree can be deduced from
a consideration of the singular point x = oo. Thus, if 7; denotes the degree
of X;,

re =71+ (m—2)t,

where

is an integer.
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The differential equation for y can now be put into the form
W Xoy™ + "Xy 4w Xy 4 Xy =0,

Since there are r zeros of the function Xy which do not belong to the set
of singular points, from the preceeding considerations there must exist rn
conditions between the constants in this differential equation.

Consequently there still remain in the differential equation the following
number of constants at our disposal (since one of these constants may be put
equal to 1):

Z(rt+1)~1~rn:r+n+(m—2)ﬁ(—n;—l).
Replacing r by its value, we obtain
—5+ (m —2)n® + n.
In an arbitrary system of n particular solutions ¥y, ¥, . . ., y, Which gives rise

to n? constants of integration, there are
—s+(m—1Dn’>+n

undetermined constants.

The number of coefficients in the substitutions (A), (B),...(G) is mn?
and therefore this is the number of conditions which have to be satisfied
when these coefficients are arbitrarily prescribed. However the substitutions
are restricted by the relation (1), so that n? of the conditions are identical
consequences of the others. This leaves (m —1)n? conditions, and the number
of constants still available is n — s. This number must be at least 1, because
a factor common to all the y must remain arbitrary, and consequently

s<n-—1.
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XXII.

A mathematical work that seeks to answer the question posed by
the most distingnished academy of Paris.

‘Determine the calorific state of an indefinite solid homogeneous body
so that a system of isotherms, at a given instant, remain isotherms after
an arbitrary time, in such a way that the temperature at a point can be
expressed as a function of time and two other independent variables.’

Et his principtis via sternitur ad majora.

1.

We shall treat the question posed by the most distinguished academy in
such a way that we answer the following more general question first:

What must be the properties of a body, which determine its conduc-
tion and distribution of heat, so that a system of lines exists that remain
isotherms?

Then:

from the general solution of this problem, we select those cases in which
the properties are the same at any two points, so that the body is homoge-
neous.

First part.

2.

In order to undertake the first question, consider the conduction of heat
in an arbitrary body. Let u denote the temperature, at time ¢, at the point
(z1, 2, 23). The general equation, according to which the function u varies,

takes the form
0 ( ou ou ou )
~— | @11 57— +a + 13 5 —

0x, 01, b2 8_:1:2 0x3
(I) +i(aglﬂ+a22@+a23—a—u—>
O " 01y " Oz, " Oz
0 ou ou ou Oou
+3—a:3 <a3,1 5_1111 + aso 8_232 +ass 8_:1:3> =h E

In this equation, the quantities a denote conductivities, h denotes specific
heat per unit volume, that is the product of specific heat and density, and
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these are given functions of xi, 2o, 3. We restrict our investigation to the
case in which conductivity is the same in opposite directions, giving the
relation

Qi = Ay

between the quantities a. Moreover, since heat moves from a warmer to a
cooler place, the quadratic form

a1, Qa22, asgs
a3, dz1l, A12
must be positive.

3.

We now introduce in equation (I) in place of the rectangular coordinates
T, Xo, T3, three arbitrary new independent variables si, sq, s3.
The transformation of equation (I) can be very easily deduced, since this
equation is a necessary and sufficient condition that (denoting by du an
arbitrary infinitely small variation in ) the integral

0
(A) /// Zazz 8.’: 9z d.’L’l d.’L’g d.’L’3

u
+///2h§5u dxy dxydzs

taken over the body, depends only on the values of the variations éu on
its surface. With the introduction of the new variables, the expression (A)
becomes

ou Ou
(B) 6/// Zbi’i, (7)? 85-/ dSl d82 d83

ou
+///2k56ud51 dsy dss.

Here, for brevity, we write
h

Z @ 88# 881,
— " Br; Oy
=b,,, = k.

Z 881 882 883 s Zﬂ:881 832 833

0x; Oz Oxs

8.’[’1 83:2 83:3
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Let the quadratic forms

1 aypi, Qa22, asz3 9 b1,17 52,2, ba,3
(1 (oo @) (2 ),
2,3, a31, a12 2,3, 031, 012
have determinants A and B, and let the adjoint forms be
11, CQ22, &33 4 51,1, 52,27 53,3
(3) (4) :
23, 31, &12 52,3, 53,1, 51,2

It follows that )
A=pY 25 Do 05

8:1:1 81'2 81’3
and e 5
T; Tt
P = zzz’: o 3—3“ s,
Hence
Zai,i'd@?i dry = Zﬁiﬂvdsi ds;
and
h B k
A B

From this it can easily be seen that the transformation of equation (I)
reduces to the transformation of the expression Zai,ydwi dx;.

7,8

Hence we can solve our general problem in the following way. First deter-
mine the form of functions b; » and k of sy, 59, 53, so that u cannot depend on
one of these variables alone. After the solution of this problem, the expres-
sion Y, B #ds; dsy can be formed. We then find, given the quantities a; » and
h, whether u can be a function of time and only two variables; and, if this
is the case, whether the expressions > 3; #ds; ds; can be brought to a given
form. We shall see below that this question can be treated by the method
used by Gauss in the theory of curved surfaces.

4.

Accordingly we first investigate the form that b, and k& must take as
functions of s1, sy and s3, so that « cannot depend on a single one of these
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variables. For simplicity, denote the quantities si, s9, 83 by «a, 3,y and the

form (2) by
a, b, ¢
a, v, )’

If u is independent of v, the differential equation takes the form

82u 62 82u 8 du
Here we set

8(1 80 Bb’ ob Lo oc Lo oa’ g

Bﬂ 8ﬁ Oa Oy 0

When ~ is given different values, we obtain from equation (II) different
equations between the six partial derivatives of u whose coefficients are in-
dependent of 7. Suppose now that m of these equations are independent,
say:

h=0F=0..F,=0,

and the others follow from these, so that the equation F' = 0 follows for
arbitrary v from these m equations. Then F' must be of the form

aFy +coFo+ - -+ e By

in this expression only the quantities ¢ depend on 7.

Now let us examine more closely the particular cases m = 1,2,3,4. At
the same time we simplify the equations independent of v into which the
equation F' = 0 resolves.

First case: m = 1.

If m = 1, the ratio of the coefficients in (II) does not depend on 7.
By introducing the new variables f k dv in place of v, we can arrange that
k =1 and all coefficients are independent of . Further, by introducing new
variables in place of a and 3, we can arrange that a = b = 0. This will
indeed occur if the expression b(da)? + 2c'da dB + a(dB)? (which cannot be
the square of a linear differential equation, if (2) is a positive form) takes the
form mda’d3 and the quantities o', ' are understood to be independent
variables.
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Accordingly, in this case the differential equation (II) can be reduced to
{.he form
, 0%u ou ou  Ou
R A A
and in the form (2) a,b are then 0; o/, ¥/ are linear functions of +; and ¢ is
independent of y. Thus the temperature in this case clearly remains inde-

pendent of v when the initial temperature is given as an arbitrary function

of a and f3.

2c

Second case: m = 2.

If equation (II) can be divided into two equations independent of vy, then
Oou

5¢ can be excluded from one or other of the equations. For brevity we write

one equation as
(1) Au =0,

and the other as

ou

where A and A are definite expressions in 0y, 0s.
It is easy to see that, by changing the independent variables, the first
equation can be brought to the form where A is one of

0aDs + On + 5, O + €D + 05, oF Da.

Here we do not exclude the value O for e, f.
Since now

0 = 0)Au = Adwu = AAu,
it follows from equations (1) and (2) that

(3) AAu = 0.
We now distinguish two subcases.
(o) Equation (3) follows from equation (1), that is,

AA =0OA
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where © is a new characteristic expression;

() Equation (3) does not follow from (1) and represents a new equation
independent of Auw.
In order to pursue the first case («) for a particular form of A, suppose
that
A = 0,05 + €0, + fO3.

By using the equation Au = 0, the expression AAu can be reduced to a form
containing only partial derivatives with respect to one of the two variables; all
these coefficients must be 0. Since the term containing 6,05 can be removed
with the help of the equation Au = 0, we write

A = ad’ + b0; + cO, + ddg

and form the expression
AA — AA.

In this expression, since the coefficients of 93, 8[33 must vanish, we obtain
g‘[’; 0, gg = 0. Excluding the special cases a = 0, b = 0, we can arrange
that a = b = 1 by a change of the independent variable. If the coefficients of

a2, 8[23 are made equal to 0 in the reduced expression AA, we deduce that

b 0 od _or
93 " 0o’ da OB

and it follows that we may write

om 8n
A=
8854—85 85,
om on
2 _
A= G2+ G +250 00+ 255 s

Here m, n denote functions of «, 8 that must satisfy two differential equations
in order for the coefficients of d,, 95 to vanish in the reduced expression AA.

In a completely similar way, we can deduce the simplest forms for A and
A in the other particular cases in which

AA =06A

holds. Here we shall not pursue this discussion, which is lengthy rather than
difficult.
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However, it is evident that the temperature always remains independent
of v in this case, when the initial temperature is an arbitrary function of «, 3
and the equation Au = 0 holds. From the equations

Au =0,
ou
Au = E,
it follows that 5A
o:@M:AAu:Aatu:a—:

and the equation Au = 0 continues to hold, if it is valid initially and the
function u varies according to the equation Au = %. Accordingly u satisfies
the equation of heat conduction, F' = 0.

5.

There remains the second subcase (), where the equation AAu = 0
is independent of Au = 0. In order to include also the cases m = 3,4, we
shall consider the more general hypothesis that, apart from Au = 0, there is
a linear differential equation ©®u = 0 at our disposal that does not contain
Ou/Ot and is independent of Au = 0.

If A is of the form 0,05 + e 9, + f O3, then with the help of the equation
Au = 0, partial derivatives with respect to both variables can be removed
from the expression ©.

We now distinguish two cases. If all the partial derivatives with respect
to one or other variable, say 3, are excluded from ©, we obtain a differential
equation containing only partial derivatives with respect to «, of form

Yu

(].) GV@:O

v

If this is not the case, we can obtain a differential equation of form

0"u
(2) 21,: a, W = O,
that is, one containing only partial derivatives with respect to ¢.
For in this case the expressions Au, A%u, A3w, ..., which are equal to the

partial derivatives of u with respect to t, can be transformed with the help
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of the equations Au = 0, Ou = 0, so that they contain partial derivatives
with respect to ouly one of the two variables, derivatives not of higher order
than those in Gu. As there are finitely many of these, it is clear that by
elimination one can reach an equation of forin (2). In each of the above
equations, the a, are functions of a and (.

We observe that one of these two equations will still hold when A does
not take the form 0,05 + € 9, + f d3. The particular case A = 92 + e, +
f 03 can be reduced to either of the two cases concerned, because using the
equation Au = 0, we can remove partial derivatives with respect to 8 from
Ou, and also from Awu, and this readily yields an equation of each of the
forms concerned. The case f = 0, and the case A = 0,, can be reduced to
the previous case.

We now examine the second case more precisely.

The general solution of the equation

0’u
; a, Cr 0
comprises terms of form f(t)e, where f(t) is a polynomial in ¢, and X is
independent of ¢. It is easy to see that these individual terms satisfy an
equation of type (I).
We shall now show that A cannot be a function of x, x5, z3.
Let kt™ be the highest order term of f(t). We distinguish two cases.

1°. If X is either real, or of form p + vi with u, v functions of a single
variable  (which depends on z, Zo, 73), then substituting u = f(t)e* in the
left side of equation (I) yields the coefficient

a2 da O

1,0

of tn+2€/\t.

But these quantities cannot vanish except when

Oa Oa Oa
8$1 ox 2 oz 3

that is, a« = const., because the form
apy, QG22, Aazgs
23, agy, 012
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is, as already shown, positive.

2°. If X is of form p + vi with independent functions u, v of xy, 29, 3,
(hen the quantities g+ vi, g — vi may be taken as independent variables «
and 8. Now u will contain, as well as the term f(¢)e®, the complex conjugate
termm ¢(t)eft. If now

O0*u 0*u 0*u ou ou

Auzaacﬂ+b8a8,8+08,82+68_a+f%’

we may substitute u = f(¢)e® in the equation Au = 0. Setting the coefficient
of t"2e% equal to 0 gives a = 0. Substituting u = ¢(t)e’! likewise yields
¢ = 0. Hence, by using the equation Au = 0, the equation Au = %% can be
transformed in such a way that it contains partial derivatives with respect

to only one of the two variables. But by substituting
u= f(t)e™, u=¢(t)e,

we find that the coefficient of each of these partial derivatives is 0. Hence all
these partial derivatives can be removed from the equation Au = %—th. Since
by hypothesis u is not constant, this yields the desired result.

In the latter case, then, the function u comprises a finite number of terms
of form f(t)e*, where ) is constant and f(t) is a polynomial in t.

In the first case, when an equation of form

Y

(1) au@

holds, the function u takes the form

= ap.

Here p;, po, ... are particular solutions of (1) and qy, go, . . . are arbitrary con-
stants, that is, functions of # and ¢t alone. When we substitute this expression
in 5
U
Au=—,
ot

the outcome is an equation of form

ZPQzO.
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Here the quantities () are partial derivatives of ¢, and thus functions of 3
and t only; on the other hand, the functions P are functions only of o and .
However, we saw above that such an equation, comprising n terms, yields
linear equations between the functions @) and n — p linear equations between
the functions P. Here the coefficients are functions only of 3; p denotes
one of 0,1,2,...,n. In this way we obtain expressions for the —g—‘tl via partial
derivatives of ¢ with respect to 3, that do not contain «.

We now investigate precisely the individual cases of our problem that
belong to this case.

If m = 2 and A is of form 0,03 + €0y + f O3, the reduced equation
AAu = 0, in the case that it is free of partial derivatives with respect to 3,
takes the form '

Ou 0*u ou
305 " Be2 T80 T
Hence u is of the shape
ap + bg + ¢,

with a, b, ¢ functions of # and t alone, while p and ¢ are functions only of «
and 3. Now we can introduce the independent variable ¢ in place of . This
yields

u=ap+ ba+c,

where now p is a function of the two variables o and . Substituting this
expression in the equations

0
Au =0, Au= —u,
ot
one readily finds the coefficients.
There remains the case that one of the equations, into which F = 0

divides, takes the shape (1) and thus has the form

T Ou + 8 Ou _ 0
da? do.
It follows that u = ap+ b, where a and b are functions only of 3 and ¢, and p
denotes a function only of & and . Introducing in place of p the independent
variable «, we find that

82
u=ao+f3, 87&1;:0'
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T'hus we find that, when m = 2, that is when F' = 0 splits into two equations

Au =0,

ou
Au = —
YT e

that either AA = OA; or the function u comprises a finite number of terms
of the form f(t)e* with constants A and polynomials f(#); or that u takes
the shape

(B, t)x(e, B) + a1 (B,1) + ¢2(8,1).

Further, if m = 3, then either u comprises a finite number of terms f(t)e*t,
or u takes the form

P(B, 1)+ ¢ (B, 1).

Finally, the case m = 4 can be elucidated without difficulty.
Namely, suppose that in addition to the equation Au = 2%

5;» three equa-
tions hold between

Pu  0*u  0*u Ou  Ou
da?’ 00dB’ 082" Oa’ 05

Then either an equation of the form

0 0
r—u+s—u=0

holds, in which case we can choose the independent variables in such a way
that u is a function of only one variable. Or, the functions

Pu O0%u u

da?’ 0adB’ 5%’

and consequently also the functions Au, A%u, A3u can be expressed in terms

of g—z, g—’ﬁ‘. In this case we find an equation of form

a@—l- @-I-c@—o
o3 o2 ot

whence u takes the form
per +qe +r or (p+qt)eM +r,

where A and p are constants by the above discussion.
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Taking p as the independent variable «, and substituting the expressions

derived above into the equation Au = %%, it emerges that ¢ cannot be a
function of «, at least if A and p are distinct. Thus p and ¢ can take the

roles of independent variables. We further get 7 = const. from the equation

fku = .
ot

Thus in this case wu is either a function of ¢ and only one other variable,
or u takes one of the two forms

e + et 4 const., (o + Bt)e + const.,

where we do not exclude the value p = 0.

Having found the forms that the function u can take, the equations F, =
0, which for brevity we do not write out, are readily formed. Thus in every
particular case, as well as the form

(bl,la b2,2, b3,3
b2,3, b3,1, bl,2 ’

we determine the adjoint form

(51,1, Ba,2, ﬂs,s)
Ba3, P31, P2/’

If we now introduce, in the expression Y 3, pds;dsy, arbitrary functions of
Z1, T2, z3 in place of the quantities sy, s9, 83, we clearly obtain all those cases
in which v is a function of time and only two other variables. This solves the
first question.

It remains to clarify the question of when the expression ) f; yds;dsy
can be transformed into a given form ) o, ydx;dzy.
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Second Part.

On the transformation of the expression E b +ds;dsy into a given
i
form E ai,i/dzida:i/.

i

Since the question of the most distinguished academy is restricted to ho-
mogeneous bodies in which the conductivities are constants, we first examine
conditions under which the expression Z b, #ds;ds; can be transformed into

i’
the form Z a; ydzrdz,, with constant coefficients a;,/, by taking the quan-
%
tities s to be suitable functions of z. Accordingly we make some remarks
about transformation to an arbitrary prescribed form.
It is known that an expression Z a; ydx;dry can always be brought to
%
the form Z dz? if, as we suppose here, it is a positive form in the dz. Hence,

1
if Z b, #ds;dsy can be transformed into Z a; ydr;dz;, it can be transformed
% ii!
into Z dm?, and conversely. We therefore investigate when this expression

1

can be transformed to the form Z dz?.

Let B be the determinant Y &b 125 ... b, 5, and let 8, be the cofactors.
Then

Zﬁi,ﬂbi,i' = B; Z Biwbiw =0if &' #7".

If Z biydsdsy = Z da:? holds for an arbitrary value of dz, then substi-

tuting d + & for d we can also show that
Z biyildSi(SSi/ = Z d$151'1

for arbitrary values of dr and dzx.
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Accordingly, when we express the quantities ds; via the dx; and the quan-
tities dx; via the quantities ds;, it follows that

Oz, 0s;

1 = vi o
(1) 0s, ;b " Oz
and so

Js; _ Bui 0Ty
(2) 83:,,/ N zu: B aSV ’
Since

0s; Oz, B ds; Ox, ..,
zu:@xu Bs; M9 Xuzazu 5ay ~ 0 EF D),

we deduce further that

SO Oy
» 33i 331-; o

(3) Z ds; Osy . /Bi,i’
~ dr, dx, B’

Differentiation of the formula (3) yields

8%z, Oz, 8%z, Oz, 8bi,i/
(4) ~ 08;08 08y 2831/8311/ 0s; os"

1

From these expressions, we find that

Ob;yr Obggn Oby in
Osyn ~ Osy  0Os;

satisty the relation

o? Ty .TU 8bz i 8b1 " 8b1-f i
5 ) ) i A
(5) Zasz,asw ds;  Osp + 08y 0s;

If the right-hand side of (5) is denoted by p; ;;#, we obtain
&%z, 9s;

6 2 == - y /L'/ i/l,

( ) 0808 Xz: oz, Pz,
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By further differentiation of the quantities p; ;;», we obtain

8pi,i’,i” dpm U Z d Ty 0 Z 8 Ty 2131/
B Os Bsy D5y Os; 832/// DsnDsim 0505w

Finally, by substituting the values found in (6) and (4), we obtain

(92[)1-11-// 82 bi',i’” aQbi’im 82bi',i”

1 — —
( ) 881'/881'/// aSiaSi// Bsi/(?siu 8Si88i”’
1 By
+ 5 Z(pu,i’,i“’pu’,i,i” — PuairPuitiv) g =0.
v,

Thus the functions b must satisfy equations of this form if Z b ivds;dsy
can be transformed into the form Z dz?. We denote the left side of (I) by

(ZZ ZIIZ///)

In order to understand the structure of these equations better, we form
the expression

82 bigdsidsy —2d6D " bygdsisy +d> D b #bsiSsy,
where the second order variations d?, dé, 6 are determined so that

8" bipdsidsy — 6 ) bigdsi'sy —d Y bipbsid'sy =0,

8" bipdsidsy —2d ) bipdsi8'sy =0,

8"y biwdsidsy — 28 byudsidlsy =0,
where ¢’ denotes an arbitrary variation. The above expression now becomes
(11) Z(zz i"1")(ds;08y — dsyds;)(dsinbsyn — dsyndsi).

From this form of the expression, it is clear that after a change of in-
dependent variable it becomes an expression that depends on the new sum
corresponding to ) b; yds;dsy in the same way as before. If the quantities b
are constants, then all coefficients vanish in the expression (II). It follows that
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(IT) vanishes identically, if Y b; 7ds;ds; can be transformed into an analogous
expression with constant coefficients.

Likewise it is clear, if the expression (II) does not vanish, that the ex-
pression

(III) —% Z(ZZ/, z'”z"“)(dsiés,-/ — dSi/(SSi)(dSiu(SSim — dSi/H(SSiN)
Z bi,i/dSidSil Z bi7i158i58y — (Z bm‘/dSi 58i/)2

is invariant under a change of independent variables, and it further remains
unchanged if the variations ds;, s; are replaced by arbitrary linear combina-
tions of form ads; + (3ds;, yds; + 60s;. However, the maximum and minimum
values of the function (IIT) of ds;, ds; depend neither on the form of the ex-
pression Y b; #ds;ds; nor on the values of the variations ds;, ds;. Accordingly,
these values can be used to determine whether two such expressions can be
transformed into one another.

Our investigations can be illustrated by a geometric example, which al-
though of unfamiliar form, is a useful supplement.

The expression /Y b; »ds;ds; can be interpreted as the line element in
a general n-dimensional space that lies outside our intuition. In this space,
when we draw from a point (sj, Sa,...,s,) all the shortest lines, in whose
initial element the variations of s are in ratio ads, + 36s; : adsy+30sy 1 ... :
ads, + 30s,, where o and 3 are arbitrary, these lines form a surface that one
can represent in the usual space of our perception. Now the expression (III)
is the curvature of this surface at the point (s, s2,...,8n). [1]

If we now come back to the case m = 3, the expression (II) is a quadratic
form in

dSQ(SSg — d83582, d83(531 — d81(583, d815$2 — dSQ(SSl

so that in this case we obtain six equations that the functions b must satisfy in
order for Y b; ;ds;dsy to transform into a form with constant coefficients. It
is not difficult to see with the aid of familiar ideas that these six conditions
are sufficient. However, we observe that only three of these are mutually
independent.

Now in order to answer the question posed by the most distinguished
academy, we substitute into these six equations the form of the function b
found by the above method. This yields all the cases in which the tempera-
ture u in homogeneous bodies can be a function of time and only two further
variables.
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Considerations of time prevent us from carrying through these calcula-
tions. We must content ourselves with the exposition of particular solutions
to this question that are obtained by our methods.

For brevity, consider the very simple case in which the temperature u
varies according to the law

0 O*u N O*u N Fu _ ,0u
022 " 0z3 92 " Bt

The other cases readily reduce to this one. The case m = 1 can only arise
under the condition that u is constant either on parallel lines, or on circles, or
on spirals. By a suitable choice of rectangular coordinates z, 7 cos ¢, r sin ¢,
we obtain a =1, 3 = 2 + ¢. const.

The case m = 2 occurs in case u = f(a) + ¢(3), the case m = 3 in case
u = ae’ + f(B3), where X denotes a real constant. Finally the case m = 4,
as we already showed above, occurs in case either u = ae? + [Be#*+ const.,
or u= (a+ fBt)e+ const., or u = f(a).

In order to identity the form of the function u, we merely observe that the
temperature u, except when it takes the form ae*, can only be a function
of time and a single variable when it is constant either on parallel planes, or
on cylinders with the same axis, or on concentric spheres. If u is of the form
ae it follows from the differential equation (I) that

0a  Pa O«

+ + = \d’a.
oz? = Ox2  0Ox3

Then in the fourth case, by substituting the value of u into the differential
equation (I), the functions o and [ are easily determined, provided we note
that in this case ae’ and Be”! can be complex conjugate quantities. [2]
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Weber’s remarks on XXII.

[1] (p. 380) These investigations contain the analytic execution of the re-
sults indicated in paper XIII ‘The hypotheses on which geometry is based’.
The question is that of the conditions under which a one second order differen-
tial expression can be transformed into another: in particular, one with con-
stant coeflicients. Since the first appearance of the above paper of Riemann,
this question has been studied by Christoffel and Lipschitz, who obtained the
same results as Riemann in different ways ( Crelle’s Journal, Vols. 70, 71, 72,
82). Later, R. Beez also took up the subject (Schlémilch’s Zeitschrift, Vols.
20, 21, 24). In the first edition I appended some remarks based on an old
(unpublished) study of R. Dedekind with a view to working out Riemann’s
account of the matter for the reader. The somewhat too brief exposition of
these remarks may well have given rise to some doubts expressed in the above
named papers. Accordingly I repeat the remarks here in somewhat greater
detail.

Let the square of the line element in a space of n dimensions be

d82 = Z bi,i’dsidsi’-
i
The difference equation

dSi 1 8bi,i’ dsi dSi/
(1) dzi:bi#% e §dT‘Z 8Su % dr

1,8/

together with

ds; dsy
biy— —— =1
; T dr dr

determines the shortest lines, where
T :/ Zbi’izdsidsi/
ii!

denotes the length of the shortest line from an arbitrary fixed point 0 to a
variable point.

We take 0 as the point, in the neighborhood of which the relations of the
n-dimensional space are to be investigated. We consider shortest lines drawn
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from this point in all directions, and introduce a system of new variables via
the substitutions
Ty =TCl, L3 =TCoy ..., Tp = TCp,

where the quantities ¢; are defined by

dSZ'
G =\|—
dr /,

Thus these quantities are connected by the relation

Z bl(gzclcz/ =1,

i,1’

and the ¢; are constant along each shortest line issuing from the point 0.
The ¢; appear as constants of integration of the differential equation (1).
Naturally the complete solution of this differential equation is required in
order to represent the variables x; as functions of the original variables s;.

The characteristic property of these new variables, which we may call
the central coordinates of a variable point m with respect to 0, is that they
vanish at 0, and that their values grow in proportion to the length r as we
proceed along a shortest line. These properties are invariant when z,,...,z,
is replaced by a system of n independent linear forms in these variables,
with constant coefficients. In this way we arrive at Riemann’s requirement
r? = 5" 22 in XIII, part I, §2. However, this is of no consequence, and will
not be taken into account further here.

Now let the square of the line element, expressed in terms of the new
variables, be

dS2 = Z ai,ifd:cid:cif.
i/

If we proceed along a shortest line from 0, so that ds? = dr?, we readily see
that

(2) Z ;4 CiCyr = Z a(ozczcz’ =

We now express the differential equation of shortest lines in terms of the new
variables. This yields, for shortest lines issuing from the point 0,

1 Bai i
d;a“,ici = —2- dr a = CiCyr

ll
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from which it follows that

(3) pr,.ﬂ:ixi/ = 0.

Here, for brevity, we write (p. 378)

aai,p i E)ai/# 80,1'71"
p )'»i, = - N
ot 8@-/ ax, E)xﬂ

We may also write equation (3) in the form

a Z’L a 2
(3") & arx2 22 a’“xzac,

i

For brevity we now write

- § K - R -
a B O, # - oz,

Further, let

Ow E)wﬂ v Ow, 0w,
oz, Z Bxuax,, ox, + Z

and

awﬂ Ow, Ow, Ow, B
oz, BQ:H Z or; (8:1:,, axu) 2 =0.

We conclude that the a—‘;‘i - g‘;’” are homogeneous functions of order —1.
v m

Denoting such a function by f(zi,...,z,), we have

fltxy,tzy, ... tx,) =t f(T1, 20, ..., Ty).
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If we now suppose that the coeflicients a,  and their derivatives at 0 have
definite finite values, we conclude, on setting ¢t = 0, that the function f

. . : O
vanishes identically; thus 5%‘— = g;’”. Further, then,
v u

80,#’1‘ 8al, i

— Jz,, -
1 1

With the help of (3’), this yields

(4) D e =Y agcs
or, on multiplying by r,

Q,:T; = a(om
padli = p,ilie

% %

These are all identities, that is, they hold for each choice of the system of
independent variables z;.

Now let ¢, = ti/; be any functions of z,, zo, ..., z,, which together with
their partial derivatives of order < 3 have definite finite values at 0, and
which satisfy the identity

Z tiﬂ'/l’il’i/ = 0.

i,
Differentiating three times, and then setting z; = 0, we obtain the following
equation valid for the point 0:
Otiy | Oty Oty

t‘ V= U, - D
b 8$i// + 81’1 + 81:1"

In this equation take ¢;; = p, ;. This yields the equation, at the point
0:
8p’i,i',i" 8])1-71'//’1‘/// 8pi,i',i'”

Piivin = 0; + + —
’ 8$i/// 8$i/ 8$i//
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From the first of these equations, on adding p; ;;» = 0, one obtains
(5) aai’i,
8l‘in

from the second,
5 ( 0?a; i N O%a; N 0%ay ym )
OxnOxym — OxymOxry — OTyOxm
Pap g Pagny  OPay
= or0ry | 0mdzs | om0z
Exchanging i and ¢/, adding, and denoting by S the sum of the six derivatives
i it follows that

8 Q1 4o 8204’7:,
S N 3 (al};al‘y 8l‘i//al‘i,,,> .

Since S is invariant when i”,7"” is exchanged with ¢,4', we have

=0 at the point 0;

0%a,
of the form 3—51—

(6) 82(1,1;//’17// _ 82(1,1?1‘/
81'1‘81'1‘/ 81:17/8:61:” ’
(7) 82ai,i: n 82(1171'// 82(11"1‘///
al‘i// al‘i/// al‘i/// al‘z‘/ al‘i/ al‘i//
82 a’i”,i”' 82(11‘///’17 82 ai',i”

=0

= + +
0x;0ry  O0x;0x;  Ox;0xm

at the point 0.
BaZ i 82a,
Now let us understand by a; i/, 5, m

at the point 0. Under this hypothesm we have for the line element dsg issuing
from the point 0,

the values of these quantities

ng = Z ai,i/dzi dl‘il.
i/
For a line element ds issuing from a point infinitely close to 0 with (infinitely
small) coordinates z1, zo, . . . , T,, including terms up to second order, we have

Zal sdz; dry + Z

l 7., l”

0? Oy
E - T Tyndx; dx;.

l‘l// al‘l///

l‘iu dl‘i dIil

1 ,L‘I 2,’/ l”l

387



Weber’s remarks on XXII.

By (5), the second term vanishes, while the third,

z : a a; i
(9 Ii//l'i///dl'i d.’Ei/

=t Qx0T

7 ’L S0,
is the expression for the variation of the above n-dimensional space from
flatness in the surface direction defined by z;, dz;. With the help of (6) and
(7), © can be given a form from which it is apparent that it depends only on
the combinations x; dxy — xydx;. Namely, by interchange of indices we write
O in the following four forms:

Z Oa; i
(9 iy dl‘i dl‘i/

(L‘z// 81‘1///

1 8 ai’,i“
= = E e e— .’Eil'i///dl'i/dl'i//
2 aZEial'i///

1 (92 am’m
= = E —F— Ty Ty dl‘idl'i///
2 Bxi/ (91‘1'//

1 820,1'//71'///
= = E l‘il'i/dl'i// dl‘z‘/// .
2 al'ia.’l?i/

We apply (6) to the fourth expression, and apply (6) and (7) to the second
and third expressions. On a further exchange of indices, this yields

2 : 8 (IR
8 TinLjm dl‘z dl‘i/,

$1,” 81‘1///

Da;
E (9 l‘il'i///dl'i/dl'i//,

$l” (9./171///

l\le—A [\Dl»—A

2 : 8 Qs q
(9 l‘i/l'i//dl'i dl‘im,

$1” 81‘11//

Da;
E (9 iy dl‘i// dl‘i/// .

$1” 81‘1///

If we add these four equations, we obtain

8 CLz i
(8) Z 3117,//(9:171/// x’t dxi” - l'i”dl'i)(l'i/dl'i/// — l'i///dl'i/)_

l l// 1/ 117
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This expression for © is, however, derived under the hypothesis that the
variables z; signify the central coordinates. We still have the task of trans-
forming it for arbitrary coordinates. This completes Riemann’s prescription
that one should express it in a form that is visibly independent of the vari-
ables used.

First of all, maintaining central coordinates, we replace the infinitely small

coordinates xy, s, ..., T, by the proportional differentials dx1,dzs,...,d0z,.
Thus
0%a,
9 Y dxda S dTm.
( ) 2 Z aIlHa[L’Z/// 2 2 K3 2

We choose the (otherwise arbitrary) differentials dx;, dx; so that
(10) ddl‘z = 0, d5I1 = 0, (Sd.’lfz = O, (55.731 =0

which occurs for example in the case of constant dz;, dz;. This has the con-
sequence that d and ¢ are interchangeable, that is, for an arbitrary function
of position ¢,

(D) dé¢ = 6dg.

Under this hypothesis one can derive from (5), (6), (7) the formula

dd Z aivi/(SIié-Ii/ =60 Z ai’i/dxidxi,
= —2dd Z ai,i/dxidxi/

i

and, with the help of this formula,

1
(II) @ = 5 dd Z ai’iléfﬂi (5.’1:2'/

1,1

{dd Z a; 40202y — 2d6 Z a; ydz; 0z

1,1

+ b0 Z ai,i/da:idxi/ } .

%
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Denote by ¢’ a variation, arbitrary except that it is interchangeable with d
and 6. Now (5) and (10) yield the equations

& E a,i,,i/dxiéxi/ = E ai,ifdé’:ciézi/
i,i’ i1

+ Z ai,i/dxiéé'xi: ,

7

d E ai,ifé':ridxi:: E ai’i/dé'ziéw,
1,1

1,1

) Z ai,i/dl'idll'i/ = Z ai,i/dziéé'zil.

1,8 1,8

From these equations,
(III) ) Z ai’i/dl'idl'i/ —d Z ai,ildl.’Ei&Ei/

) Z ai,i/dxié’zi/ = 0.

34

If we set d = 4, then

(IV) &Y aipdridry — 24 a;pdaid'zy =0,
(V) 5’ Z aiyi/5xi5xi/ — 26 Z CLi’i/&Eiéll‘i/ =0.

If now we introduce, in place of the variables xz;, other variables s; that
are functions of them, we obtain for entirely arbitrary differentials d,é a

transformation
E ai,i/dxiéxi/ = E bmldsiési/.
38! i

Thus we obtain the transformed expression for ©, replacing a; ;/, z; by b; 1, s
in (II); in other words the z; need no longer be central coordinates in (II),
but may be arbitrary coordinates. Admittedly the conditions (5), (6), (7),
(10) will then no longer be valid. Nonetheless the conditions (I), (II1), (IV),
(V) will be satisfied for all systems of coordinates when they are satisfied
for one system, for example the central coordinates. Thus if we make use of
only the relations (I), (III), (IV), (V), in further transformation of (II), the
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results will be valid for arbitrary variables. The calculation is now, although
somewhat long, altogether free of difficulties. On the right side of (11), due to
the interchangeability of differentials, the differentials of third order cancel.
We can extract the differentials of second order with the help of the following
equations, consequences of (I1I), (IV), (V):

2 Z az‘,z‘/ddﬂfi = - Zpu,i,i'dl“idl“i',
i i

2 Z a; ydozr; = — Z PuiirdT;0Ty,
i 34!

2 Z ai,i'(S&Ei == Zpu,i,i'5$i(555i'~
i i

Here, as on p. 378, p, ;i denotes the quantity

8al/,i 8au,i’ 5(11‘,1"
Do = 5 + - .

T ox; oz,
We obtain the expression
dd i ¢6x:61y — 2d8 Y  a;pdzi6zy + 86 Y  aypdzidzy
i i i
= Z (ii,, illilll)(d.’Ei(S.Ti/ - 6$id$i:)(dwiu&tim - (S.Ti//d.’lfi///).

ii/ 7i//il//

Here (73',4"i") has the same significance as in Riemann’s text (p. 379), and

the sum is taken so that, of two pairs of indices 4,4 and ¢/, 4, and likewise of

two pairs ¢”,4” and 7"”,i", only one is employed.

From this expression we now obtain the curvature of our general space.

Namely let
ds = Z a;pdr;dr;, ds= Z a; 100y
V ii! 0!

be two line elements in the space and

Z ai’i/dwi(s.'lfi/
dsés

the cosine of the angle that they enclose.

= cos 0
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The surface area of an infinitely small triangle formed by the line elements
is then

A= % dsdssinb.

This yields

2
4A2 = E ai,i/d:vidxi: E 0,1‘71‘1(51'1'(5(1:1‘/ - ( E ai’i/da:iéxi/>
ii i’

1,8/
= E (a'z'}i”a'i’,i”’ — ai;,iuai,im)(dwi&ti/ — 6$id$i’)(da:i”6$i”’ — 6$i//dilf—,;///)

ii,,i,/i//l

dd Z ai,i/(Swi&vi/

i

A2

I
00| w

dd Z aiyi/&xi&ti: — 2db Z ai,i:dxi&zil + ) Z aivi:dwidwi:

1 iit ii! 3,4/

2
E ai,i/dwidwi/ E 0,1'71'/(51151'(51'1'/ - ( E ai,i/dwi&m/)
1,8 1,1/

i,

Z (ii/, illilll)(dilfi(SCIIi/ - (SCIIidCL‘i/)(dCL‘i//(SCIIim — (SiL‘indiL‘iH/)

]_ ii’,i”i/”

2 E (a'iyi”a'i',i'" — ai,i”’ai’,z‘”)(dfiéfi’ — (Silfid[L‘i/)(d[L‘i//(SCL‘i/// —_— (Safi//dl'i///)

sal sl altt
i’

It now remains to show that this expression agrees with that which Gauss
gave for the curvature of a surface, when we consider a surface formed of
shortest lines in whose initial elements the variations of  are in the ratio

adzy + Béxy : adzy + Bdxy : ... adx, + Boz,,

where a and ( denote arbitrary numbers.
As above, set ; = r¢;, so that ¢; is constant on every shortest line issuing
from 0, and r is the length of this shortest line up to a variable point. As

shown above,
§ : § : 0
a; 3 CiCyr = az(- izcici: =1.
1,3 i,4’
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We now take two fixed systems of numbers ¢;, say cl(-0>

We treat a variable system

and ¢}, as fundamental.

(11) ¢ = ac +[)’(’
Then we have
o? + 2af cos(r®, 1) 4+ 52 = 1,

whence the quantities ¢; become functions of a single variable, which we may
take to be the angle ¢ that the initial element of r makes with the initial
element of 7(®. We obtain ¢ from the expression

cos ¢ = Z a; ,cl (0).
1,1
Now allow variations of r, ¢; by infinitely small quantities dr, dc;, satisfying
the condition
Z ag?cidciz = 0.
i1

With the help of equation (4), we obtain
(12) Z a; yc;dey = Z a, ,czdcz

We also have
dz; = rde; + ¢;dr

and accordingly
ds* = Z a; ydz;dry = dr? +r? Z a; ydeidey

1,8 i3

= dr® + r’ud¢®

with the abbreviation

> aipdeider = pdg’.

i3

However we now have

(13) cos ¢ = Z (Oaclc(,o), —sin ¢pd¢p = Z a i EO)dcZ

1,8/ i,
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From (11) follows an expression of form
dc; = acl(.o) +bc;; a = Pda — adp, b= dg.
Thus from (12) and (13),

—sin ¢de¢ = a + bcos ¢
0=acos¢+b.

By elimination of a and b,
sin ¢ dc; = dg(c; cos p — cgo)).

From this we have

d¢? =Y adeidey

34/

and also

E a; ;i dCidCi/
1,8

(14) ==
Z a;‘? dc;dc;

i

Let us write this expression as m?/r?, then we obtain Gauss’s form of the
line element on an arbitrary surface, namely

ds? = dr® + m%d¢?

(Disquisitiones generales circa superficies curvas, section 19). For the curva-

ture, we obtain
1 6%m
k=—— .
m Or?

Suppose now that the surface curves continuously at the point r = 0.
Then at this point

om Pm
=S Gy © Or?
Thus at this point we have
Pm
k= ——.
or3
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As for the function p, we find that, at the same point,
%) 3 0?

lu’ - 17 —lu’ - N k = — - —/Jl

or 2 Or?

The first two of these equations are satisfied in consequence of (14), (5).
From the third,

2
Z s, Qj i
W cincimdcidci/
3 il 13 LinOZym 0

2 Z aﬁf?, de;dey ’

which agrees with the expression found above.

We construct shortest lines issuing from the point 0, with initial directions
defined via the equations (11); this gives a surface in the transcendental
space. The coordinates of a point of this surface may be expressed via two
independent variables. If we denote these by p, g, then there is an expression
of form

ds® = Edp? + 2Fdpdq + Gdg®

for the square of the line element on the surface. Here E, F, G are functions of
pand q. Take z,y, z to be a system of particular solutions of the simultaneous

equations
or\? oy\? 0z\°
CRCROR
0c 0s 0y Oy, 0z O _
dp 0q Op dqg Op dq
or\? oy 2 02\ *
CRONCR:
then

ds? = dz® + dy? + d2*.

If we view z,y, z as coordinates of a point in space, we obtain a surface upon
which, by Riemann’s expression, the surface in transcendental space can be
developed. That is, there is a pointwise correspondence, without variation
of line elements.
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From these formulae one can easily derive the expression for the line ele-
ment under the hypothesis of constant curvature that is given on p. Namely,
let k& have the constant value «; then

sin v/ar
Ja

When we replace the ¢; by linear combinations of them for which

ZC? =1,

then we obtain for ds? the expression

m =

so that

<2
Sin T
ds® = dr* + ——> "dc].
(0%

Now let

2¢; var , 4 Syar
— r; = — tan® ——
Va 2 ’Z

1 o 2 )
(a special case of this is the stereographic projection of the surface of the
sphere on the plane). It follows that

dr? \/_r
dz———+—ta2 dc?
> ot I >

and

ds = cos? @\/Zdﬁ
T 1+e Zx v Zsz'

[2] (p. 381) The complete verification of the final result stated here ap-
pears to require complicated calculations that I was only partly able to recon-
struct from the very incomplete fragments available. The part that I could
decipher is presented here in the hope that it could serve as the basis for a
fresh investigation leading to the complete result.
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We first answer the question as to the cases where the temperature de-
pends on only one variable apart from time. In these cases the differential
equation according to which heat is conducted takes the form

o*u ; ou  Ou

() 5z 5 T T

If now the coefficients a, b are not functions of a single variable «, this
differential equation splits into two equations as follows:

a/_aig+bl_8_u:§£;a//82_u+bl/%zo,
Oa? oa Ot Oa? O
where a',b',a”,b" depend only on «.

By introducing a new variable in place of «, the second of these equations
may be brought to the form g—i% = 0, so that u takes the form uya+u,. Here
iy, ug are functions of time alone. The first of the above equations now
agsumes the form

(co+ )Bu _ Ou
TNV T Bt
where ¢, ¢; are constants. It follows further that
8u1 0 8u2
cu; = — = —,

Yo ot

so that u has the form ae** + const.

However, if in the differential equation (1) the coefficients a, b are func-
tions of a alone, then without loss of generality we can assume that b = 0
(by introduction of a new variable for «). Since the differential equation (1)
must arise from a transformation of the equation

0%u N 0%u N J%*u _ @
ox?  Oy? 822 ot’

our task reduces to the following.
We must find all functions « of coordinates z,y, z, which simultaneously
satisfy the differential equations

’a  *a O« o\ 2 o\ 2 da\?
agatgsran =0 0= (5) +(5) + (5) =@
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For brevity, let

oo Oa da 2L 2,2
— =p, — =q, — =7, T =M.
ar  © oy “ 52 P

We distinguish four cases.
1. If p,q,r are independent functions of the coordinates z,y, 2, then «a
is a function of m, a = ¢(m), and we can introduce p, ¢, as independent

variables in place of z,y, z. Let

s=a—pr—qy—rz, ds= —xdp — ydq — zdr.

Then
B
- 8p,l/'— 8(]72- 87"7
0s 0s 0s
G—S—pa—p*qa—q—ra—r—qb(m)-
We let
s=1(m)+t

and determine t(m) via the differential equation

P(m) = 2my’'(m) = ¢(m).
This yields for t the first order partial differential equation

ot ot ot

t—p— —q— —

=0
Op oq T@r

whose general solution is
qr
t=px (—, —) = px(8,7).
pp
Here x denotes an arbitrary function, and for brevity we write
q r
/3 ==, 7=
p p
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Thus we have

( 0s

=g 2py'(m) + x — BxX'(B) — X' (7),
0s
(2) ~y = 5= 2qy'(m) + X'(5).
q
0s , ,
(=5 = 2ry’(m) + X' ().
From the equation
_Op  Oq  Or

it follows by introducing p, g, r as independent variables that

Oy 0 0z Oy 0z Ox Ox Jz Oxr Oy Oy Ox

8q Or Oq Or  Or op Or Op  Op 9g Op g

or, by substitution from (2),

m(12¢/(m)* + 16my’(m)y" (m))

v/ 2 2
HVm(4y'(m) + 4my"(m)) V1 + B2 + 42 {([32 +1) gg’i +26y -Sﬁ’ﬁ
2 Px
+(v*+1) ——872}

Px 9x x \*
2 2\2

Since m, (3, v are independent variables, this equation splits into the following
three:

3 0%x 32X_(82X )2:( k

o 57 \9poy 1+ 52 +~2)%
d°x *x d*x ki
4 2+ 1) =5 +2 + (v +1 e

(5)
m(12¢'(m)? + 16my’'(m)y" (m)) + kiv/m (49'(m) + 4myp"(m)) + k = 0.
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Here k,k; denote undetermined constants. We introduce in place of the
function y a new function y; via the equation

1
X:§k1\/1+ﬁ2+’72+)(1.

Equations (3), (4) become the following:

(6) a2X1 a2Xl _ 82Xl 2: kl
op* oy*  \0poy (1462 + )
2*x1 *x1 %x1
2 —= 42 2 =0.
(7) (87 +1) o5 573587”7 + 1) 5 0

However, these equations can only hold simultaneously if x; is a linear func-
tion of 8 and =, so that £/ = 0. We then treat

__Baxl__ Ix1 Ox1 Ixa

as rectangular coordinates. Then (6) is the differential equation of a sur-
face with constant curvature; (7) is that of a minimal surface. These two
properties are known to occur together only for planes.

Hence x has an expression of form

1
X:a+bﬁ+c7+§k1\/l+ﬁ2+72
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