Prime Number Theorem

$$\pi(x) := \sum_{p \le x} 1 \sim \frac{x}{\log(x)}$$
 as $x \to \infty$

一、引言

質數猜想由高斯在 1792 年提出(他當時 15 歲...),他猜測質數的累積分布在 x 趨近於無限大時,會近似於 $\frac{x}{A\log(x)+B}$ 的形式。十九世紀的數學家相繼投入,切比雪夫(Chebyshev)首先證明如果 $\pi(x)$ 的極限存在,那麼 A=1 且 B=0,但是沒有成功解決這個猜想;黎曼也研究過這個問題,無奈英年

一百年後的 1896 年 Hadamard 和 de la Vallée Poussin 以相似的方法分別給出了第一個證明(他們主要利用 $\zeta(z)$ 在 Re $z \geq 1$ 時沒有零點的性質與使用 Dirichlet series 來估計 ζ 在無窮遠處的行為[1]),從此質數猜想變成了質數定理。1949 年 Erdos 給出了僅使用組合數學與數論的初等證明[2]。

1980 年 D. J. Newman 給出了目前為止最簡潔的證法,只需要一些基本 性質與線積分上的技巧。

\square Notation

早逝。

- $\cdot z = Re(z) + i^* Im(z)$, Re for real part \cdot Im for imaginary part \cdot
- \cdot f ~ g if $\lim_{x\to\infty} \frac{f}{g} = 1$
- $\cdot \zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s}$ Rammen Zeta Function \circ
- $\Phi(s) := \sum_{p=0}^{\infty} \frac{\log p}{p^s}$ p is prime, take summation along all prime number \circ
- $\theta(\mathbf{x}) := \sum_{p \le x} \log p$
- $\cdot 0(\cdot)$: f = 0(g) if there is a constant c s.t. for all x : f(x) $\leq c^*g(x)$

三、Basic property

(0) $\zeta(s)$ and $\Phi(s)$ absolutely and locally uniformly convergent for Re s >1.

$$\sum_{n=1}^{\infty} \frac{1}{n^{Re(s)}} \ge \sum_{n=1}^{\infty} \left| \frac{1}{n^s} \right| \ge |\zeta(s)| > 0 \text{ also } \sum_{n=1}^{\infty} \left| \frac{1}{n^s} \right| \ge |\Phi(s)| > 0$$

By (0) we have (1) holds for Re s > 1.

(1)
$$\zeta(s) = (1 + \frac{1}{2^s} + \frac{1}{2^{2s}}) (1 + \frac{1}{3^s} + \frac{1}{3^{2s}}) \dots = \prod_p \sum_{k=0}^{\infty} \frac{1}{p^{ks}} = \prod_p \frac{1}{1-p^{-s}}$$

(2) $\zeta(s)$ - $\frac{1}{s-1}$ extends holomorphically to the region Re s>0 :

$$\zeta(s) - \frac{1}{s-1} = \sum_{n=1}^{\infty} \frac{1}{n^s} - \int_1^{\infty} \frac{dx}{x^s} = \sum_{n=1}^{\infty} \int_n^{n+1} \left(\frac{1}{n^s} - \frac{1}{x^s} \right) dx$$

which converges absolutely for Re s > 0

$$\left| \sum_{n=1}^{\infty} \int_{n}^{n+1} \left(\frac{1}{n^{s}} - \frac{1}{x^{s}} \right) dx \right| = \left| s \int_{n}^{n+1} \int_{n}^{x} \frac{du}{u^{s+1}} dx \right| \le \max_{n \le y \le n+1} \left| \frac{s}{u^{s+1}} \right| = \frac{|s|}{u^{Re(s)+1}}$$

(3)
$$\theta(x) = 0(x)$$

$$\theta(\mathbf{x}) = \sum_{p \le x} \log p = \log \prod_{p \le x} p$$

$$2^{2n} = \binom{2n}{0} + \binom{2n}{1} + \cdots + \binom{2n}{2n} \ge \binom{2n}{n} \ge \prod_{n \le p \le 2n} p = e^{\theta(2n) - \theta(n)}$$

It's an easy fact that $\binom{2n}{n}$ is an integer, so n! divides $\frac{2n}{n!}$.

Meanwhile $\prod_{n \le p \le 2n} p$ divides $\frac{2n}{n!}$ and n! not divides $\prod_{n \le p \le 2n} p$

So $\prod_{n \le p \le 2n} p$ divides $\binom{2n}{n}$, hence $\binom{2n}{n} \ge \prod_{n \le p \le 2n} p = e^{\theta(2n) - \theta(n)}$

$$\theta(x) = \sum_{p \le x} \log p$$

$$=> \theta(x) + \log(x+1) \ge \sum_{p \le x+1} \log p = \theta(x+1)$$

$$\cdot \log(2^{2n}) \ge \log(e^{\theta(2n) - \theta(n)})$$

$$=> 2n \log 2 \ge \theta(2n) - \theta(n)$$

=>
$$\theta(x)-0(1) \approx \theta(x)-\theta(x//2)+\theta(x//2)-\theta(x//4)....0(1)$$

 $\leq (x \log 2 + x \log 2//2 + x \log 2//4.... 2 \log 2)$
 $\leq 2x \log 2$

(4) $\zeta(s) \neq 0$ and $\Phi(s) - \frac{1}{s-1}$ is holomorphic for $\text{Re}(s) \geq 1$

For Re(s)>1, due to the convergent of product $\prod_{p} \frac{1}{1-p^{-s}}$ in (1), we have

$$-\frac{\zeta'(s)}{\zeta(s)} = \sum_{p} \frac{\log p}{p^{s} - 1} = \Phi(s) + \sum_{p} \frac{\log p}{p^{s}(p^{s} - 1)}$$

· $\sum_{p} \frac{\log p}{p^{s}(p^{s}-1)}$ converges for Re(s) > $\frac{1}{2}$ which means Φ extends meromorphically to Re(s) > $\frac{1}{2}$ by (2).

 $\sum_{p} \frac{\log p}{p^{s}-1}$ does not converge while s=1 .

 $\frac{\zeta'(s)}{\zeta(s)}$ has poles for every zero of $\zeta(s)$

Suppose $\zeta(s)$ has a zero of order u at $s=1\pm i\alpha$ and a zero of order v at $s=1\pm 2i\alpha$ (α is real and $\alpha>0$. u, $v\geq 0$ by (2)).

By applying Cauchy's integral formula on $-\frac{\zeta'(s)}{\zeta(s)}$ we have :

$$\begin{split} \lim_{\varepsilon \to 0} \ \varepsilon \Phi(1+\varepsilon) = 1 \\ \lim_{\varepsilon \to 0} \ \varepsilon \Phi(1+\varepsilon \pm \mathrm{i}\alpha) = -\mathrm{u} \\ \lim_{\varepsilon \to 0} \ \varepsilon \Phi(1+\varepsilon \pm 2\mathrm{i}\alpha) = -\mathrm{v} \end{split}$$

By definition of Φ :

$$\sum_{r=-2}^{2} {4 \choose 2+r} \Phi(1+\varepsilon \pm r * i\alpha) = \sum_{p} \frac{\log p}{p^{1+\varepsilon}} (p^{\frac{i\alpha}{2}} + p^{-i\alpha/2})^4 \ge 0$$

And then applying limit of ε on first term above :

$$\binom{4}{0} * (-v) + \binom{4}{1} * (-u) + \binom{4}{2} * 1 + \binom{4}{3} * (-u) + \binom{4}{4} * (-v) \ge 0$$

=> 6 - 8u - 2v \ge 0

As definition, u, $v \ge 0$, we can conclude u = 0, i.e. $\zeta(1 \pm i\alpha) \ne 0$.

By showing ζ has no zero whose real part is 1, we can conclude that the only pole of Φ satisfied Re(s)=1 is s = 1 . Since

$$\lim_{\varepsilon \to 0} \varepsilon \Phi(1 + \varepsilon) = 1$$

This pole can be removed and we have $\Phi(s) - \frac{1}{s-1}$ is holomorphic while Re(s)=1.

Lemma:

Let f(t) $(t \ge 0)$ be a bounded and locally integrable function and suppose that the function $g(z) = \int_0^\infty f(t)e^{-zt}dt$ extends holomorphically from Re(z) > 0 to $Re(z) \ge 0$. Then $\int_0^\infty f(t)dt$ exists and equals to g(0)

(5) $\int_{1}^{\infty} \frac{\theta(x) - x}{x^2} dx$ is a convergent integral.

For Re(s) > 1, we have

$$\Phi(s) = \sum_{p} \frac{\log p}{p^s} = \int_{1}^{\infty} \frac{d\theta(x)}{x^s} = s \int_{1}^{\infty} \frac{\theta(x)}{x^{s+1}} dx = s \int_{0}^{\infty} e^{-st} \theta(e^t) dt$$

Take $f(t) = \theta(e^t)e^{-t} - 1$ and $g(z) = \frac{\Phi(z+1)}{z+1} - \frac{1}{z}$. (3) implies f bounded. (4) implies g expands holomorphically to $Re(z) \ge 0$.

According to Lemma:

$$g(0) = \int_0^\infty (\theta(e^t)e^{-t} - 1)dt = \int_0^\infty (\theta(e^t)e^{-2t} - e^{-t})de^t$$
$$= \int_1^\infty (\theta(x)x^{-2} - x^{-1})dx$$

四、proof

Assume that for some $\lambda > 1$ there are arbitrarily large x s.t. $\theta(x) \ge \lambda x$. θ is non-decreasing , we have :

$$\int_{x}^{\lambda x} \frac{\theta(x) - x}{x^2} dx \ge \int_{x}^{\lambda x} \frac{\lambda x - x}{x^2} dx = \int_{1}^{\lambda} \frac{\lambda - t}{t^2} dt > 0$$

Notice that $\int_1^{\lambda} \frac{\lambda - t}{t^2} dt$ is irrelevant to x and hence it contradicts to the convergence in (5). Similarly, inequality $\theta(x) \le \lambda x$ would imply:

$$\int_{\lambda x}^{x} \frac{\theta(x) - x}{x^2} dx \le \int_{\lambda x}^{x} \frac{\lambda x - x}{x^2} dx = \int_{\lambda}^{1} \frac{\lambda - t}{t^2} dt < 0$$

Again a contradiction for λ fixed and x big enough.

The prime number theorem follows easily from (6), since for any $\varepsilon > 0$:

$$\theta(\mathbf{x}) = \sum_{p \le x} \log p \le \sum_{p \le x} \log x = \pi(\mathbf{x}) \log x$$

$$\theta(\mathbf{x}) \ge \sum_{x^{1 - \varepsilon} \le p \le x} \log p \ge \sum_{x^{1 - \varepsilon} \le p \le x} (1 - \varepsilon) * \log x = (1 - \varepsilon) \log x \left[\pi(\mathbf{x}) + O(x^{1 - \varepsilon})\right]$$

then we get

$$\theta(x) \sim \pi(x) \log x$$

and finally

$$\pi(x) \sim \frac{\theta}{\log x} \sim \frac{x}{\log x}$$

五、Lemma:

Let f(t) ($t \ge 0$) be a bounded and locally integrable function and suppose that the function $g(z) = \int_0^\infty f(t)e^{-zt}dt$ extends holomorphically from Re(z) > 0 to $Re(z) \ge 0$.

Then $\int_0^\infty f(t)dt$ exists and equals to g(0)

Proof:

Set $g_T(z)=\int_0^T f(t)e^{-zt}dt$, this is clearly holomorphic for all z. we must show that $\lim_{T\to\infty}g_T(0)=g(z)$

Let R be large and let D be the boundary of the region $\{z \in C \mid |z| \le R, Re(z) \ge -\delta\}$ where $\delta > 0$ is small enough (depending on R) so that g(z) is holomorphic in and on D.

Recall Cauchy's theorem, g and g_T are both holomorphic :

$$g(0) - g_T(0) = 2\pi i \oint_C \frac{g(z) - g_T(z)}{z} dt$$

There is an ingenious trick that multiply

$$e^{Tz}(1+\frac{z^2}{R^2})$$
 to $g(z)$ - $g_T(z)$, notice that

 $e^{Tz}(1+\frac{z^2}{R^2})$ is holomorphic over the whole C.

$$2\pi \mathrm{i} \oint_{\mathcal{C}} \frac{(g(z) - g_T(z))e^{Tz}(1 + \frac{z^2}{R^2})}{z} dt = \left(g(0) - g_T(0)\right)e^{T*0} \left(1 + \frac{0^2}{R^2}\right)$$

And it's still $g(0) - g_T(0)$.

On the semicircle $D_+=D\cap\{Re(z)>0\}$ the integrand is bounded by $2B/R^2$, where $B=\max_{t\geq 0}f(t)$ because :

$$|g(z) - g_T(z)| = \left| \int_{T}^{\infty} f(t)e^{-zt}dt \right| \le B \int_{T}^{\infty} |e^{-zt}|dt = \frac{B * e^{-Re(z)T}}{Re(z)} \quad (Re(z) > 0)$$

And

$$\left| \frac{e^{zT} (1 + \frac{z^2}{R^2})}{z} \right| = \frac{e^{Re(z)T} * 2Re(z)}{R^2} \quad \left(\frac{1 + \frac{z^2}{R^2}}{z} = \frac{\left(\frac{R}{z} + \frac{z}{R} \right)}{R} = \frac{2Re\left(\frac{z}{R} \right)}{R} = \frac{2Re(z)}{R^2} \right)$$

$$\frac{2B}{R^2} = \frac{B * e^{-Re(z)T}}{Re(z)} * \frac{2Re(z)}{R^2}$$

Thus the contribution to $g(0)-g_T(0)$ from the integral over D_+ is bounded in absolute value by $B/R > 2B/R^2$ while R is large.

For $D_- = D \cap \{Re(z) < 0\}$, we look at g and g_T separately. Since g_T is entire, the path of integration for the integral involving g_T can be replaced by the semicircle $D'_- = \{Re(z) < 0 \text{ and } |z| < R\}$ and it's integral over D'_- is then bounded in absolute value $\frac{2\pi B}{R}$ by exact same estimate as before.

Finally, the remaining integral over D_{-} tends to be 0 as $T\rightarrow\infty$ because the integrand is the

product of the function $\frac{g(z)(1+\frac{z^2}{R^2})}{z}$ which is independent of T and e^{zT} which goes to 0 rapidly and uniformly on compact sets as $T\to\infty$ in the half plane Re(z)<0 hence $\lim_{T\to\infty}\sup|g(0)-g_T(z)|\leq 2B/R$.

Since R is arbitrary this proves the Lemma.

六、Summary

D. J. Newman 用巧妙的技巧以高斯積分和平地證明了引理,在他之前的證明必須小心地處理 zeta function 或者其 fourier transform 在無窮遠處的行為。

 $\pi \sim \frac{x}{\log(x)}$ 收斂的速度算蠻慢的,它在 10^5 時的誤差大概 10%,它在 10^5 時的誤差仍有 2%;當然還有更強的版本,不過必須和黎曼猜想掛勾。

質數定理是一個好而簡明的例子,展示ζ(s)如何在複分析與分析之間搭起 一座橋梁,也展示其重要性。

$tau \cdot Reference$

- · D. Zagier, Newman's Short Proof of the Prime Number Theorem, *Amer. Math. Monthly*, 104(1997), 705-708.
- · J. Korevaar, On Newman's quick way to the prime number theorem, *Math. Intelligencer* 4, 3(1982), 108-115