Prime Number Theorem
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— ~ Notation
- z=1Re(z) +i* Im(z) > Re for real part * Im for imaginary part °

f~g if limx_mg:l

- {(s) := Z,";l% Rammen Zeta Function -

cD(s) = Xy k;ip p is prime, take summation along all prime number -
- 8(x) == Xp<xlogp
- 0( - ):f=0(g) if there is a constant c s.t. forall x: f(x) < c*g(x)

— ~ Basic property
(0) ¢(s) and @(s) absolutely and locally uniformly convergent for Re s >1.
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> ()] > 0 also X, || = [o()] >0

By (0) we have (1) holds for Re s >1.
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(2) (s) - ﬁ extends holomorphically to the region Re s > 0:
1 o 1 o d n+1 1
() - = = Yo - Jy =5 = T ), (—s_;)dx
which converges absolutely for Re s > 0
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3)8x) =0(x)
“0(x) = Xp<xlog p =logllp<xp
. p2n — (zon) n (21n) + (;z) > (27?) > HnSpSan — 8@2n)-8(n)
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It's an easy fact that (%") is an integer; so n! divides f

< max
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Meanwhile [[,<p<;np divides 77: and n! not divides [[<p<onp

S0 [Tnspsanp divides (27?), hence (21?) > [lhspsonp = €93WO®

- 0(x)=2Xp<xlogp
=> 0(x)+log(x+1) = Yp<xi1logp = 6(x+1)
. 10g(22") > log(ee(Zn)—G(n))
=>2nlog2 = 6(2n) —6(n)
=> 0(x)-0(1) = 6(x)-0(x//2)+ 6(x//2)-06(x//4)....0(1)
(xlog2 +xlog2//2+ xlog2//4.... 2 1og2)

<
< 2xlog2

(4) ¢(s)#0 and ®(s)— s—% is holomorphic for Re(s)> 1

For Re(s)>1, due to the convergent of product [], 1_1

p=s
) logp logp
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converges for Re(s) > % which means @ extends

in (1), we have

" 2p

ps(ps 1)

meromorphically to Re(s) > % by (2).
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" 2p Sgp does not converge whiles =1.
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. % has poles for every zero of {(s)
Suppose {(s) hasazero of order u ats = 1+ia and a zero of order

vats=142ia (aisrealand a>0.u,v > 0 by (2)).
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© we have :

By applying Cauchy's integral formula on —

lime,y eP(1+¢)=1
limg., ed(1+¢+ia) =—u
limg, ed(1+ ¢ £ 2ia) = —v
By definition of & :
2

4 _ logp o .
D (ap)oUretreio) =) —GR @+t 20
p

r=-—2

And then applying limit of ¢ on first term above :

(o) (14 (oo

=> 6—-8u—-2v=0
As definition, u, v > 0, we can conclude u =0, i.e. {(1 £ ia)+0.
By showing ( has no zero whose real part is 1, we can conclude
that the only pole of & satisfied Re(s)=1iss=1. Since
limg,y eP(1+¢)=1

This pole can be removed and we have ®(s)— s,—% is holomorphic

while Re(s)=1.

Lemma:
Let f(t) (t = 0) be a bounded and locally integrable function and suppose

that the function g(z) = | Ooo f()e ?tdt extends holomorphically from

Re(z) >0 to Re(z) 0. Then fooof(t)dt exists and equals to g(0)
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For Re(s) >1, we have

— dx is a convergent integral .
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o(z+1) 1

Take f(t)= 0(e')e t —1 and g(z) = ——— —- - (3) implies f bounded.

(4) implies g expands holomorphically to Re(z) = 0.

According to Lemma :

g(0) = J:O(G(et)e‘t —1Ddt = j:o(e(et)e‘“ —e Hdet

= foo(e(x)x_2 —x Ydx
1

Vg ~ proof
Assume that for some A>1 there are arbitrarily large x s.t. 8(x) = Ax .

0 is non-decreasing, we have :

AX AxX A
0(x) —x AX — X A—t
j > dXZf 5 dx=] > dt>0
X X t
X X 1

: AA-t oL . :
Notice that [ t—zt dt is irrelevant to x and hence it contradicts to the

convergence in (5). Similarly, inequality 6(x) < Ax would imply :

1

xe(x)—x X?\X—X A—t

f > dxsf > dxzf dt< 0
x x t2

Ax AX A

Again a contradiction for A fixed and x big enouph.

The prime number theorem follows easily from (6), since for any ¢ > 0 :

p<x p=<x
0(x) = Z logp > Z (1—¢) *logx = (1 — &) logx [1(x) + 0 (x1=5)]
x1-€<p=x x1-€<p=x

then we get
0(x) ~ m(x)logx
and finally
0 X

) ~ log x - log x




+. ~ Lemma:
Let f(t) (t = 0) be a bounded and locally integrable function and suppose

that the function g(z) = fooof(t)e‘tht extends holomorphically from Re(z) >
0 to Re(z) = 0.

Then | 0°° f(t)dt exists and equals to g(0)

Proof:

Set gr(z) = fOTf(t)e_tht, this is clearly holomorphic for all z. we must

show that Tlim 9r(0)=g(z)

Let R be large and let D be the boundary of the
region {z €C| |z| < R,Re(z) = —6} where § >0
is small enough (depending on R) so that g(z) is
holomorphic in and on D.

Recall Cauchy’s theorem, g and g are both
holomorphic:

9(0) - g(0) = 2mi §

Cc

9(2) - gr(2) it

There is an ingenious trick that multiply

2
eT?(1+ %) to g(z) - gr(2), notice that

2
eT?(1+ %) is holomorphic over the whole C.

2
| 56 (9(2) - gr(2)e™ (1 +23)
TT1 2

02
dt = (g(0) - gr(0))e™° <1 + ﬁ>

And it’s still g(0) - g+(0).

On the semicircle D,= D N{Re(z) > 0} the integrand is bounded by 2B/R?,

where B = max f(t) because:

o)

<B f le~?t|dt =

T

« p—Re(2)T

T(Z) (Re(z) > 0)

l9(2) - gr(2)| =

Joof(t)e_”dt

And
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2B Bxe Re@T 2Re(2)
Rz~ Re(2) *TR?
Thus the contribution to g(0)—g+(0) from the integral over D, isbounded
in absolute value by B/R > 2B/R? while R is large.

For D_ =Dn{Re(z) < 0}, we look at g and !
gr separately. Since gr is entire, the path of i
integration for the integral involving gr can be
replaced by the semicircle
_ ={Re(z) < 0 and |z|<R}and it’s integral

. . 2B
over D'_ isthen bounded in absolute value %

by exact same estimate as before.

Finally, the remaining integral over D_ tends

to be 0 as T—oo because the integrand is the

72
)(1+5)
Ll which is independent of T and e?"which goes

product of the function
to 0 rapidly and uniformly on compact sets as T— oo in the half plane Re(z)<0

hence Tlim sup|g(0) — gr(2)| < 2B/R.

Since R is arbitrary this proves the Lemma.
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