Goldstein Classical Mechanics Notes

Michael Good
May 30, 2004

1 Chapter 1: Elementary Principles

1.1 Mechanics of a Single Particle

Classical mechanics incorporates special relativity. ‘Classical’ refers to the con-
tradistinction to ‘quantum’ mechanics.

Velocity:
dr
vV=—.
dt
Linear momentum:
p=mv
Force: i
P
F=—.
dt

In most cases, mass is constant and force is simplified:

Acceleration:

d?r
ol

Newton’s second law of motion holds in a reference frame that is inertial or
Galilean.

Angular Momentum:

L=rxp.

Torque:

T=rxF.

Torque is the time derivative of angular momentum:



dL

dt’

2
W12:/ F - dr.
1

In most cases, mass is constant and work simplifies to:

Work:

2 2 2
Wis =m d—v-vdt:m/ V-d—vdtzm/ v-dv
m

W12 = E(Ug —’U%) = T2 —Tl

Kinetic Energy:

mv2

T=—
2

The work is the change in kinetic energy.

A force is considered conservative if the work is the same for any physically
possible path. Independence of Wis on the particular path implies that the
work done around a closed ciruit is zero:

%F-dr:O

If friction is present, a system is non-conservative.

Potential Energy:

F=-VV(r).
The capacity to do work that a body or system has by viture of is position
is called its potential energy. V above is the potential energy. To express work
in a way that is independent of the path taken, a change in a quantity that

depends on only the end points is needed. This quantity is potential energy.
Work is now V; — V5. The change is -V.

Energy Conservation Theorem for a Particle: If forces acting on a particle
are conservative, then the total energy of the particle, T + V, is conserved.

The Conservation Theorem for the Linear Momentum of a Particle states
that linear momentum, p, is conserved if the total force F, is zero.

The Conservation Theorem for the Angular Momentum of a Particle states
that angular momentum, L, is conserved if the total torque T, is zero.



1.2 Mechanics of Many Particles
Newton’s third law of motion, equal and opposite forces, does not hold for all

forces. It is called the weak law of action and reaction.

Center of mass:

R = Zmﬂ'i _ Zmiri
Z m; M '
Center of mass moves as if the total external force were acting on the entire

mass of the system concentrated at the center of mass. Internal forces that obey
Newton’s third law, have no effect on the motion of the center of mass.

d’R
(e) = (e)
F _Mdt2_% F,”.
Motion of center of mass is unaffected. This is how rockets work in space.

Total linear momentum:

dr; dR
P= LI YA
zi:m dt dt

Conservation Theorem for the Linear Momentum of a System of Particles:
If the total external force is zero, the total linear momentum is conserved.

The strong law of action and reaction is the condition that the internal forces
between two particles, in addition to being equal and opposite, also lie along
the line joining the particles. Then the time derivative of angular momentum
is the total external torque:

dL
b N (O
dt
Torque is also called the moment of the external force about the given point.

Conservation Theorem for Total Angular Momentum: L is constant in time
if the applied torque is zero.

Linear Momentum Conservation requires weak law of action and reaction.
Angular Momentum Conservation requires strong law of action and reaction.

Total Angular Momentum:

L:Zrixpi:RxMV—i—Zr;xp;.



Total angular momentum about a point O is the angular momentum of mo-
tion concentrated at the center of mass, plus the angular momentum of motion
about the center of mass. If the center of mass is at rest wrt the origin then the
angular momentum is independent of the point of reference.

Total Work:

Wia =T - T

where T is the total kinetic energy of the system: 7" = %Zz m;v2.
Total kinetic energy:

1 1 1
7= g mat = gMut 433 maf

Kinetic energy, like angular momentum, has two parts: the K.E. obtained if
all the mass were concentrated at the center of mass, plus the K.E. of motion
about the center of mass.

Total potential energy:

1
TR
i 4 i£g
If the external and internal forces are both derivable from potentials it is
possible to define a total potential energy such that the total energy T + V is
conserved.

The term on the right is called the internal potential energy. For rigid bodies
the internal potential energy will be constant. For a rigid body the internal
forces do no work and the internal potential energy remains constant.

1.3 Constraints

e holonomic constraints: think rigid body, think f(ry,rs,r3,...,t) = 0, think
a particle constrained to move along any curve or on a given surface.

e nonholonomic constraints: think walls of a gas container, think particle
placed on surface of a sphere because it will eventually slide down part of
the way but will fall off, not moving along the curve of the sphere.

1. rheonomous constraints: time is an explicit variable...example: bead on
moving wire

2. scleronomous constraints: equations of contraint are NOT explicitly de-
pendent on time...example: bead on rigid curved wire fixed in space

Difficulties with constraints:



1. Equations of motion are not all independent, because coordinates are no
longer all independent

2. Forces are not known beforehand, and must be obtained from solution.

For holonomic constraints introduce generalized coordinates. Degrees of
freedom are reduced. Use independent variables, eliminate dependent coordi-
nates. This is called a transformation, going from one set of dependent variables
to another set of independent variables. Generalized coordinates are worthwhile
in problems even without constraints.

Examples of generalized coordinates:

1. Two angles expressing position on the sphere that a particle is constrained
to move on.

2. Two angles for a double pendulum moving in a plane.
3. Amplitudes in a Fourier expansion of r;.

4. Quanities with with dimensions of energy or angular momentum.

For nonholonomic constraints equations expressing the constraint cannot be
used to eliminate the dependent coordinates. Nonholonomic constraints are
HARDER TO SOLVE.

1.4 D’Alembert’s Principle and Lagrange’s Equations
Developed by D’Alembert, and thought of first by Bernoulli, the principle that:

Y oEe - dd?) ~or; =0

i

This is valid for systems which virtual work of the forces of constraint van-
ishes, like rigid body systems, and no friction systems. This is the only restric-
tion on the nature of the constraints: workless in a virtual displacement. This
is again D’Alembert’s principle for the motion of a system, and what is good
about it is that the forces of constraint are not there. This is great news, but it
is not yet in a form that is useful for deriving equations of motion. Transform
this equation into an expression involving virtual displacements of the gener-
alized coordinates. The generalized coordinates are independent of each other
for holonomic constraints. Once we have the expression in terms of generalized
coordinates the coefficients of the dg; can be set separately equal to zero. The
result is:

d or oT
2.

{[a(afq]) - 87(]]] —Q;}0g; =0



Lagrange’s Equations come from this principle. If you remember the indi-
vidual coefficients vanish, and allow the forces derivable from a scaler potential
function, and forgive me for skipping some steps, the result is:

4oL oL
dt 9q;"  Oq;

1.5 Velocity-Dependent Potentials and The Dissipation
Function

The velocity dependent potential is important for the electromagnetic forces on
moving charges, the electromagnetic field.
L=T-U

where U is the generalized potential or velocity-dependent potential.
For a charge mvoing in an electric and magnetic field, the Lorentz force
dictates:

F =¢[E+ (v x B)].
The equation of motion can be dervied for the x-dirction, and notice they
are identical component wise:
mi = q[Ey + (v x B),].

If frictional forces are present(not all the forces acting on the system are
derivable from a potential), Lagrange’s equations can always be written:

d 0L oL
—(5-)— 52— =0@;
dt " 0q; 0q;
where @); represents the forces not arising from a potential, and L contains
the potential of the conservative forces as before.
Friction is commonly,

Ffz = —kw’l)w.

Rayleigh’s dissipation function:

1
Fdis - 5 Z(k'ﬂvfx + kyvzzy + kzvzzz)'

K2

The total frictional force is:

Ff =~V Fgs

Work done by system against friction:

AWy = —2Fy;.dt



The rate of energy dissipation due to friction is 2Fy;s and the component of
the generalized force resulting from the force of friction is:

- 8Ei'is
aq;

In use, both L and Fjy;s must be specified to obtain the equations of motion:

Q; =

d DLy 0L OFu,
dt 8qj 8%‘ (9q] '

1.6 Applications of the Lagrangian Formulation

The Lagrangian method allows us to eliminate the forces of constraint from the
equations of motion. Scalar functions T and V are much easier to deal with
instead of vector forces and accelerations.

Procedure:

1. Write T and V in generalized coordinates.

2. Form L from them.

3. Put L into Lagrange’s Equations

4. Solve for the equations of motion.

Simple examples are:

1. a single particle is space(Cartesian coordinates, Plane polar coordinates)
2. atwood’s machine

3. a bead sliding on a rotating wire(time-dependent constraint).

Forces of contstraint, do not appear in the Lagrangian formulation. They
also cannot be directly derived.



Goldstein Chapter 1 Derivations

Michael Good
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1 Derivations

1. Show that for a single particle with constant mass the equation of motion
implies the follwing differential equation for the kinetic energy:

T
“_F.
dt v

while if the mass varies with time the corresponding equation is

d(mT)
dt

=F-p.

Answer:

ar  d(zmu?)
dt — dt
with time variable mass,

=mv-v=ma-v=F- v

d(mT) d  p? )
= —(— ) = . :F .
o 4(5)=pP p

2. Prove that the magnitude R of the position vector for the center of mass from
an arbitrary origin is given by the equation:

1
M?R? = Mzi:mirf —3 iz]:mimjrfj.

Answer:

MR = Zmiri



M2R2 = Zmimjri . I'j
Solving for r; - r; realize that r;; = r; —r;. Square r; — r; and you get

2 _ 2 . 2
rij—ri—2rl rj+rj

Plug in for r; - r

Lo o 2
5(7"1‘ +ry =)

MZ2R? = meZm]r + = Zmzm] Ty — Zmzmj T
iMzi:mirf + §Mij7‘]2» —-3 ;mimjrfj

M?R? = MZmlr fmeZmJ Tii

I‘i-I‘jZ

M?R?

8. Suppose a system of two particles is known to obey the equations of mo-
tions,

d2R
(e)
dt2 Z F9=F

22 N®
dt

From the equations of the motion of the individual particles show that the in-
ternal forces between particles satisfy both the weak and the strong laws of ac-
tion and reaction. The argument may be generalized to a system with arbitrary
number of particles, thus proving the converse of the arguments leading to the
equations above.

Answer:

First, if the particles satisfy the strong law of action and reaction then they
will automatically satisfy the weak law. The weak law demands that only the
forces be equal and opposite. The strong law demands they be equal and oppo-
site and lie along the line joining the particles. The first equation of motion tells
us that internal forces have no effect. The equations governing the individual
particles are

pl = F(le) + Fo1

Py = Fée) +Fio



Assuming the equation of motion to be true, then

Py +Py=F +Fy +FY + Fy,

must give

Fio+Fy =0

Thus Fi2 = —F5; and they are equal and opposite and satisfy the weak law
of action and reaction. If the particles obey

o N®
dt

then the time rate of change of the total angular momentum is only equal to
the total external torque; that is, the internal torque contribution is null. For
two particles, the internal torque contribution is

r XF21 +r2xF12=r1 XF21—|—I‘2 X (—Fgl) = (I‘l—I‘Q)XFgl :I‘12XF21 =0

Now the only way for ris X Fa; to equal zero is for both ri5 and Fo; to lie
on the line joining the two particles, so that the angle between them is zero, ie
the magnitude of their cross product is zero.

A x B = ABsint

4. The equations of constraint for the rolling disk,
dx —asinfdy =0

dy + acosfdy =0

are special cases of general linear differential equations of constraint of the form

n
Zgi(xl, N ,Z‘n)dl‘z =0.
i=1

A constraint condition of this type is holonomic only if an integrating function
f(x1,...,2,) can be found that turns it into an exact differential. Clearly the
function must be such that

O(fg:) _ 9(fg;)

Oz ox;

for alli # j. Show that no such integrating factor can be found for either of the
equations of constraint for the rolling disk.
Answer:



First attempt to find the integrating factor for the first equation. Note it is
in the form:
Pdz + Qdp+Wdo =0

where P is 1, Q is —asinf and W is 0. The equations that are equivalent to

d(fg:) _ 9(f9;)

ij Bxl

are

o  Ox
a(fpP) _o(fw)
200 Oz
o(fQ) _ o(fw)
20 0

These are explicitly:

o(f) _ 9(—fasin®)

06 or
o) _
o0 "

O(—fasinf) 0
00 B

Simplfying the last two equations yields:

fcosf =0

Since y is not even in this first equation, the integrating factor does not
depend on y and because of % = 0 it does not depend on 6 either. Thus

f:f(m?¢)

The only way for f to satisfy this equation is if f is constant and thus appar-
ently there is no integrating function to make these equations exact. Performing
the same procedure on the second equation you can find

O(facos®) Of

oy 99
)01 _or
a cos 9y ~ 90
and
fsing =0



of
00
leading to

I=1y9)

and making it impossible for f to satsify the equations unless as a constant. If
this question was confusing to you, it was confusing to me too. Mary Boas says
it is ‘not usually worth while to spend much time searching for an integrating
factor’ anyways. That makes me feel better.

5. Two wheels of radius a are mounted on the ends of a common axle of length
b such that the wheels rotate independently. The whole combination rolls with-
out slipping on a palne. Show that there are two nonholonomic equations of
constraint,

cos fdx + sinfdy = 0

1
sin @dx — cos Ody = ia(dqﬁ +d¢)

(where 0,0, and ¢' have meanings similar to those in the problem of a single
vertical disk, and (z,y) are the corrdinates of a point on the axle midway between
the two wheels) and one holonomic equation of constraint,

a
0=C- 20—

where C is a constant.

Answer:

The trick to this problem is carefully looking at the angles and getting the
signs right. I think the fastest way to solve this is to follow the same procedure
that was used for the single disk in the book, that is, find the speed of the
disk, find the point of contact, and take the derivative of the x component,
and y component of position, and solve for the equations of motion. Here the
steps are taken a bit further because a holonomic relationship can be found that
relates 0, ¢ and ¢’. Once you have the equations of motion, from there its just
slightly tricky algebra. Here goes:

We have two speeds, one for each disk

and two contact points,

b b
(z 5cos€,y:|: Esiné))



The contact points come from the length of the axis being b as well as x and
y being the center of the axis. The components of the distance are cos and sin
for x and y repectively.

So now that we’ve found the speeds, and the points of contact, we want to
take the derivatives of the x and y parts of their contact positions. This will
give us the components of the velocity. Make sure you get the angles right, they
were tricky for me.

d

b
dt(m—|— 50059) = v,

b .
T — 3 sin 00 = v cos(180 — 6 — 90) = v cos(90 — 0) = v cos(—90 + 0) = vsin b
b o
T — §s1n90 = ag¢sinf
Do this for the next one, and get:
T+ 5511199 =a¢ sinf

The plus sign is there because of the derivative of cos multiplied with the
negative for the primed wheel distance from the center of the axis. For the y
parts:

d

b .
dt<y+ ism@) = v,

U+ 200509: —vcosh = —adcosh

It is negative because I decided to have axis in the first quadrent heading
south-east. I also have the primed wheel south-west of the non-primed wheel.
A picture would help, but I can’t do that on latex yet. So just think about it.

Do it for the next one and get:

¥ — 200899 = —ag cosb

All of the derivatives together so you aren’t confused what I just did:
b -
T — 55111949 = a¢psinb
T+ 5511199 =ag¢ sinf
b ) )
y+ 5 cos 00 = —a¢ cos b

U — 200899 = —ag cosb

Now simplify them by cancelling the dt’s and leaving the x and y’s on one side:



dx = sin H[gdﬁ + add)] (1)

dr = sin 0[—gd0 + ad¢’] (2)
dy = — cos H[gdﬁ + add)] (3)
dy = — cos G[fgde + adg’] (4)

Now we are done with the physics. The rest is manipulation of these equa-
tions of motion to come up with the constraints. For the holonomic equation
use (1)-(2).

(1) = (2) = 0= bdf + a(dp — d¢")

9 = —(dp — dg')

a
b
b=—3(0—¢)+C

For the other two equations, I started with

(1) cosf + (3)sinf = cos@sinﬁ[%d@ + ad¢] — sin 6 cos Q[Sdﬂ + adg)

cos 0dx + sinfdy = 0

and

(1) + (2) = 2dx = sinfaldg + d¢']
(3) + (4) = 2dy = — cos fa[dp + d¢']
multiply dy by — cos @ and multiply dx by sin to yield yourself
— cos Ody = cos? 9% [dé + dg']
sin fdx = sin® 9% [do + d¢']
Add them together and presto!

sinfdz — cos Ody = %[qu +d¢]

6. A particle moves in the zy plane under the constraint that its velocity vector
1s always directed towards a point on the x axis whose abscissa is some given
function of time f(t). Show that for f(t) differentiable, but otherwise arbitrary,



the constraint is nonholonomic.
Answer:

The abscissa is the x-axis distance from the origin to the point on the x-axis
that the velocity vector is aimed at. It has the distance f(¢).

I claim that the ratio of the velocity vector components must be equal to
the ratio of the vector components of the vector that connects the particle to
the point on the x-axis. The directions are the same. The velocity vector
components are:

_dy
’Uy—a
_d:zc
’Um—a

The vector components of the vector that connects the particle to the point
on the x-axis are:

Vy = y(t)
Ve = a(t) — f(t)

For these to be the same, then

o _ Yy

’UZE xr
dy  y(t)
de — x(t) - f(t)
dy dx

y(t) — a(t) - f(t)
This cannot be integrated with f(¢) being arbituary. Thus the constraint is
nonholonomic. It’s nice to write the constraint in this way because it’s frequently
the type of setup Goldstein has:

ydx + (f(t) —2)dy =0

There can be no integrating factor for this equation.

7. The Lagrangian equations can be written in the form of the Nielsen’s equa-
tions. .
oT oT
=22 =Q
a4 dq

Show this.



Answer:

I'm going to set the two forms equal and see if they match. That will show
that they can be written as displayed above.

Lagrangian Form = Nielsen’s Form

da.or, _or_ot ot
dt " 94 dqg 04 dq
d or. 98T oT
9y o " % ®)

What is %—5 you may ask? Well, lets solve for 7" first.

. d
= —-T(q,q,t
g L(@4:t)
Because % is a full derivative, you must not forget the chain rule.
. d or orT oT
T=-—-T(qq¢t) =—+——G4¢+—=—§
i L(@at) =2+ agi 3q1

Now lets solve for ‘g—g, not forgetting the product rule
al—ﬁ[al+8£+8£}
o 04 ot  ogl " 9q"

of _oor oor  oreq oor,

o 040t  930q¢" " 9q0¢ 04 04"

g 0toq  09q0q1 T 9 T84 0¢"!
Now we have %7 so lets plug this into equation (5).
i(ai)+8£_98£+28£+8£+g(8£)
dt°9q’ " 9 0t9G  9q0dt " Bg T 9g 9q’?
4.0r, 09T 00T, 9 0T,
dt aq’ 0t oq  9q0q T 8¢ 9g’"
Notice that this is indeed true.
d oT 0 ,0T o, 0or. . 90 ,0T..
ﬁ(ﬁfq) = a(afq) + Kq(?q)q + %(Fq)q
because T = T'(q, g, ).



If L is a Lagrangian for a system of n degrees of freedom satisfying Lagrange’s
equations, show by direct substitution that

dF(q17 7qnat)

L'=L
* dt

also satisfies Lagrange’s equations where F is any arbitrary, but differentiable,

function of its arguments.

Answer:

Let’s directly substitute L’ into Lagrange’s equations.
d oL’ B oL
dt 9q dqg
d 90 dF 0 dF
il haiali SN S il
ioqt T e " e\t w
d [871'/ . 0dF., OL 0 dF
dt 0¢ = Oq dt B
doL 0L d 0 dF adFiO

dt ¢ 0Oq dtdq dt Oq dt
On the left we recognized Lagrange’s equations, which we know equal zero.
Now to show the terms with F vanish.

d 9dF 8§ dF _

aoqd  oqdr "
doF _or
dt 9¢  Oq
This is shown to be true because
oF _or
9 g
‘We have
dor _ dor
dt 0¢  dt dq
0 OF 0 OF .

~ 9t 9 9 0g"
_2[87}74'_87]?]—67}7
T o¢tat " aq? T B

10



Thus as Goldstein reminded us, L =T — V is a suitable Lagrangian, but it
is not the only Lagrangian for a given system.

9. The electromagnetic field is invariant under a gauge transformation of the
scalar and vector potential given by

A = A+ Vi(r,t)

10w
PO o

where 1 is arbitrary (but differentiable). What effect does this gauge trans-
formation have on the Lagrangian of a particle moving in the electromagnetic
field? Is the motion affected?

Answer:

1
L:fm027q¢+gA~v
2 c

Upon the gauge transformation:

T S PO L .
L= gmo” —qlé — — o]+ J[A+Vy(nt)] - v
T . R L | .
L' = 5 MY q(b—i—CA V—|—C 5 + CV?/J(r,t) v
F_ 4o .
L _L+c[8t + V(r,t) - v]
r'=L+2[]
C

In the previous problem it was shown that:

d oy O

dt 9¢  Oq
For v differentiable but arbitrary. This is all that you need to show that the
Lagrangian is changed but the motion is not. This problem is now in the same

form as before:

dF(q1, ...y qn,t)
dt
And if you understood the previous problem, you’ll know why there is no
effect on the motion of the particle( i.e. there are many Lagrangians that may
describe the motion of a system, there is no unique Lagrangian).

L'=L+

10. Let qq,...,q, be a set of independent generalized coordinates for a system

11



of n degrees of freedom, with a Lagrangian L(q,q,t). Suppose we transform
to another set of independent coordinates s1, ..., s, by means of transformation
equations

i = qi(S1, -, Sny 1), i=1,...,n

(Such a transformatin is called a point transformation.) Show that if the
Lagrangian function is expressed as a function of s;,5; and t through the equa-
tion of transformation, then L satisfies Lagrange’s equations with respect to the
s coordinates

d OL 0L

T
In other words, the form of Lagrange’s equations is invariant under a point
transformation.

Answer:
‘We know:
doL_ oL _
dt d¢;  Oq;
and we want to prove:
49L oL _
dt 05;  0Os;

If we put gT’»Lj and 8,L_ in terms of the q coordinates, then they can be

substitued back in and shown to still satisfy Lagrange’s equations.
68] 3q¢ 65]'

Z 0L 0¢;
aSj Oql aSj

We know:
dq;  0q;
Os; 08
Thus,
oL OL 0g;

673]‘ N ; 8q1 st

Plug g—fj and gTLj into the Lagrangian equation and see if they satisfy it:

ﬁ[z; dd; 85] Z dqi as]

12



Pulling out the summation to the right and gg’ﬁ to the left, we are left with:
J

=0

Z[ d OL 8L]8qi
P aSj o

%87(]1 B 8qi

This shows that Lagrangian’s equations are invariant under a point trans-
formation.

13



Goldstein Chapter 1 Exercises

Michael Good
July 17, 2004

1 Exercises

11. Consider a uniform thin disk that rolls without slipping on a horizontal
plane. A horizontal force is applied to the center of the disk and in a direction
parallel to the plane of the disk.

e Derive Lagrange’s equations and find the generalized force.

e Discuss the motion if the force is not applied parallel to the plane of the
disk.

Answer:
To find Lagrangian’s equations, we need to first find the Lagrangian.

L=T-V

Therefore

Plug into the Lagrange equations:

d OL 0L
@or or @
d 3%mr2w2 8%m7’2w2 _
dt d(rw) Oz =0
d
am(rw) =Q
m(rd) = Q



If the motion is not applied parallel to the plane of the disk, then there
might be some slipping, or another generalized coordinate would have to be
introduced, such as 6 to describe the y-axis motion. The velocity of the disk
would not just be in the x-direction as it is here.

12. The escape velocity of a particle on Earth is the minimum velocity re-
quired at Earth’s surface in order that that particle can escape from Earth’s
gravitational field. Neglecting the resistance of the atmosphere, the system is
conservative. From the conservation theorme for potential plus kinetic energy
show that the escape veolcity for Earth, ingnoring the presence of the Moon, is
11.2 kmn/s.

Answer:

GMm 1
= —mwv
r 2
GM _ 1@2
ro 2

Lets plug in the numbers to this simple problem:

(6.67 x 10711) - (6 x 10%4) 1

(6 x 109) 2
This gives v = 1.118 x 10* m/s which is 11.2 km/s.

13. Rockets are propelled by the momentum reaction of the exhaust gases
expelled from the tail. Since these gases arise from the raction of the fuels carried
in the rocket, the mass of the rocket is not constant, but decreases as the fuel
is expended. Show that the equation of motion for a rocket projected vertically
upward in a uniform gravitational field, neglecting atmospheric friction, is:

dv ,dm

mE:_UE—mg

where m is the mass of the rocket and v’ is the velocity of the escaping gases
relative to the rocket. Integrate this equation to obtain v as a function of m,
assuming a constant time rate of loss of mass. Show, for a rocket starting initally
from rest, with v’ equal to 2.1 km/s and a mass loss per second equal to 1/60th
of the intial mass, that in order to reach the escape velocity the ratio of the
wight of the fuel to the weight of the empty rocket must be almost 300!

Answer:

This problem can be tricky if you’re not very careful with the notation. But
here is the best way to do it. Defining m. equal to the empty rocket mass,
my is the total fuel mass, mg is the intitial rocket mass, that is, m. +my, and
dm __ mo

G = — %3 as the loss rate of mass, and finally the goal is to find the ratio of



my/me to be about 300.

The total force is just ma, as in Newton’s second law. The total force on
the rocket will be equal to the force due to the gas escaping minus the weight

of the rocket:

ma = %[—mv’] —mg
md—v = —v’d—m -m
d = dt g

The rate of lost mass is negative. The velocity is in the negative direction,

so, with the two negative signs the term becomes positive.

Use this:
dv dm _ dv
dm dt ~— dt
Solve:
dvdm _ ,dm
amat ~ Car ™
dvdm _ vidm
dm dt ~  m dt

dv v 60g
— =t
dm m  mg

Notice that the two negative signs cancelled out to give us a positive far

right term.
! 60
dv = —v—dm + —gdm
m mo

Integrating,
Me d e 60,
mn / 29 dm

/dv = —U’/ — +
mo m mo mO
60
v=—v'In"e J(me —mg)
mo mo
v = —' In — ¢ + 60gme —Me T My
Me + My

Me + My
o= o In e T —60g—
Me Me + My

Now watch this, I'm going to use my magic wand of approximation. This is
when I say that because I know that the ratio is so big, I can ignore the empty



rocket mass as compared to the fuel mass. m. << my. Let me remind you, we
are looking for this ratio as well. The ratio of the fuel mass to empty rocket,
my/me.

v:v’lnm—&)gL
Me Me + My
v:v'lnwffi()gm
Mme mg
60
v—&—/ g :lnﬁ
v Me
v 4 60g m
exp[——] = =7
v Me

Plug in 11,200 m/s for v, 9.8 for g, and 2100 m/s for v'.

M _ o4

Me
And, by the way, if Goldstein hadn’t just converted 6800 ft/s from his second
edition to 2.1 km/s in his third edition without checking his answer, he would

have noticed that 2.07 km/s which is a more accurate approximation, yields a
ratio of 296. This is more like the number 300 he was looking for.

14. Two points of mass m are joined by a rigid weightless rod of length 1, the
center of which is constrained to move on a circle of radius a. Express the kinetic
energy in generalized coordinates.

Answer:

T +Ty=T

Where T7 equals the kinetic energy of the center of mass, and 75 is the ki-
netic energy about the center of mass. Keep these two parts seperate!

Solve for T first, its the easiest:
Ll 1 N2 292
T = 2Mvcm = 2(2m)(a¢) = ma“y

Solve for Ty, realizing that the rigid rod is not restricted to just the X-Y
plane. Don’t forget the Z-axis!

1
T = §M112 = mv?

Solve for v? about the center of mass. The angle ¢ will be the angle in the
x-y plane, while the angle # will be the angle from the z-axis.



If 6 = 90° and ¢ = 0° then = = [/2 so:

l
x:§sinﬂcosq’)
If # = 90° and ¢ = 90° then y = 1/2 so:
*is‘ 0 sin ¢
y = 5 sinfsin
If @ = 0°, then z =1/2 so:
z:§COSG
Find v?%:

!I.}2+:l'j2+22:’()2

i = %(COS ¢ cos 00 — sin 0 sin )

Yy = %(Sin ¢ cos 00 + sin 6 cos ¢¢)

z::—ismeé
Carefully square each:
o 2 n2 L. Y s P oy
% = - cos ¢ cos” 66 —2§sm951n¢¢>§cos¢c0899+Zsm 0 sin” ¢¢

2 . l -1 e .
2 = 7 sin? ¢ cos? 602 + 25 sin 0 cos ¢¢§ sin ¢ cos 660 + 7 sin? 0 cos? ¢p?

12 .
%:Zm%w

Now add, striking out the middle terms:

12 . . . . .
24?422 = T [cos? ¢ cos? 002 +sin? @ sin? pp? +sin? ¢ cos? 0% +sin? O cos? pp+sin? 067

Pull the first and third terms inside the brackets together, and pull the
second and fourth terms together as well:

2 . . .
v? = lz[cos2 6% (cos® ¢ + sin® ¢) + sin? ¢ (sin” ¢ + cos® ¢) + sin? 647



2 . . .
v? = ZZ(COSQ 06?% + sin® 6% + sin® 9¢2)

2 . .
v? = ZZ(GQ + sin? 0$?)

2

Now that we finally have v we can plug this into T5

. 2. )
T =T, + Ty = ma*y?* + mZ(H2 + sin? 0?)

It was important to emphasize that T} is the kinetic energy of the total mass
around the center of the circle while T is the kinetic energy of the masses about
the center of mass. Hope that helped.

15. A point particle moves in space under the influence of a force derivable from
a generalized potential of the form

Urx,v)=V(r)+o-L

where r is the radius vector from a fixed point, L is the angular momentum
about that point, and o is a fixed vector in space.

1. Find the components of the force on the particle in both Cartesian and
spherical poloar coordinates, on the basis of Lagrangian’s equations with
a generalized potential

2. Show that the components in the two coordinate systems are related to
each other as in the equation shown below of generalized force

3. Obtain the equations of motion in spherical polar coordinates

81*1-
Qj :Eanqu

Answer:

This one is a fairly tedious problem mathematically. First lets find the
components of the force in Cartesian coordinates. Convert U (r, v) into Cartesian
and then plug the expression into the Lagrange-Euler equation.

Q) = G VP TP F 2 4= G V(5 2) o)

T dtdg;

d 0 A N . . K]
R G PR VO N Dy i pa k)| — —— /22 1+ 2 & 22) 40
Q; 0t 90 [o-[(zi+yj+2k) X (pritpyj+p-k)] oz V(Va? +y? + 22)+o-(rxp)]



d 0

Qi = o {(yp-—2py )i (paap:)i ey ) V(7§ )40 (rxp)]
J J

d 0 0
Qj = %%[mam(yvz—zvy)—i-may(zvx—xvz)—i-maz (Ivy_vxy)]_%[v( % 2 +y? + 22)+O"(T><p)]
J J

Where we know that

mog(Yv, — 2vy) + moy(z2vy — xv,) + mo, (v, — vy) =0 - (1 X p)

So lets solve for just one component first and let the other ones follow by
example:

d 0
Qm = %(mayz_maz/g)_%[v( \Y% x? 4 y2 + Z2)+mow(yvz_zvy)+moy(zvm_xvz)"'—mo'z(xvy_vry)]

Qr = m(oyv, —o.vy) — [V (V22 + y2 + 22) (2 +¢° +z2)*%x—m0yvz +mo,vy]

x
Q= 2m(oyv, —oyvy) — V'=
r
If you do the same for the y and z components, they are:

Qy =2m(o.v, — 04v,) — vy
r

Q- =2m(ogvy — oyvy) — v'Z
r
Thus the generalized force is:
F=2m(oc xv)— Vs
r

Now its time to play with spherical coordinates. The trick to this is setting
up the coordinate system so that ¢ is along the z axis. Thus the dot product
simplifies and L is only the z-component.

U=V(r)+mo(zy — yt)

With spherical coordinate definitions:

x=rsinfcos¢ y=rsinfsing z=rcosb

Solving for (xy — yi)



& = r(— sin 0 sin ¢¢ + cos ¢ cos #0) + 7 sin  cos ¢

g = r(sin 6 cos b¢ + sin ¢ cos 99) + rsinfsin ¢

Thus zy — yx is
= 7sin 0 cos ¢[r(sin O cos ¢ + sin ¢ cos B9) + 7 sin 0 sin ¢]
—rsin 0 sin ¢[r(— sin 6 sin ¢ + cos ¢ cos B) + 7 sin  cos ¢].

Note that the 7 terms drop out as well as the 6 terms.

2y — yi = 2 sin?  cos? ¢ + r2 sin® O sin? ¢¢

xy — yi = r?sin 06
Thus
U=V(r)+mor?sin?0¢

Plugging this in to Lagrangian’s equations yields:

For Q,:
ou d , oU
="t ator)
av o, d
Q= — 2morsin® 0¢ + £(O)
Qr = *iTV — 2morsin® ¢
r
For Qp: )
Qo = —2mor?sinf¢ cos 0
For Q4:

Qp = %(mor2 sin” 0)

Q4 = mo(r*2sin 0 cos B + sin® 62r7)
Qg = 2mor? sinf cos 00 + 2morr-sin? §

For part b, we have to show the components of the two coordinate systems
are related to each other via

or;
Qj:zi:Fi'aZ_

J

Lets take ¢ for an example,

or ox 1o} 0z
Q¢:F.%:Fx%+Fyﬁ+Fz—



Q¢ = Qz(—rsinfsin @) + Qy(rsinf cos ¢) + Q.(0)
Qs = [2m(ayvzfcrzvy)fV’£} (—7rsinfsin ¢)+[2m(azvmfoxvz)f‘/’g] (rsinf cos ¢)+0
r r
Because in both coordinate systems we will have o pointing in only the z
direction, then the x and y ¢’s disappear:

Qo = [2m(—0,vy) — V’%}(—r sinfsin ¢) + [2m(o,v,) — V’%](r sin 0 cos ¢)

Pull out the V' terms, plug in z and y, see how V’ terms cancel

Qo = V' (zsinfsin ¢ — ysind cos ¢) — 2mr sin o [v, sin ¢ + v, cos @]

Qs =V'(r sin? @ cos ¢ sin ¢ — 7 sin? @ sin ¢ cos ¢) — 2mr sin fo v, sin ¢ + v, cos @]

Q¢ = —2mrsinfolv, sin ¢ + v, cos @]

Plug in vy and v,:
Q¢ = —2mrsin o sin ¢(r sin 6 cos b¢ + rsin ¢ cos 00 + 7 sin 0 sin ?)

+ cos ¢(—rsin @ sin b¢ + 1 cos ¢ cos 0 + 7 sin 0 cos ?)].

Qy = 2mor sin O[r sin® ¢ cos 06 + 7 sin f sin” ¢

47 cos? ¢ cos B0 + 7-sin O cos® ¢].

2

Gather sin?’s and cos?’s:

Qy = 2mar sin [r cos 00 + 7 sin 6]

This checks with the derivation in part a for Q4. This shows that indeed
the components in the two coordinate systems are related to each other as

(“)ri
Qj :Z:anfq]

Any of the other components could be equally compared in the same proce-
dure. I chose Q4 because I felt it was easiest to write up.

For part c, to obtain the equations of motion, we need to find the general-
ized kinetic energy. From this we’ll use Lagrange’s equations to solve for each
component of the force. With both derivations, the components derived from
the generalized potential, and the components derived from kinetic energy, they
will be set equal to each other.

In spherical coordinates, v is:



v =7 + rdf +rsin9q§¢3
The kinetic energy in spherical polar coordinates is then:
Lo o 1 9 a9 2.2/
T= 5mv :im(r + 7r96% + r°sin” 6¢°)

For the r component:

d o1, or _
dt" or or
d, . 32 22
%(mr)fmTG — mrsin® 0¢° = Q,

mit — mrf? — mrsin® 0> = Q,

From part a,

Qr = =V’ — 2morsin® 8¢
Set them equal:

mit — mrf? — mrsin® 0¢% = Q, = =V’ — 2morsin® 6¢
mit — mr? — mrsin? 06 + V' + 2morsin® 04 =0

mit — mr6? + mrsin® (20 — §) + V' =0

For the # component:

d or oT
a(ﬁ)—%*@a
Py 2 o2
%(mr 0) — mr®sin ¢ cos§ = Qg

mr20 + 2mri@ — mr? sin 0(;52 cost = Qg

From part a,

Qo = —2mor?sin cos 06

Set the two equal:

mr26 + 2mrid — mr? sin 062 cos 6 + 2mor? sin § cos 8¢ = 0

mr20 + 2mrid + mr? sin 0 cos 9&(20 — ¢) =0

10



For the last component, ¢ we have:

d oT oT

%(ai(b>_% :Q¢

d .
%(mr2 sin? 0¢) — 0 = Qy
2 d o Ca 20
mr %(sm 0¢) + 2mrisin® ¢ = Q4
mr? sin? 0¢ + 2mr? sin 0 cos 00¢ + 2mri sin® ¢ = QR4
From part a,

Qs = 2mor? sin 6 cos 00 + 2mor sin? 6

Set the two equal:
mr? sin? ¢+2mr? sin 0 cos 00-+2meri sin? 0¢—2mor? sin 0 cos 08—2mori sin? @ = 0

mr? sin® 0 + 2mr? sin 0 cos 00(p — o) + 2mrisin? (¢ — o) = 0
That’s it, here are all of the equations of motion together in one place:
mit — mr6? + mrsin® 04(20 — §) + V' =0
mr26 + 2mrird + mr? sin 6 cos 0p(20 — ¢) =0
mr? sin® 0 + 2mr? sin 0 cos 00(p — o) + 2mrisin® (¢ — o) = 0

16. A particle moves in a plane under the influence of a force, acting toward a
center of force, whose magnitude is

1 2 — 2fr

r2 c
where r is the distance of the particle to the center of force. Find the generalized
potential that will result in such a force, and from that the Lagrangian for the
motion in a plane. The expression for F represents the force between two charges
in Weber’s electrodynamics.

Answer:

This one takes some guess work and careful handling of signs. To get from
force to potential we will have to take a derivative of a likely potential. Note
that if you expand the force it looks like this:

11



122
r2

F =

e ey
‘We know that

ou doUu
—— "t ———=F
or  dt or
So lets focus on the time derivative for now. If we want a 7 we would have
to take the derivative of a 7. Let pick something that looks close, say fTTT
d 27 . 27, 7 27 272 27
v e L T T
Excellent! This has our third term we were looking for. Make this stay the
same when you take the partial with respect to 7.
a 72 27

or 32r 2
So we know that the potential we are guessing at, has the term % in it. Lets

add to it what would make the first term of the force if you took the negative
partial with respect to r, see if it works out.

That is,
201 1
orr  r2
So
1 -2
U=—+—o
r o cr
might work. Checking:
U dou
or = dt or
‘We have
ouv_ 1
or  r2 22
and
dOU _d 2 v i 1 2 o
dt 7~ dtc2r 2 2 ree2’ 22 2
thus

oU dou 1 i 2 2F
or  dt or  r2 22 2 2

oU doU 1 2 %

O L dtor r2 22 2

12



This is indeed the force unexpanded,

1 #2—2fr 1 2 2

)=

c? r c2r?2 - c2r

Thus our potential, U = % + % works. To find the Lagrangian use L =
T — U. In a plane, with spherical coordinates, the kinetic energy is

1 .
T = im(f‘Q +1r%6?)
Thus

1 -2 2212 1 7.“2

17. A nucleus, originally at rest, decays radioactively by emitting an electron
of momentum 1.73 MeV/c, and at right angles to the direction of the electron
a neutrino with momentum 1.00 MeV /c. The MeV, million electron volt, is a
unit of energy used in modern physics equal to 1.60 x 10~!3 J. Correspondingly,
MeV /c is a unit of linear momentum equal to 5.34 x 10722 kg-m/s. In what
direction does the nucleus recoil? What is its momentum in MeV/c? If the mass
of the residual nucleus is 3.90 x 1072% kg what is its kinetic energy, in electron
volts?

Answer:

If you draw a diagram you’ll see that the nucleus recoils in the opposite
direction of the vector made by the electron plus the neutrino emission. Place
the neutrino at the x-axis, the electron on the y axis and use pythagorean’s
theorme to see the nucleus will recoil with a momentum of 2 Mev/c. The
nucleus goes in the opposite direction of the vector that makes an angle

1.73
n~' == =60°

0 = ta
from the x axis. This is 240° from the x-axis.
To find the kinetic energy, you can convert the momentum to kg-m/s, then
convert the whole answer that is in joules to eV,

T P> [2(5:34 x 107>%)]? 1MeV 10%eV

: : —9.13¢V
om  2-39x10-25 1.6 x10-3J 1MeV €

13



18. A Lagrangian for a particular physical system can be written as

K
L' = %(aﬁcz + 2biy + ci?) — g(cwz:2 + 2bxy + cy?).

where a, b, and ¢ are arbitrary constants but subject to the condition that
b2 — ac # 0. What are the equations of motion? Examine particularly the two
cases a = 0 = cand b = 0, ¢c = —a. What is the physical system described
by the above Lagrangian? Show that the usual Lagrangian for this system as
defined by Eq. (1.57):

dF

L'(q,q,t) = L(q,q,t) + —
(¢,4,t) = L(g,¢,t) + 7

is related to L' by a point transformation (cf. Derivation 10). What is the
significance of the condition on the value of b — ac?

Answer:

To find the equations of motion, use the Euler-Lagrange equations.

oL _ d oL
dq  dt 0¢
For z first:
/!
_oL —(—Kazx — Kby) = K(az + by)
ox
/
%ﬁn = m(azx + by)
d oL’ o
P m(ai + bjj)
Thus
—K(azx + by) = m(aZ + by)
Now for y:
/!
_%L = —(—Kby — Kcy) = K(bx + cy)
Y
/
a@i = m(bi + cy)
d oL’ L
P m(bz + cyj)
Thus

—K(bx + cy) = m(bd + cp)

14



Therefore our equations of motion are:

—K(az + by) = m(ad + by)
—K(bx + cy) = m(bZ + cp)

Examining the particular cases, we find:
If a = 0 = ¢ then:

—Kr=mi —Ky=-myjy
If b=0, c = —a then:

—Kr=m& —Ky=-my
The physical system is harmonic oscillation of a particle of mass m in two
dimensions. If you make a substitution to go to a different coordinate system
this is easier to see.
u=ar+by v=bxr+cy
Then

—Ku=mi
—Kv=mv

The system can now be more easily seen as two independent but identical
simple harmonic oscillators, after a point transformation was made.

When the condition % — ac # 0 is violated, then we have b = \/ac, and L’
simplifies to this:

L= %(ﬁx’ +/ey)? = o (Vaz + Vey)?

Note that this is now a one dimensional problem. So the condition keeps the
Lagrangian in two dimensions, or you can say that the transformation matrix

a b
b ¢
is singluar because b?> — ac # 0 Note that
u\ _ (a b x
v )] \b ¢ y ]

So if this condition holds then we can reduce the Lagrangian by a point
transformation.

K
2

19. Obtain the Lagrange equations of motion for spherical pendulum, i.e., a
mass point suspended by a rigid weightless rod.

15



Answer:

The kinetic energy is found the same way as in exercise 14, and the potential
energy is found by using the origin to be at zero potential.

1 . .
T= 5m12(92 + sin? 0¢?)

If  is the angle from the positive z-axis, then at § = 90° the rod is aligned
along the x-y plane, with zero potential. Because cos(90) = 0 we should expect
a cos in the potential. When the rod is aligned along the z-axis, its potential
will be its height.

V = mgl cos

If 6 = 0 then V = mgl. If § = 180 then V = —mgl.
So the Lagrangian is L=T — V.

1 . .
L= §ml2(92 + sin? 6¢%) — mgl cos 6
To find the Lagrangian equations, they are the equations of motion:

oL _dor

80 dt 9o

oL _doL

op  dt §¢
Solving these yields:

13 .
g—e = mi? sin 0¢* cos @ + myl sin @
ia—L = mi?0

dt 9

Thus

ml? sin 0¢2 cos 0 + mglsin — ml?0 = 0
and
oL _
a9
doL d

&% = ﬁ(ml2 sin? 9¢) = mi?sin? 0¢ + 2¢mi® sin 6 cos 6

0

Thus ) .
ml? sin? 0¢ + 2¢mi? sin 6 cos 6 = 0

16



Therefore the equations of motion are:
ml? sin 9(;.52 cos @ + mglsin g — mi?6 =0

mi? sin? 0@5 + 2qz§ml2 sinfcosf =0

20. A particle of mass m moves in one dimension such that it has the Lagrangian

m2g*

12

L= +ma?V (x) — Va(x)

where V is some differentiable function of z. Find the equation of motion for
x(t) and describe the physical nature of the system on the basis of this system.

Answer:

I believe there are two errors in the 3rd edition version of this question.
Namely, there should be a negative sign infront of m#?V (x) and the Va(x)
should be a V2(x). Assuming these are all the errors, the solution to this
problem goes like this:

2:4
L= mlg —ma?V(z) - V2(z)
Find the equations of motion from Euler-Lagrange formulation.

8L _ 2277/ !
oy — Vi(z) — 2V (x)V'(x)
OL m2i3 .
%= 3 +2maV(x)
d OL

oL 2.2 .
s - m e Z 4 2mV (z)&

Thus

ma?V' +2VV' + m?i?% + 2mVi =0
is our equation of motion. But we want to interpret it. So lets make it look

like it has useful terms in it, like kinetic energy and force. This can be done by
dividing by 2 and seperating out %va and ma’s.

-2

+2
—m; VvV + I i miV =0

Pull V' terms together and ma terms together:

.2 .2
(B VWV mi( V) =0
Therefore: &
(m; +V)mi+V')=0

17



Now this looks like E - E' = 0 because E = mTf + V(x). That would mean

L2 _opp — o
dt
Which allows us to see that E? is a constant. If you look at t = 0 and the
starting energy of the particle, then you will notice that if £ =0 at ¢ = 0 then
E = 0 for all other times. If £ # 0 at ¢t = 0 then E # 0 all other times while

mi + V' =0.

21. Two mass points of mass m; and msy are connected by a string passing
through a hole in a smooth table so that m; rests on the table surface and
mso hangs suspended. Assuming msy moves only in a vertical line, what are the
generalized coordinates for the system? Write the Lagrange equations for the
system and, if possible, discuss the physical significance any of them might have.
Reduce the problem to a single second-order differential equation and obtain a
first integral of the equation. What is its physical significance? (Consider the
motion only until m; reaches the hole.)

Answer:

The generalized coordinates for the system are 6, the angle m; moves round
on the table, and r the length of the string from the hole to m;. The whole
motion of the system can be described by just these coordinates. To write the
Lagrangian, we will want the kinetic and potential energies.

1 1 .
T = —moi? + —my (72 + r26?)
2 2
V =—mag(l—7)

The kinetic energy is just the addition of both masses, while V is obtained
so that V = —mgl when r = 0 and so that V = 0 when r =[.

1 1 :
L=T-V= 5(mg + my )i + §m1r202 + mag(l — 1)

To find the Lagrangian equations or equations of motion, solve for each
component:

d OL . .
& 90 mir<0 + 2mqrrd =0

18



Thus J
a(mﬂgé) = mlr(ré + 297") =0

and
g—f = —mag + m1r92
oL .
o = (mg 4+ mq)r
d OL ..
prirri (ma + mq)F
Thus

Mog — mar? + (ma+mq)i =0

Therefore our equations of motion are:

%(mlrQQ) = myr(rf 4+ 207) =0

mMog — myré? + (mg +mq)F =0
See that mq7-26 is constant. It is angular momentum. Now the Lagrangian

can be put in terms of angular momentum. We have 6=1 /mqr?.

1 2
L= -2
2(m1 M)+ 2myr?

The equation of motion

— Magr

mag — mird? + (mg +my)i =0
Becomes

. 12
(m1 +m2)7"— mﬂ-mggzo
1

The problem has been reduced to a single second-order differential equation.
The next step is a nice one to notice. If you take the derivative of our new
Lagrangian you get our single second-order differential equation of motion.

d 1 12 )= ( " )i 12
— magr) = (mq + meo)ri —
dt 2 2mqr? 29 ! 2 myrs

7 — mogr =0

l2
3 —mog =10

(m1 =+ mg)f —

Thus the first integral of the equation is exactly the Lagrangian. As far as in-
terpreting this, I will venture to say the the Lagrangian is constant, the system is
closed, the energy is conversed, the linear and angular momentum are conserved.

19



22. Obtain the Lagrangian and equations of motion for the double pendulum
illustrated in Fig 1.4, where the lengths of the pendula are I; and [y with corre-
sponding masses m1 and mso.

Answer:

Add the Lagrangian of the first mass to the Lagrangian of the second mass.
For the first mass:

1 .
Ty = gmlioy

Vi = —magly cos b

Thus
1 ‘9
L1 = T1 — V1 = §ml101 + mgh COS 91
To find the Lagrangian for the second mass, use new coordinates:

To = ll sin 01 + lg sin 92
yo = Iy cos By + I3 cos O

Then it becomes easier to see the kinetic and potential energies:
T, — 1 2 .2
2 = 2m2(l”2 +93)

Vo = —magys
Take derivatives and then plug and chug:

1 . .. .
T, = 5mQ(z% sin? 0162 + 21,15 sin 0, sin 020105 + 12 sin” 6,02

+12 cos? 019? + 21415 cos 01 cos O201 0 + 13 cos® 929%)

1 . . ..
Ty = §m2(1$9§ + 1202 + 21415 cos(0y — 62)6165)
and

Vo = —mg(ly cos 0y + I3 cos bs)
Thus
Ly=T5 -V,
1 . . ..
= —ma(120% + 1305 + 21115 cos(; — 05)6010) + mag(ly cos 1 + Iy cos 0s)

2
Add Ly + Ly = L,

20



1 o . 1.
L= img(l%Q%—Fl%a%—‘rQlllQ COS(91—02)9192)—|—m29(Z1 cos 01+1s cos 92)+§ml1ﬁf+mlgl1 cos 01

Simplify even though it still is pretty messy:

1 . L1 .
L= §(m1+m2)l%0%+m2l1l2 005(01—92)9102+§mgl§9§+(m1+m2)gl1 cos 01 +mogls cos O

This is the Lagrangian for the double pendulum. To find the equations of
motion, apply the usual Euler-Lagrangian equations and turn the crank:
For 6:

oL ..
8791 = —malils sin(91 — 92)9192 — (ml + mg)gll sin 6¢
87 = (m1 + mg)lgﬁl + m2l1l2 COS(@l — 02)92
1
d . OL .. .. . d
%[879'1] = (m1 + m2)l361 + malily cos(6r — 02)02 + 92%[m2l1l2 cos(0; — 65)]

Let’s solve this annoying derivative term:

92%[77221112 cos(f — 63)] = Oamialaly % [cos 87 cos B + sin By sin 6]
Using a trig identity,
= Oymislsly [— cos 6 sin 0205 — cos Oy sin 0161 + sin 0, cos Hoby + sin By cos 9191]
And then more trig identities to put it back together,
= Oymilaly[fa sin(0y — 03) — 0y sin(6; — 65))]

= é%mglgll sin(91 — 92) — mglgll sin(91 — 92)9192

Plugging this term back into our Euler-Lagrangian formula, the second term
of this cancels its positive counterpart:

oL d 0L

—%“1‘%[87] = (my +m2)gl1 sin 91+(m1 -‘rmg)lgél-i-mglllg 005(91—92)52+9§m21211 sin(91—02)
1

Finally, cancel out a [; and set to zero for our first equation of motion:
(m1 —i—mg)g sin 01 + (m1 +m2)llé1 +TTL2l2 COS(91 - 02)9.2 +9§m212 sin(91 - 92) =0
Now for 6s:
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oL = m2l1Z2 sin(91 — 92)9192 — m2912 sin 92

005
L . .
87. = malils COS(91 — 02)91 + mglgt%
004
d oL .. .. . d
— —— = myl20y + O1malsl 01 — 03) + 01— (malyl 6, — 0
dt 90, mal502 + 01 malaly cos(6, 2) + 1[dt(m221605( 1 2))]

Fortunately this is the same derivative term as before, so we can cut to the
chase:
= mglgég + élmglgll COS(01 — 02) + mglllzél[ég sin(01 — 92) — 91 sin(01 — 92)]

Thus

OL d 0L

—6792-1-%6792 = +magls sin 92+m21352+é1m21112 COS(91—92)—é%m21112 sin(91—92)

Cancel out an Il this time, set to zero, and we have our second equation of
motion:

mag sin (92 + mzlgég + élmgll COS(el — 92) — é%mgll sin(91 — 92) =0
Both of the equations of motion together along with the Lagrangian:
1 ) | )
L= §(m1—|—m2)l%9f—i—m2l1l2 008(01—02)0192+§mgl§9§+(m1+m2)gl1 cos 01 —‘rmgglg cos 0y

(m1 +m2)g sin 91 + (m1 +m2)llé1 +m2l2 COS(@l — 62)9.2 +9§m2l2 sin(91 — 92) =0

mag sin 92 —+ mzlzég + élmzll COS(01 - 92) - 9.%m211 sin(01 - 92) =0

23. Obtain the equation of motion for a particle falling vertically under the
influence of gravity when frictional forces obtainable from a dissipation function
%kvg are present. Integrate the equation to obtain the velocity as a function
of time and show that the maximum possible velocity for a fall from rest is
v+ mg/k.

Answer:

Work in one dimension, and use the most simple Lagrangian possible:

1
L= §m22 —mgz

With dissipation function:
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1
F= 51@22

The Lagrangian formulation is now:

doL_ oL OF
dt 82 9z 9%

Plug and chug and get:

mi—mg+kz=20
Note that at terminal velocity there is no total force acting on you, gravity

matches force due to friction, so mz = 0:

. . mg
mg=kz — =

But lets integrate like the problem asks. Let f = Z — £ and substitute into

the equation of motion:

mi—mg+kz=0

Note that f’ = Z. Thus

Therefore

myg = Ce_%t

k
Plugging in the boundary conditions, that at ¢t = 0, 2 = 0, we solve for C'

myg
9 _0
k
Thus
L omg_ mg s
kK
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and with ¢ — oo we have finally

mg
k

24. A spring of rest length L, ( no tension ) is connected to a support at one end
and has a mass M attached at the other. Neglect the mass of the spring, the
dimension of the mass M, and assume that the motion is confined to a vertical
plane. Also, assume that the spring only stretches without bending but it can
swing in the plane.

1. Using the angular displacement of the mass from the vertical and the
length that the string has stretched from its rest length (hanging with the
mass m), find Lagrange’s equations.

2. Solve these equations fro small stretching and angular displacements.

3. Solve the equations in part (1) to the next order in both stretching and
angular displacement. This part is amenable to hand calculations. Us-
ing some reasonable assumptions about the spring constant, the mass,
and the rest length, discuss the motion. Is a resonance likely under the
assumptions stated in the problem?

4. (For analytic computer programs.) Consider the spring to have a total
mass m << M. Neglecting the bending of the spring, set up Lagrange’s
equations correctly to first order in m and the angular and linear displace-
ments.

5. (For numerical computer analysis.) Make sets of reasonable assumptions
of the constants in part (1) and make a single plot of the two coordinates
as functions of time.

Answer:

This is a spring-pendulum. It’s kinetic energy is due to translation only.

1 . ;
T= §m(r2 + (r6)?)

The more general form of v is derived in problem 15 if this step was not
clear. Just disregard ¢ direction. Here r signifies the total length of the spring,
from support to mass at any time.

As in problem 22, the potential has a term dependent on gravity, but it also
has the potential of your normal spring.

1
V = —mgrcosf + 5/{:(7‘ — Ly)?

Note that the potential due to gravity depends on the total length of the
spring, while the potential due to the spring is only dependent on the stretching
from its natural length. Solving for the Lagrangian:
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1 . 1
L=T-V= 5m(7'°2 + (r0)?) + mgrcos — §k(r — Ly)?

Lets solve for Lagrange’s equations now.

For r: 5L
o = mgcos 0 +mrf* — k(r — L,)
ia—L =mi
dt or
For 0:
oL 00
— = —mgrsin
00
— == = — (mr?0) = mr*0 + 2mrid
05 = ) = ) .

Bring all the pieces together to form the equations of motion:

d OL OL . 52

%E—E—mr—mrﬁ +k(r— L) —mgcosf =0
d 8L 8L 21 A
& 6 20 mr6 + 2mrr + mgrsinf = 0

For part b, we are to solve these equations for small stretching and angular
displacements. Simplify the equations above by canceling out m’s, r’s and
substituting @ for sinf, and 1 for cos#.

. k
=10+ =(r—Ly)—g=0

m

. 9.

i+"6+%9=0
r r

Solve the first equation, for r, with the initial condition that 8, = 0, 6y = 0,
ro =0 and 79 = 0:

=L, + —2
r +k

Solve the second equation, for §, with the same initial conditions:

6=0

This is the solution of the Lagrangian equations that make the generalized
force identically zero. To solve the next order, change variables to measure
deviation from equilibrium.

aczr—(La—l—%), 0

Substitute the variables, keep only terms to 1st order in x and € and the
solution is:
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. k -- g
r=——=x 0:—77”‘

In terms of the original coordinates r and 6, the solutions to these are:
mg k
r=~L,+ — + Acos(y/ —t + ¢)
k m

|k
0 = B cos( mt +¢)

The phase angles, ¢ and ¢’, and amplitudes A and B are constants of inte-
gration and fixed by the initial conditions. Resonance is very unlikely with this
system. The spring pendulum is known for its nonlinearity and studies in chaos
theory.
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Homework 1: # 1.21, 2.7, 2.12

Michael Good
Sept 3, 2004

1.21. Two mass points of mass m; and mso are connected by a string passing
through a hole in a smooth table so that m; rests on the table surface and
mso hangs suspended. Assuming msy moves only in a vertical line, what are the
generalized coordinates for the system? Write the Lagrange equations for the
system and, if possible, discuss the physical significance any of them might have.
Reduce the problem to a single second-order differential equation and obtain a
first integral of the equation. What is its physical significance? (Consider the
motion only until m; reaches the hole.)

Answer:

The generalized coordinates for the system are 6, the angle m; moves round
on the table, and r the length of the string from the hole to m;. The whole
motion of the system can be described by just these coordinates. To write the
Lagrangian, we will want the kinetic and potential energies.

1 1 .
T = §m2f2 + 57’7’11(722 + 7'292>

V =—maog(R—r)

The kinetic energy is just the addition of both masses, while V is obtained
so that V = —mgR when r = 0 and so that V = 0 when r = R.

1 1 :
L=T-V= é(mQ +my )i + §m1r202 + mog(R —1)

To find the Lagrangian equations or equations of motion, solve for each
component:

oL _
09

L .
8—. = mqr20

0

doL d

pTeT = a(mﬂgé) = mqyr20 + 2mqyrif



Thus ) )
mayr(rd +20r) =0

and
L .
g—r = —maog + myré?
oL .
5 = (mg + mq)r
d OL .
pTi T (ma 4+ mq)F
Thus

mMog — myré? + (mg +mq)iF =0
Therefore our equations of motion are:

d ) .
a(mlr@) =mqr(rf +20r) =0
mog — myr? + (ma +mq)F=0

See that ;726 is constant, because %(mlﬁé) = 0. It is angular momentum.

Now the Lagrangian can be put in terms of angular momentum and will lend the
problem to interpretation. We have 6 = [/mr?, where [ is angular momentum.
The equation of motion

mag — m1r6% + (ma +mq)F =0
becomes

l2

(my + meo)i — +mag =0

myrs

The problem has been reduced to a single non-linear second-order differential

equation. The next step is a nice one to notice. If you take the first integral
you get

~ (ma + )i+ -
—{m mo)Tr
g 2 2mqr?

To see this, check by assuming that C' = —magR:

+magr+C =0

d 1 o 12 P :
dt(§(m1 +ma)i* + Smyr? —mag(R—r)) = (m1+ma)ii — m1r3r+ngr =0
l2
(m1 4+ mo)i — ——= +mag =0
mar

Because this term is T plus V, this is the total energy, and because its time
derivative is constant, energy is conserved.



2.7 In Example 2 of Section 2.1 we considered the problem of the minimum
surface of revolution. Examine the symmetric case 1 = x2, yo = —y1 > 0,
and express the condition for the parameter a as a transcendental equation in
terms of the dimensionless quantities k = z2/a, and o = yo/x5. Show that
for a greater than a certain value ag two values of k are possible, for a = «q
only one value of k is possible, while if & < g no real value of k (or a) can be
found, so that no catenary solution exists in this region. Find the value of «,
numerically if necessary.

Answer:

Starting with Goldstein’s form for a catenary, in section 2.2, not 2.1,

y—>b
a

x = acosh

and recognizing by symmetry that the soap film problem and the catenary
problem are the same. In Marion and Thorton this is made clear (pg 222).
Also, in a similar way to MathWorld’s analysis of a surface of revolution, it is
clear that y and z, when interchanged, change the shape of the catenary to be
about the x-axis.
y = a cosh L_b
a

To preserve symmetry, r1 = —x2 and yo = y;. This switch makes sense
because if you hang a rope from two points, its going to hang between the
points with a droopy curve, and fall straight down after the points. This shaped
revolved around the x-axis looks like a horizontal worm hole. This is the classic
catenary curve, or catenoid shape. The two shapes are physically equivalent,
and take on different mathematical forms. With this, we see that

—b —-b
Y1 = acosh 21— Yo = acosh 22—

a a

holds. The two endpoints are (xo,yo) and (—zo,yo)-
Thus
—-b —x9—b
Yo = acoshL = CLCOShL
a

and because
cosh(—z) = cosh(z)
we have

b —x9g—b
osh ; = cosh i
a a

—xg+b=—x9—0>



b=-b b=0

By symmetry, with the center of the shape or rings at the origin, b = 0,
simplifies the problem to a much nicer form:

x
Yy = a cosh —
a

Including our end points:

Zo
Yo = acosh —
a

In terms of the dimensionless quantities,

1
p=2x2/a 8= S = yo/x2

the equation is

Lo
1Yo = acosh —
a

Yo _ acosh p
ZTo B i)

Yo _ cosh(p)
Zo p
cosh

5= (»)
p

The minimum value of 3 in terms of p can be found by taking the derivative,
and setting to zero:

d 1 1 cosh p
0 = —(—coshp) = —sinhp —
dp(p ) p p?
h
sinh p = CoSp
p
p = cothp

Thus, solved numerically, p ~ 1.2. Plugging this in to find Gy, the value is:

Since

fo=—

Qg ~ .66



This symmetric but physically equivalent example is not what the problem
asked for, but I think its interesting. If we start at Goldstein’s equation, again,
only this time recognize b = 0 due to symmetry from the start, the solution
actually follows more quickly.

Y
T = acosh =
a

x x
L —cosh2Y
a azx

Using, the dimensional quantities defined in the problem,

k=12 a=2

a xro

we have

k = cosh ka
Taking the derivative with respect to k,

1 = ag sinh kayg
Using the hyperbolic identity,
cosh? A —sinh? A =1

a more manageable expression in terms of k and a becomes apparent,

1
k2 - 5 - ].
g
1
Y/
Plug this into k = cosh ka
k = cosh ———=
k2 -1
Solving this numerically for k yields,
k~1381
Since
= 1 ~ .66
g = ﬁ = Qg ~ .

If a < «g, two values of k are possible. If o > «g, no real values of k exist,
but if @ = ag then only k ~ 1.81 will work. This graph is arccosh(k)/k = «
and looks like a little hill. It can be graphed by typing acosh(x)/x on a free
applet at http://www.tacoma.ctc.edu/home/jkim/gcalc.html.



2.12 The term generalized mechanics has come to designate a variety of classical
mechanics in which the Lagrangian contains time derivatives of ¢; higher than
the first. Problems for which triple dot = = f(x, &, Z,t) have been referred to
as ‘jerky’ mechanics. Such equations of motion have interesting applications
in chaos theory (cf. Chapter 11). By applying the mehtods of the calculus
of variations, show that if there is a Lagrangian of the form L(g;, ¢;G;,t), and
Hamilton’s principle holds with the zero variation of both ¢; and ¢; at the end
points, then the corresponding Euler-Lagrange equations are

d* oL d 0L 0L

el B R 0, =12 ..n

dtz 8(]z dt aqz 6(]1‘ -
Apply this result to the Lagrangian
m k
L=——qji—~¢*
B qq 9 q

Do you recognize the equations of motion?

Answer:

If there is a Lagrangian of the form

L= L(Qz;QzaQZ7t)

and Hamilton’s principle holds with the zero variation of both ¢; and ¢; at

the end points, then we have:

2
. / L(gssdss s, )t
1

and

2 ' .
gda:/ S (L 04 g,y OL D gy OL D oy

da - 245, 90. " T 9, 00, " T 95 9,

%

To make life easier, we're going to assume the Einstein summation con-

vention, as well as drop the indexes entirely. In analogy with the differential
quantity, Goldstein Equation (2.12), we have

@da

09 = Oa

Applying this we have

(7=0q + == —da+ — —da)dt

51/2 oL . 0L 94 oL 0
)y " 0q 0q da 9§ O«



The indexes are invisible and the two far terms are begging for some mathe-
matical manipulation. Integration by parts on the middle term yields, in analogy
to Goldstein page 44,

29L 8 , AL dq|*> [?dqd 0L

. 94900t~ 930a|, "), adt'aq)
This first term on the right is zero because the condition exists that all the

varied curves pass through the fixed end points and thus the partial derivative
of ¢ wrt to « at x1 and x5 vanish. Substituting back in, we have:

2 oL d oL L di

Where we used the definition §q = g—gda again. Now the last term needs
attention. This requires integration by parts twice. Here goes:

QL.. L 2 2
0 8th_8 0%q

y 9§ da 0§ Otda

2 2

L
_ 9q i(a—.,)dt
), otoa ' aq

Where we used f vdu = uv — f vdu as before. The first term vanishes once
again, and we are still left with another integration by parts problem. Turn the
crank again.

_26%a%)_d%%2/i@f%
1 Otdadt 0§’ dt 0§ O 1 Oadt? 9

First term vanishes for the third time, and we have

1

POLOG,  [* 0y & OL

L 0§ oa ), Badt® o
Plugging back in finally, and using the definition of our d¢q, we get closer
0q)dt
9 q)

Gathering d¢’s, throwing our summation sign and index’s back in, and ap-
plying Hamiliton’s principle:

2 2
oL d 0L d* OL

2 9L d OL d? oL
5 = g — — =g + — —
/1( 1739 T A 9g

We know that since ¢ variables are independent, the variations dq; are in-
dependent and we can apply the calculus of variations lemma, (Goldstein, Eq.
2.10) and see that 61 = 0 requires that the coefficients of d¢g; separately vanish,
one by one:

OL _d oL & oL _
8qi dt ﬁql dt? 8q1 -

1 =1,2,..n.



Applying this result to the Lagrangian,
1 k

[ = _= )
quq QC]
yields
oL _ 1 .
dq oM
d OL
~ZZ 0
dt 0q

d7287L — i(i(_lm ) = —(—=mq) = —=mjj
az oG dtdare 2 T " T ™
Adding them up:

—-m§—kqg=0

This is interesting because this equation of motion is just Hooke’s Law. This
crazy looking Lagrangian yields the same equation for simple harmonic motion
using the ‘jerky’ form of Lagrangian’s equations. It’s interesting to notice that
if the familiar Lagrangian for a simple harmonic oscillator (SHO) plus an extra
term is used, the original Lagrangian can be obtained.

d maqq
L=1L —(—-==
SHO+dt( 2)
2 2
mq°  kq d , mqq
L=—" " 4 —(——2
2 2+dt( 2)
;- md* ke mai  mg
2 2 2 2
L:_@_L‘f
2 2

This extra term, %(—%’m) probably represents constraint. The generalized
force of constraint is the Lagrange multipliers term that is added to the original
form of Lagrange’s equations.



Homework 8: # 5.4, 5.6, 5.7, 5.26

Michael Good
Oct 21, 2004

5.4
Derive Euler’s equations of motion, Eq. (5.39’), from the Lagrange equation of
motion, in the form of Eq. (1.53), for the generalized coordinate .

Answer:
Euler’s equations of motion for a rigid body are:
L —wows(Io — I3) = Ny
Iowy — wswi (I3 — I1) = No
I3ds — wiwa (I — I2) = N3
The Lagrangian equation of motion is in the form

ot or
dt aqj 8qj

The kinetic energy for rotational motion is

3 1 )
T= Z§Iiwi

The components of the angular velocity in terms of Euler angles for the body
set of axes are

=Q;

wp = ésinﬁsinw + 9.COS¢
wo = ésin@comﬂ — fsiny
w3 = dcosd +
Solving for the equation of motion using the generalized coordinate :

d oT 8T7
ﬁ(@)*%* P

3 3
(%)Z- d 8wi o

%



Now is a good time to pause and calculate the partials of the angular veloc-
ities,

8&)1 _ ) s .
W = —0siny + ¢sinf cos
%——écosw—ésinﬁsinw
o
8&)3 _
By 0
and
Oun _ 0wy _
o O
Ouws
0y

Now we have all the pieces of the puzzle, explicitly

3 3
&ui d 8wi -

) ) . ) d
Lwi(—0siny + ¢sinb cosp) + Iowa(—0 cos ) — ¢psinfsine)) — —tlg,wg =Ny
This is, pulling out the negative sign on the second term,

Ilwl(wg) — IQWQ(wl) — Igd]g = N¢

]3&)3 — w1w2(11 — [2> == Nw
And through cyclic permutations

Iy — wawi (I3 — I1) = Ny
Ildjl — (UQW3(IQ — ]3) = N1

we have the rest of Euler’s equations of motion for a rigid body.



5.6

e Show that the angular momentum of the torque-free symmetrical top ro-
tates in the body coordinates about the symmetry axis with an angular
frequency w. Show also that the symmetry axis rotates in space about the
fixed direction of the angular momentum with angular frequency

Tzws

- I cos

where ¢ is the Euler angle of the line of nodes with respect to the angular
momentum as the space z axis.

e Using the results of Exercise 15, Chapter 4, show that w rotates in space
about the angular momentum with the same frequency ¢, but that the
angle 0’ between w and L is given by

Q
sin@ = = sinf”

where 0" is the inclination of w to the symmetry axis. Using the data
given in Section 5.6, show therefore that Earth’s rotation axis and axis of
angular momentum are never more than 1.5 cm apart on Earth’s surface.

e Show from parts (a) and (b) that the motion of the force-free symmetrical
top can be described in terms of the rotation of a cone fixed in the body
whose axis is the symmetry axis, rolling on a fixed cone in space whose
axis is along the angular momentum. The angular velocity vector is along
the line of contact of the two cones. Show that the same description
follows immediately from the Poinsot construction in terms of the inertia
ellipsoid.

Answer:

Marion shows that the angular momentum of the torque-free symmetrical
top rotates in the body coordinates about the symmetry axis with an angular
frequency w more explicitly than Goldstein. Beginning with Euler’s equation
for force-free, symmetric, rigid body motion, we see that ws = constant. The
other Euler equations are

I— 1T
T
I— 1T
T

Solving these, and by already making the substitution, because we are deal-
ing with constants,

d)l = —( W3)w2

d)g = —( W3)w1



LI

0= Ji w3
we get
(d)l + id)Q) — iQ(wl + iWQ) =0
Let
q = w1 +iws
Now
qg—1Qq¢ =0
has solution
q(t) AeiQt
this is
w1 + iwy = AcosQt + i Asin Qt
and we see

w1(t) = Acos Qt
wa(t) = Asin Q¢

The x5 axis is the symmetry axis of the body, so the angular velocity vector
precesses about the body z3 axis with a constant angular frequency

Is—1

I3ws

- I cos

To prove

Tzws

- I cos

We may look at the two cone figure angular momentum components, where
L is directed along the vertical space axis and # is the angle between the space
and body vertical axis.

L1:0
Ly = Lsin@
L3z = Lcost

If « is the angle between w and the vertical body axis, then



w1:0
Wy = wsin o
W3 = W COoS «x

The angular momentum components in terms of o may be found

L1 :Ilwl =0
Lo = Hwy = [Hwsin«
L3 = Isws = Iswcos«

Using the Euler angles in the body frame, we may find, (using the instant
in time where x5 is in the plane of 3, w, and L, where ¢ = 0) ,

wo = dsinbcostp — fsiny

wo = qﬁsin@
This is
. wa wsin a Ly L L
R
sin 6 sin 6 Lw' Ly I
Plugging in L3
L L3 Ig(x)g

= IT - 11 cosf - I cosf

A simple way to show
Q
sinf = = sin6”
may be constructed by using the cross product of w x L and w X x3.

wX Ll =wLsin® = L/w2 + w?
z y

Using the angular velocity components in terms of Euler angles in the space
fixed frame, this is equal to

wLsing’ = Lsin6

with 0 fixed, and 6 = 0. For w x z3 we have

w x z3] = wsin” = /Wl +w?,

Using the angular velocity components in terms of Euler angles in the body
fixed frame, this is equal to



wsinf” = $sin
Using these two expressions, we may find their ratio

wLlsing Lésin6

wsin 6 B qlﬁsine
sing’ ﬂ
sing” 4

Because w =0
Q
sin@ = = sin 6"
To show that the Earth’s rotation axis and axis of angular momentum are
never more than 1.5cm apart on the Earth’s surface, the following approxima-
tions may be made, sin€’ ~ 0', cosf ~ 1, sinf’ =~ 0", and I, /Is ~ 1. Earth

is considered an oblate spheroid, Is > I; and the data says there is 10m for
amplitude of separation of pole from rotation axis. Using

Q
sinf = — sinf”

Tzws

- 11 cosf
Is—1;
I

Q:

w3

we have

Is—1; 1Ijcosf y

sinf = T wWs Toon in 6"
Applying the approximations
I3—1
9/ — 9//
L
0 — i _ I3 -1 S5
R L R

where R is the radius of the Earth, and s is the average distance of separation,
which we will assume is half the amplitude, 5 m.

I3—1h
L
Force free motion means the angular momentum vector L is constant in time

and stationary, as well as the rotational kinetic energy. (because the center of
mass of the body is fixed). So because T = %w - L is constant, w precesses

d:

s = (.00327)(5) = 1.6 cm



around with a constant angle. This tracing is called the space cone, only if L is
lined up with x3 space axis. Proving that L, z3 and w all lie in the same plane
will show that this space cone is traced out by w. This results from I} = I as
shown below:

L-(wxe3)=0

because

W X €3 = wWa€e1] — W1€o

L- (w X 63) = Ilwlwg — 12w1w2 =0

Because I1 = I».

Now the symmetry axis of the body has the angular velocity w precessing
around it with a constant angular frequency 2. Thus another cone is traced
out, the body cone. So we have two cones, hugging each other with w in the
direction of the line of contact.

5.7

For the general asymmetrical rigid body, verify analytically the stability theo-
rem shown geometrically above on p. 204 by examining the solution of Euler’s
equations for small deviations from rotation about each of the principal axes.
The direction of w is assumed to differ so slightly from a principal axis that the
component of w along the axis can be taken as constant, while the product of
components perpendicular to the axis can be neglected. Discuss the bounded-
ness of the resultant motion for each of the three principal axes.

Answer:

Marion and Thornton give a clear analysis of the stability of a general rigid
body. First lets define our object to have distinct principal moments of inertia.
Iy < I, < I3. Lets examine the z; axis first. We have w = wye;y if we spin it
around the x; axis. Apply some small perturbation and we get

w = wie1 + kea + pes

In the problem, we are told to neglect the product of components perpen-
dicular to the axis of rotation. This is because k and p are so small. The Euler
equations

Ly — wows(Iy — I3)

0
Igd)g—w;;wl(lg—ll) 0
0

Isws — wiwo (11 — Io)

become



Loy —kp(Ia —I3) =0
Lk —pw(Is — 1) =0
Isp —wik(ly — I3) =0

Neglecting the product pk = 0, we see w; is constant from the first equation.
Solving the other two yields

Is—1h
I
L -1
I3
To solve we may differentiate the first equation, and plug into the second:

(L —I)(h — 1) ,

I3 -1, . - _
L w)p — k4| ol wi)k=10

k:( w1)p

p=( wi)k

b=

Solve for k(t):

k(t) = A"kt 4 Bem ¥ ikt
with

(I — I3)(I; — I2)
Q =
1k wl\/ Io1s

Do this for p(t) and you get

Q=R =W

Cyclic permutation for the other axes yields

N \/ (h — B)(I ~ 1)

oI5
B (I — I)(I2 — I3)
i wz\/ I3,
(I3 — I)(I3 — I)
Q =
3 W3\/ L

Note that the only unstable motion is about the x5 axis, because Iy < I3 and
we obtain a negative sign under the square root, ()5 is imaginary and the per-
turbation increases forever with time. Around the z5 axis we have unbounded
motion. Thus we conclude that only the largest and smallest moment of inertia
rotations are stable, and the intermediate principal axis of rotation is unstable.



5.26
For the axially symmetric body precessing uniformly in the absence of torques,
find the analytical solutions for the Euler angles as a function of time.

Answer:

For an axially symmetric body, symmetry axis L,, we have I; = I, and
Euler’s equations are
Ild)l = (I1 — Ig)(ugu)g
[2(.4:)2 = (13 — Il)wlwg
Igd]g == 0

This is equation (5.47) of Goldstein, only without the typos. Following
Goldstein,

w1 = AcosQt
wo = Asin Qt
where
I3—1T
Q= 311 1W3

Using the Euler angles in the body fixed frame,
wp = zﬁsin@sinw + 90051/1
wo = dsinbcostp — fsiny

ws = dcosh + 1

we have
wy = ¢sinfsine + 0 cosy) = Asin(Qt + ) (1)
wy = ¢sinfcost) — Osinth = Acos(Q + 6) (2)
w3 = ¢cos b + v = constant (3)

Multiplying the left hand side of (1) by cos and the left hand side of (2)
by sint, and subtracting them yields

[¢sin 0 sin 1 cos ¥ + 0 cos? 1] — [ sin B cos ¥ sin 1) — O sin® )] = 6



Thus we have

0 = Asin(Qt + 6) costh + Acos( + ) sin 1)
6= Asin(Q + 6 + )

I assume uniform precession means # = 0, no nutation or bobbing up and
down. Thus

Q+0+¢Y=nr
with 7 = 0,41, 42..., if n = 0

= =0t + g

where v is the initial angle from the = — axis. From this, P =—Q.

If we multiply the left hand side of (1) by sin® and the left hand side of (2)
by cos, and add them:

[¢sin 0 sin? ¢ + 6 cos ¥ sin )] + [ sin O cos® ¥ — Osin 1) cosp] = psin b
Thus we have
$sinf = Asin(Qt + 6) sintp + A cos(Qt + 8) cos 1)
$sind = Acos(Qt + 6 + )

Plugging this result into (3)

cos(Qt 4+ +6) +

vy = Acos@

sin 0

Using ¥ = —Q and Qt + 6 + ¢ = 0,

A= (ws+Q)tand

Is—1I

and since €2 = o

w3

Is -1,

I
A= (ws+ ws) tanf = I—?’wg tan 6

1 1
With this we can solve for the last Euler angle, ¢,

cos(QU+v+9) I3 cos(0)
— = w3 tanf—
sin 6 I sin 6

p=A

10



" I cosf
I3ws
9= I; cos @ + o
So all together
0 =06,
Y(t) = —Qt + 1o
I3w3
t) =
o(t) T; cos0 + ¢o

11



Homework 1: # 1, 2, 6, 8, 14, 20

Michael Good
August 22, 2004

1. Show that for a single particle with constant mass the equation of motion
implies the follwing differential equation for the kinetic energy:

dr
- _F.
dt M
while if the mass varies with time the corresponding equation is
d(mT)
=F - p.
dt P

Answer:

ar  d(zmv?)
dt — dt
with time variable mass,

=mv-v=ma-v=F- v

dmT) d  p?

o Caile

)=p-p=F-p.

2. Prove that the magnitude R of the position vector for the center of mass
from an arbitrary origin is given by the equation:

M?R? = MZmirf - %Zmimjrfj.
i i

Answer:
MR = Z m;r;

2/ 2
MPR? =) " mimyr; - 1;
.7

Solving for r; - r; realize that r;; = r; —r;. Square r; — r; and you get




r2. =2

2
ij Z—2ri~rj+rj

Plug in for r; - r;

1
ri'rj:ZQ(T?**T?‘*T%)

1 1 1
M?R? = 5 > mimgr} + 3 > mimr} — 3 > mimgry;
,J ,J ,J
1 1 1
M?R? = §M2m1r? + §Mij ]2 - §Zmimjri2j
@ J 2y

M?R? = MZmir? - %Zmimjr?j
7 1,7

6. A particle moves in the xy plane under the constraint that its velocity vector
is always directed toward a point on the x axis whose abscissa is some given
function of time f(¢). Show that for f(t) differentiable, but otherwise arbitrary,
the constraint is nonholonomic.

Answer:

The abscissa is the x-axis distance from the origin to the point on the x-axis
that the velocity vector is aimed at. It has the distance f(t).

I claim that the ratio of the velocity vector components must be equal to
the ratio of the vector components of the vector that connects the particle to
the point on the x-axis. The directions are the same. The velocity vector
components are:

_dy
’Uy—E
_d:,C
’Ux—a

The vector components of the vector that connects the particle to the point
on the x-axis are:

Vy =y(t)
Ve = (t) — f(t)
For these to be the same, then

Yy

Sl

Vg



dy y(t)

dr x(t) = f(t)
dy __ da
y() () - f(t)
This cannot be integrated with f(¢) being arbitrary. Thus the constraint is
nonholonomic. If the constraint was holonomic then

F(z,y,t) =0

would be true. If an arbitrary, but small change of dz, dy, dt was made subject
to the constraint then the equation

oOF  OF . OF
O et Wy + Py =
9z T gy W gt =0

would hold. From this it can be seen our constraint equation is actually

ydz + (f(t) — z)dy + (0)dt =0
Thus

oF oF oF

EZO %:yl — =(ft) —=2)I

where I is our integrating factor, I(z,y,t). The first equation shows F' = F(z,y)
and the second equation that I = I(x,y). The third equation shows us that all
of this is impossible because

_OF 1
Oy I(z,y)
where f(t) is only dependent on time, but the right side depends only on z and

y. There can be no integrating factor for the constraint equation and thus it
means this constraint is nonholonomic.

f)

8. If L is a Lagrangian for a system of n degrees of freedom satisfying Lagrange’s
equations, show by direct substitution that

dF(q17 7Q7lat)

L'=L
* dt

also satisfies Lagrange’s equations where F is any arbitrary, but differentiable,
function of its arguments.

Answer:

Let’s directly substitute L’ into Lagrange’s equations.



doL’ oL _0
dt 0q oq

d 0 dF 0 dF

d oL 0dF, 0L 0 dF
@i'oq " aq i
doL OL d 0dF 0 dF _
At0q 0 Tdtogdt g dt
On the left we recognized Lagrange’s equations, which we know equal zero.
Now to show the terms with F vanish.

d9dF 9 dF _
dtdg dt  Oq dt

doF _or
dt 0§  Oq
This is shown to be true because
oF _oF
G 0q
and
dOF _ doF
dt 0¢  dt Oq
0 OF 0 OF .

~ 010 ' 0q0q"
0 0F OF . OF
= [+ o=
dq- Ot dq dq
Thus as Goldstein reminded us, L =T — V is a suitable Lagrangian, but it
is not the only Lagrangian for a given system.

14. Two points of mass m are joined by a rigid weightless rod of length [, the
center of which is constrained to move on a circle of radius a. Express the
kinetic energy in generalized coordinates.

Answer:

T=T+1T



Where T; equals the kinetic energy of the center of mass, and T is the ki-
netic energy about the center of mass. I will keep these two parts separate.

Solve for T first, its the easiest:

1 1 . .
Th = iMUgm = 5(27”)((“/’)2 = ma*y®

Solve for T5, realizing that the rigid rod is probably not restricted to just
the X-Y plane. The Z-axis adds more complexity to the problem.

1
T = §Mv2 = mv?

Solve for v? about the center of mass. The angle ¢ will be the angle in the
x-y plane, while the angle # will be the angle from the z-axis.

If # = 90° and ¢ = 0° then z =1/2 so:

l
T = isinﬂcosqﬁ

If & = 90° and ¢ = 90° then y =1/2 so:

l
Yy = isinﬁsinqb

If 6 = 0°, then z = 1/2 so:

z = —cosf
2
Find v?:

i+ g7 4 22 =0
. P
T = §(COS¢COS 060 — sin 0 sin ¢¢)
1 . .
Y= §(sin ¢ cos 00 + sin 0 cos pg)

= ——sinff
2
Carefully square each:
2 2

i? = lz cos? ¢ cos? 062 — 2% sin @ sin (bqb% cos ¢ cos 00 + lz sin? @ sin? ¢

2 . . . 2 .
= lz sin? ¢ cos® 602 + 2% sin 0 cos qbqb% sin ¢ cos 660 + lz sin? 0 cos? pp?



12 .
32 = 7 sin? 06

Now add, striking out the middle terms:

12 ) ) . . .
P24yt 422 = 1 [cos? ¢ cos? 062 +sin? 0 sin? pi>+sin? ¢ cos? 9% +sin? 0 cos? pp>+sin? 062

Pull the first and third terms inside the brackets together, and pull the
second and fourth terms together as well:

2 . . .
v? = ZZ[COSQ 06 (cos® ¢ + sin? ¢) + sin® B¢ (sin” ¢ + cos® ¢) + sin® 66?]

2 . . .
v? = lz(cos2 06% + sin® 06 + sin? 0p?)

2 . .
v? = %(92 + sin? p?)

2

Now that we finally have v we can plug this into T5

. 12 . .
T =T, + T, = ma)* + mz(ﬂ2 + sin? 0¢?)

I want to emphasize again that 73 is the kinetic energy of the total mass
around the center of the circle while T is the kinetic energy of the masses about
the center of mass.

20. A particle of mass m moves in one dimension such that it has the Lagrangian

m2i*

12

L= +mi?V(z) — Va(x)

where V is some differentiable function of z. Find the equation of motion for
x(t) and describe the physical nature of the system on the basis of this system.

Answer:

Correcting for error,

2,:4
L= mlg +ma?V(z) — V()
Finding the equations of motion from Euler-Lagrange formulation:
OL
e +ma? V' (z) — 2V (x)V'(z)



52 7+m2:'v3
or 3
d dL

B 2 2. 2 . 2 . ! .
i &+ 2mV (x)d + 2maV'(x)E

+2maV(x)

Thus

—m@?V’ + 2VV + m2i%5 + 2mVi + 2maV (z)d = 0

mi2V' 4+ 2VV' + m?3%% + 2mVi =0

is our equation of motion. But we want to interpret it. So lets make it look
like it has useful terms in it, like kinetic energy and force. This can be done by
dividing by 2 and separating out %va and ma’s.

)

+2
—m; VvV + I i miV =0

Pull V' terms together and mZ terms together:

-2 -2
(B VWV +mi( V) =0
Therefore: Y
(= + V)(mi + V') =0

Now this looks like E - E' = 0 because E = mT””Q + V(z). That would mean

d
—E*=2EF' =0
dt
Which reveals that E? is a constant. If we look at ¢+ = 0 and the starting
energy of the particle, then we will notice that if £ =0 at t = 0 then £ = 0 for

all other times. If E # 0 at ¢ = 0 then E # 0 all other times while mi+ V' = 0.



Homework 3: # 2.13, 2.14

Michael Good
Sept 10, 2004

2.13 A heavy particle is placed at the top of a vertical hoop. Calculate the
reaction of the hoop on the particle by means of the Lagrange’s undetermined
multipliers and Lagrange’s equations. Find the height at which the particle falls
off.

Answer:
The Lagrangian is

1 )
L=T-V = inm(r‘2+r292)fmgrcosf)

Where r is the distance the particle is away from the center of the hoop. The
particle will eventually fall off but while its on the hoop, r will equal the radius
of the hoop, a. This will be the constraint on the particle. Here when 6 = 0, (at
the top of the hoop) potential energy is mgr, and when 6 = 90° (at half of the
hoop) potential energy is zero. Using Lagrange’s equations with undetermined
multipliers,

oL 4oL, > AL
8qj dt 8q]~ a 8qj

with our equation of constraint, f = r = a as long as the particle is touching
the hoop. Solving for the motion:

ia—L = m#
dt or
19 .
?)—r = mrf? — mgcos @
)\aafr =Ax1
r

thus

—mi +mrf* —mgcosf + A =0

solving for the other equation of motion,



ia—L = mr?0 + 2mrif

dt 90
or_ .
789 = mgr sin
fe _

thus

—mr?0 — 2mri0 + mgrsind = 0

The equations of motion together are:
—mi +mr% —mgcosh + X =0

—mr6 — 2mrif + mgrsing =0
To find the height at which the particle drops off, A can be found in terms
of 8. The force of constraint is A and A = 0 when the particle is no longer under
the influence of the force of the hoop. So finding A in terms of 6 and setting A
to zero will give us the magic angle that the particle falls off. With the angle
we can find the height above the ground or above the center of the hoop that
the particle stops maintaining contact with the hoop.
With the constraint, the equations of motion become,
maf? —mgcos+ A =0
—ma?f + mgasind = 0

Solving for 6, the m’s cancel and 1 a cancels, we are left with
9 sing =@
a
solving this and noting that
0do = 6do
by the ‘conservation of dots’ law Engel has mentioned :), or by
s ddo_di i _ai
Cdtdt  dt dodt  do
/ I sinodo = | 6db

a

g &
—=cosf = 5 + constant

The constant is easily found because at the top of the hoop, = 0 and =0
at t = 0 so,



2 2 .
——gcosﬁ—i——g = 62
a a

Plug this into our first equation of motion to get an equation dependent only
on # and A

2 2
ma[——gcose + —g] —mgcosf = —\
a a

—3mgcosf + 2mg = —\
Setting A = 0 because this is at the point where the particle feels no force
from the hoop, and 6y equals
-1 2 o
6o = cos (5) =48.2
And if our origin is at the center of the hope, then the height that it stops
touching the hoop is just R cos 8y or

2 2
h = Rcos(cos™* §) = §R

If we say the hoop is a fully circular and somehow fixed with the origin at
the bottom of the hoop, then we have just moved down by R and the new height
is

2_ 5
H=R+-R=2°R
3773

2.14 A uniform hoop of mass m and radius r rolls without slipping on a fixed
cylinder of radius R as shown in figure. The only external force is that of gravity.
If the smaller cylinder starts rolling from rest on top of the bigger cylinder, use
the method of Lagrange multipliers to find the point at which the hoop falls off
the cylinder.

Answer:
Two equations of constraint:

p=r+R r(¢—0) = R0

My generalized coordinates are p, 8, and ¢. The first equation comes from
the fact that as long as the hoop is touching the cylinder the center of mass of
the hoop is exactly » + R away from the center of the cylinder. I'm calling it
f1. The second one comes from no slipping:

rog=s — s=(R+r)d
r¢ —rf = RO



r(¢ —0) = RO

Where 6 is the angle p makes with the vertical and ¢ is the angle » makes
with the vertical. I'm calling this equation fs.

fi=p—r—R=0 fo=RO—r¢p+1r0=0

The Lagrangian is T'— V where T is the kinetic energy of the hoop about
the cylinder and the kinetic energy of the hoop about its center of mass. The
potential energy is the height above the center of the cylinder. Therefore

L= %(,{)Q + p20% +12$?) — mgpcos b

Solving for the equations of motion:

d oL 0L Afy
77_722)%

dt 0p Op op
mp — m,o@2 +mgcosf = A\ —— Oh + Ao—— 0fz
ap ap
mp —mpb? +mgcosf = \ (1)

doL aL 6fk
dt 90 Z " o0

d 2 oy 0N Of2
a(mp 0) —( mgpsmG)—)\lW—i—)\g 20

mp?0 + 02mpp + mgpsin @ = Ay (0) + Ao(R +7)

mp?0 + 2mppl + mgpsin @ = Ay(R +r) (2)

d oL OL Z afk
k

dt oy 0o
d, . 9fi Of2
a(mr (b) )\1% + /\2 ¢
mrlp = —Xor (3)

I want the angle 6. This will tell me the point that the hoop drops off the
cylinder. So I'm going to apply the constraints to my equations of motion,
attempt to get an equation for €, and then set A\; equal to zero because that
will be when the force of the cylinder on the hoop is zero. This will tell me the
value of 8. Looking for an equation in terms of only # and A; will put me in the
right position.

The constraints tell me:



r T r

¢

Solving (3) using the constraints,

mri¢ = —Aor
- Ao
0= 7m(R +7) )

Solving (2) using the constraints,

m(R+7)0 +mgsinf = X\
= Ay —mgsind
m(R+r)
Setting (4) = (5)
—Xo = Ay —mgsinf
A2 = % sin 0 (6)
Plugging (6) into (4) yields a differential equation for 6

i —g

= mslna

If T solve this for 62 T can place it in equation of motion (1) and have an
expression in terms of 8 and A;. This differential equation can be solved by
trying this:

0> = A+ Bcost
Taking the derivative,

200 = —Bsin 00
0 = 7§SiH9
2
Thus
q
B=—
R+r

From initial conditions, # = 0, @ = 0 at ¢ = 0 we have A:

q
- R+



Therefore
02 — a g
R+r R+4+r7r
Now we are in a position to plug this into equation of motion (1) and have
the equation in terms of 6 and A\

cos

q q

_m(R+T)(R+r " R+r

cosf) +mgcosf =\
—mg + 2mgcosf = A\

mg(2cosf —1) = X\

Setting the force of constraint equal to zero will give us the angle that the
hoop no longer feels a force from the cylinder:

2cosfp—1=0

1
cos by = 3 — 0y = 60°

With our origin at the center of the cylinder, the height that the center of
mass of the hoop falls off is

1
hem = pcos(60°) = 2P

Or if you prefer the height that the hoop’s surface stops contact with cylin-
der:

1
hfiR



Homework 4: # 2.18, 2.21, 3.13, 3.14, 3.20

Michael Good
Sept 20, 2004

2.18 A point mass is constrained to move on a massless hoop of radius a fixed
in a vertical plane that rotates about its vertical symmetry axis with constant
angular speed w. Obtain the Lagrange equations of motion assuming the only
external forces arise from gravity. What are the constants of motion? Show
that if w is greater than a critical value wy, there can be a solution in which
the particle remains stationary on the hoop at a point other than the bottom,
but if w < wy, the only stationary point for the particle is at the bottom of the
hoop. What is the value of wg?

Answer:

To obtain the equations of motion, we need to find the Lagrangian. We only
need one generalized coordinate, because the radius of the hoop is constant,
and the point mass is constrained to this radius, while the angular velocity, w
is constant as well.

1 .
L= §ma2(92 + w?sin? §) — mga cos @

Where the kinetic energy is found by spherical symmetry, and the potential
energy is considered negative at the bottom of the hoop, and zero where the
vertical is at the center of the hoop. My 6 is the angle from the z-axis, and a is
the radius.

The equations of motion are then:

4oL oL _
dt 96 90

ma?0 = ma*w? sin 0 cos @ + mga sin 0

We see that the Lagrangian does not explicitly depend on time therefore the
energy function, h, is conserved (Goldstein page 61).

hzéa—L.—L
00

. | :
h = 0ma?0 — —ma?(6? + w? sin® §) — mga cos §



This simplifies to:

h= imazé - (EmaQw2 sin? @ — mga cos )

Because the ‘energy function’ has an identical value to the Hamiltonian, the
effective potential is the second term,

1
Vors = mgacos — ~maw?sin® 0

The partial of Vesy with respect to 6 set equal to zero should give us a
stationary point.

IV
Wff = mgasin 0 + ma’w?sinfcosh = 0

masin (g + aw? cos ) =0
This yields three values for 6 to obtain a stationary point,

=0 O0=m 0= arccos(—ﬁ)

At the top, the bottom, and some angle that suggests a critical value of w.

_\/E
wo = -
a

The top of the hoop is unstable, but at the bottom we have a different story.
If I set w = wy and graph the potential, the only stable minimum is at 6 = «, the

bottom. Therefore anything w < wp, 8 = 7 is stable, and is the only stationary
point for the particle.

If we speed up this hoop, w > wy, our angle

2

w
6= -0
arccos( 2 )

is stable and # = 7 becomes unstable. So the point mass moves up the hoop,
to a nice place where it is swung around and maintains a stationary orbit.



2.21 A carriage runs along rails on a rigid beam, as shown in the figure below.
The carriage is attached to one end of a spring of equilibrium length r¢ and force
constant k, whose other end is fixed on the beam. On the carriage, another set
of rails is perpendicular to the first along which a particle of mass m moves,
held by a spring fixed on the beam, of force constant k and zero equilibrium
length. Beam, rails, springs, and carriage are assumed to have zero mass. The
whole system is forced to move in a plane about the point of attachment of the
first spring, with a constant angular speed w. The length of the second spring
is at all times considered small compared to rg.

e What is the energy of the system? Is it conserved?

e Using generalized coordinates in the laboratory system, what is the Jacobi
integral for the system? Is it conserved?

e In terms of the generalized coordinates relative to a system rotating with
the angular speed w, what is the Lagrangian? What is the Jacobi integral?
Is it conserved? Discuss the relationship between the two Jacobi integrals.

Answer:

Energy of the system is found by the addition of kinetic and potential parts.
The kinetic, in the lab frame, (z,y), using Cartesian coordinates is

1 . .
T(.’L‘, y) = im(xQ + y2)

Potential energy is harder to write in lab frame. In the rotating frame, the
system looks stationary, and its potential energy is easy to write down. I'll use
(r,1) to denote the rotating frame coordinates. The potential, in the rotating
frame is

Vri) = %k(ﬁ +12)

Where r is simply the distance stretched from equilibrium for the large
spring. Since the small spring has zero equilbrium length, then the potential
energy for it is just %le.

The energy needs to be written down fully in one frame or the other, so
I’ll need a pair of transformation equations relating the two frames. That is,
relating (z,y) to (r,1). Solving for them, by drawing a diagram, yields

x = (rg+r)coswt — lsinwt
y = (ro + r)sinwt + l coswt

Manipulating these so I may find r(x,y) and I(x,y) so as to write the stub-
born potential energy in terms of the lab frame is done with some algebra.



Multiplying « by coswt and y by sinwt, adding the two equations and solving
for r yields

r =uxcoswt + ysinwt — ry

Multiplying x by sin and y by cos, adding and solving for [ yields

|l = —zsinwt + ycoswt

Plugging these values into the potential energy to express it in terms of the
lab frame leaves us with

1 1
E(z,y) = im(a}Q +9%) + ik((m coswt +ysinwt —rg)? + (—zsinwt + y cos wt)?)

This energy is explicitly dependent on time. Thus it is NOT conserved in
the lab frame. E(x,y) is not conserved.

In the rotating frame this may be a different story. To find E(r,l) we are
lucky to have an easy potential energy term, but now our kinetic energy is giving
us problems. We need

E(r ) =T(r,0) 4+ =k(I* + %)

1
2

Where in the laboratory frame, T'(z,y) = 3(i* + ¢*). Taking derivatives of
x and y yield

T = —w(rg+r)sinwt + 7 coswt — lw coswt — [ sinwt
§ = w(ro +7) coswt + 7 sin wt — lw sin wt — [ cos wt

Squaring both and adding them yields

&%+ g2 = w?(ro + )47 + 2w + 2+ CT.
Where cross terms, C.T. are

C.T. = 2w(ro + )l — 27w

For kinetic energy we know have

1 . .

T(rl) = §m(w2(ro + 722 4 1Pw? + 12 4 2w(rg + 1)l — 27lw)

Collecting terms

T(r,l) = %m(wQ(ro +r+ 5)2 + (F — lw)?)

Thus



1 I 1
E(rl) = §m(w2(r0 +r+ ;)2 + (F — lw)?) + §k(l2 +1?)

This has no explicit time dependence, therefore energy in the rotating frame
is conserved. F(r, 1) is conserved.

In the laboratory frame, the Lagrangian is just T'(x,y) — V(x,y).

L(zy) = yml@ +§7) ~ V(z.y)

Where

1
V(z,y) = 5]6((3’3 coswt + ysinwt — )% + (—zsinwt + y coswt)?)

The Jacobi integral, or energy function is

; 04
We have
oL OL
h=t— +9— — L
to- T3 (z,y)

1
h = imd + ymy — 5m(:‘vQ +9%) + V(z,y)

Notice that V(z,y) does not have any dependence on & or y. Bringing it
together

1 1
h= §m(j32 +9%) + ik((x coswt + ysinwt — rg)? + (—zsinwt + y coswt)?)
This is equal to the energy.

h(a;,y) = E(.’Iﬁ,y)

Because it is dependent on time,

d oL
== #0

we know h(z,y) is not conserved in the lab frame.

For the rotating frame, the Lagrangian is

L(r,1) =T(r,1) — %k(ﬂ +1?)



Where

1 I
T(rl) = im(uﬁ(ro +r+ ;)2 + (7 — lw)?)
The energy function, or Jacobi integral is

0L .0L
h(r,1) = L + lﬁ — L(r,1)
h(r,1) = im(i — lw) + Imw(ro 4+ r + g) — L(r,1)

Collecting terms, with some heavy algebra

h = (T—lw)(mi‘—%m(f—lw))—k(ro—kr—i—i)(mwi—%mw2(r0+r+i))+%k(l2+r2)
w w

. mi 1 i1 1, 1o
h = (7 lw)(T—i—imlw)—&—(ro—|—r+;)(§mwl 5w (r0+7"))+§k(l +7r°)

More algebraic manipulation in order to get terms that look like kinetic
energy,

1 . 1 1 . .
h= §m(¢2+l2)+§k(l2+r2)+§ [Fmlw—lwmsi—ml?w?+ (ro+r)mwl—mw? (ro+r)* —mwl (ro+r)]

Yields

1 . 1 1
h(r 1) = 5m(i® + %) + Sk + 1) = Sme?(1® + (ro +7)°)

This has no time dependence, and this nice way of writing it reveals an
energy term of rotation in the lab frame that can’t be seen in the rotating
frame. It is of the from F = —%Icﬁ.

% :—a_

We have h(r,l) conserved in the rotating frame.

L
dh 0 =0



3.13

e Show that if a particle describes a circular orbit under the influence of
an attractive central force directed toward a point on the circle, then the
force varies as the inverse-fifth power of the distance.

e Show that for orbit described the total energy of the particle is zero.
e Find the period of the motion.

e Find &, y and v as a function of angle around the circle and show that
all three quantities are infinite as the particle goes through the center of
force.

Answer:

Using the differential equation of the orbit, equation (3.34) in Goldstein,

d? m d 1
Bl - vy
@ W
Where r = 1/u and with the origin at a point on the circle, a triangle drawn
with r being the distance the mass is away from the origin will reveal

u

r =2Rcosf
B 1
“= 2R cos
Plugging this in and taking the derivative twice,
d 1 9 sin 6
= —[—cos20(—sinf)] = ———
TRy A ey ey

The derivative of this is

d in 6 1
@% = ﬁ[Sin 0(—2 cos 3 0)(—sind) + cos ™20 cos 0]
cos

Thus
d—Qu B i[Qsinzﬁ n (30529] 1 +sin% 0
62" 2R' cos3 0 cos30’ 2Rcos3 6
d? n 1Jrsin2(9Jr cos? 0 2
—=U u = =
do? 2Rcos30  2Rcos30  2Rcos30
That is
S8R?
— = 8R%}
8R3 cos3 0 Y

Solving for V(1) by integrating yields,



1 8R2[?
V(=)=— 4
(u) m
and we have
212 R?
Vir) = —
(r) mrd
with force equal to
d 8I2R?
fr) = 2 Vir) = ==

This force is inversely proportional to r°.

Is the energy zero? Well, we know V(r), lets find T'(r) and hope its the
negative of V (r).

1 .
T= im(r'2 +726%)
Where
r=2Rcosf — i = —2R sin 00

r2 = 4R%cos® 0 72 = 4R? sin? 62

So, plugging these in,
1 . .
T= §m(4R2 sin? 002 + 4R? cos” 06%)

mAaR6>

T = = 2mR%6?

Put this in terms of angular momentum, I,

1 = mr26
ZZ — m2,r49'2
] 272
T —2mR2? — T=— QRi
mr

‘Which shows that

2R 2R

E=T+V="o =0

mr mrt

the total energy is zero.

The period of the motion can be thought of in terms of 6 as r spans from
0=—-Ztol=27%.
2 2



3 3 dt
P= dt = —d
/ /Jde
2 2
p:/”ﬁ
= f

2

This is

Because 6 = [/mr? in terms of angular momentum, we have

usy
z mr?

P = —db
=

P:%/z r2d0

[NE]

From above we have 72

P= %/2 4R? cos® 0do
-z

AmR? [% 4mR? 0 1 2 AmR? 7w 7
P= 2040 = 24 " sin20 — Lz
I /_;COS [ (gt 7%) Gty
And finally,
2mm R?

P =
l

For &, y, and v as a function of angle, it can be shown that all three quantities
are infinite as particle goes through the center of force. Remembering that
r = 2Rcos,

x=rcosh =2Rcos’0
y=rsinf = 2R cosfsinf = Rsin 20

Finding their derivatives,

# = —4Rcosfsinf = —2R0 sin 20
) = 2R6 cos 260

v=1/22+ 92 =2R0

What is 67 In terms of angular momentum we remember



1 =mr2f
Plugging in our r, and solving for 6

l
" 4mR2? cos2 6

As we got closer to the origin, § becomes close to £7.

0

6= +(5 —9)

Note that as

0—0 0 — :I:g 0 — oo
All £, y and v are directly proportional to the 6 term. The & may be
questionable at first because it has a sin 26 and when sin20 — 0 as 6 — 7/2 we
may be left with oo * 0. But looking closely at 6§ we can tell that

. —4Rlcosfsin6 l
- _

 4mR2cos2 8 ——m—Rtanﬁ

tanf — oo as 0—>:i:g

2.14

e For circular and parabolic orbits in an attractive 1/r potential having the
same angular momentum, show that perihelion distance of the parabola
is one-half the radius of the circle.

e Prove that in the same central force as above, the speed of a particle at
any point in a parabolic orbit is /2 times the speed in a circular orbit
passing through the same point.

Answer:

Using the equation of orbit, Goldstein equation 3.55,

1 mk
; = lT[l + GCOS<9 —_ 9/)]

we have for the circle, e =0

ok
re 12 ° mk
For the parabola, e = 1
1 mk 12
=141 =
Tp 12 (141 = 2mk



So

. Te
)

The speed of a particle in a circular orbit is

2 _ 7'2( l2 ) N v, = —
m2rt T omr

In terms of k&, this is equal to

l vmrk k
r

mr m mr
The speed of a particle in a parabola can be found by
1112, =72 + r20?
. d ( 2 ) 120
r = — =
dt *mk(1 + cos6) mk(1 + cos 6)?

sin 6

Solving for vy,

;2
9 940, Sin°0
=r(———— +1
b ((1+c039)2+)
o, 2+ 2cosf
2 _ 242
= 9 B —
BT ((1+c089)2)
9 2r262
vy = —————
P 1+ cosf

Using r for a parabola from Goldstein’s (3.55), and not forgetting that k =

12/mr,
12 : 12
r=--—-—-—-—-———-— 92 = —
mk(1 + cos0) m2rs

we have

2 2r212mkr 9 2k

= — V=
P m2r4]2 p mr

For the speed of the parabola, we then have
|k
vy = Vo4 —
mr

vp = V20,

Thus

11



20. A uniform distribution of dust in the solar system adds to the gravitational
attraction of the Sun on a planet an additional force

F=-mCr

where m is the mas of the planet, C is a constant proportional to the gravi-
tational constant and the density of the dust, and r is the radius vector from
the Sun to the planet(both considered as points). This additional force is very
small compared to the direct Sun-planet gravitational force.

e Calculate the period for a circular orbit of radius rq of the planet in this
combined field.

e Calculate the period of radial oscillations for slight disturbances from the
circular orbit.

e Show that nearly circular orbits can be approximated by a precessing
ellipse and find the precession frequency. Is the precession in the same or
opposite direction to the orbital angular velocity?

Answer:

The equation for period is

r-2"
0
For a circular orbit,
. l
9 =
mr?
Thus
T 2rmr?
l
Goldstein’s equation after (3.58):
kP
g mrg

In our case, we have an added force due to the dust,

k 12
mCro + —- = —
rg  mrg

Solving for [ yields

I = y/mrok + m2Cr}

12



Plugging this in to our period,

2
T 2mmr T 2
Vmrok +m2Crg k4O
m'r‘o

Here the orbital angular velocity is

[k
Worb = 3 +C
mr

This is nice because if the dust was not there, we would have C' = 0 and our
period would be

2m k
TO = — wo = 3
k mro
mr’g

which agrees with | = mrdwo and | = vVmrk.

The period of radial oscillations for slight disturbances from the circular
orbit can be calculated by finding 3. 3 is the number of cycles of oscillation

that the particle goes through in one complete orbit. Dividing our orbital period
by 8 will give us the period of the oscillations.

T
B

Equation (3.45) in Goldstein page 90, states that for small deviations from
circularity conditions,

Tosc =

1
— = wug + acos 30
r

u =

Substitution of this into the force law gives equation (3.46)

9 r df
= 3 _—
=3
Solve this with f = mCr + k/r?
df 2k
% - -3 + C
2k
-2 4+ mC
2 r3
=3+
p T% + mC'r
F £ +4mCr Lo k440
T% + mCr m]j,g +C
Now

13



ko +4C

T mr
Tose = — 5237
g t+C

Therefore, our period of radial oscillations is

Tosc = 2n
£ +4C
Here
k
T

A nearly circular orbit can be approximated by a precessing ellipse. The
equation for an elliptical orbit is

B a(l —e?)
14 ecos(f — 6y

with e << 1, for a nearly circular orbit, a precessing ellipse will hug closely
to the circle that would be made by e = 0.

To find the precession frequency, I'm going to subtract the orbital angular
velocity from the radial angular velocity,

Wprec = Wr — Worb

k k
WWZVWHC‘\/WW

Fixing this up so as to use the binomial expansion,

k 4Cmr3 \/ Cmr3
w’”’”“_\/mrﬁ“/H PV )

Using the binomial expansion,

B k i+ 2Cmr3 a4 C’mr3)] B k [QC’mT‘?’ B C’mr3]
Wpree = mr3 2k “V ome3 k 2k
" _ E 4Cmr3 — Cmr3 B 3Cmr3 | k B g [mr3
pree =\ myp3 2k T2k mr3 2 k
Therefore,

14



3C 3C
—

Wpreec = fprec =

27(4}0 47 wo

Because the radial oscillations take on a higher angular velocity than the
orbital angular velocity, the orbit is very nearly circular but the radial extrema
comes a tiny bit more than once per period. This means that the orbit precesses
opposite the direction of the orbital motion.

Another way to do it, would be to find change in angle for every oscillation,

2
AO =27 — 2
B
Using the ratios,
2T
Tprec = ETosc

With some mean algebra, the period of precession is

4am 1
—tstC &

mr

kotac \ mr3

mr3

dm(y/ Es +40C) an [k
T;m"ec = "k - % = l — +4C
+4C — (£, +0)  3CV mr3

mr3 mr3

Tprec -

+4c

Because C' is very small compared to k, the approximation holds,
4 k
Toree ® 56\ s

4 3C _3C

wo - fprec = Wprec =

where wy = 1/ka3.

Therefore,

T, rec — -
P 4wy

15



Homework 5: # 3.31, 3.32, 3.7a

Michael Good
Sept 27, 2004

3.7a Show that the angle of recoil of the target particle relative to the incident
direction of the scattered particle is simply & = %(w - 0).

Answer:

It helps to draw a figure for this problem. I don’t yet know how to do this
in IMTEX, but I do know that in the center of mass frame both the particles
momentum are equal.

/ /
mivy = Mavy

Where the prime indicates the CM frame. If you take equation (3.2) Gold-
stein, then its easy to understand the equation after (3.110) for the relationship
of the relative speed v after the collision to the speed in the CM system.

/ H ma
v = —uv=——"0
mp my + ma

Here, v is the relative speed after the collision, but as Goldstein mentions
because elastic collisions conserve kinetic energy, (I'm assuming this collision
is elastic even though it wasn’t explicitly stated), we have v = vy, that is the
relative speed after collision is equal to the initial velocity of the first particle
in the laboratory frame ( the target particle being stationary).

m2

!/
V= —
mia + mo

This equation works the same way for v}

/ mi
Vg = ————1)
mi + mo

From conservation of momentum, we know that the total momentum in the
CM frame is equal to the incident(and thus total) momentum in the laboratory
frame.

(m1 4+ ma2)vem = mivg

We see



This is the same as v}

/
Vg = VUem

If we draw both frames in the same diagram, we can see an isosceles triangle
where the two equal sides are v5 and vep, .

P+P+O0 =7

1
@:i(ﬂ'—@)

Show that the differential cross section is given by

k (1 —x)dx

o(©)d0 = 2F 22(2 — —z)2sin 7z

where z is the ratio of ©/7 and F is the energy.

3.31 Examine the scattering produced by a repulsive central force f + kr—3.

Answer:

The differential cross section is given by Goldstein (3.93):

s ds
o(®) = sin® |dO

We must solve for s, and ds/dO. Lets solve for ©(s) first, take its derivative
with respect to s, and invert it to find ds/dO. We can solve for O(s) by using
Goldstein (3.96):

Os) = 7 — 2/ sdr
Tm T\/T2(1 - %) — 52

What is V(r) for our central force of f = k/r3? It’s found from —dV/dr = f.




Plug this in to © and we have

@(8)277—2/ sdr
Tm /7"2—(524—%)

Before taking this integral, I'd like to put it in a better form. If we look at
the energy of the incoming particle,

1 . k s’E k
E=-mrl®+ — ="+ + —
g m + 2r2, 12 + 2r2,
where from Goldstein page 113,
0-2 _ 232E
mrd
We can solve for s? + 5% the term in ©,
k
2 _ 2, ~
m =5

Now we are in a better position to integrate,

1 r
=7—2s [—cos ' =

o sdr
O(s :71'—2/ —_—
(5) . TA/T2 — T2 Tm

Goldstein gave us = O/, so now we have an expression for z in terms of
s, lets solve for s

k 21— x)?
2 _ (.2 N2 2 _ 2B
s7=(s —|—2E)(1 z)* — s (=)

S:\/Tﬂ—@
2E \/x(2 — @)

Now that we have s we need only ds/d© to find the cross section. Solving
dO®/ds and then taking the inverse,

d@ 1 2 k _3 7T
— =ms(—=(s"+ ==)"2)2s +
ds 2 2F k
82 + 2E
2 2, k nk
@_—773 +7(s% + 55) =
ds (524_%)% (324-%)%

So



ds  2B(s*+ #5)%
de wk
Putting everything in terms of z,

g B _kQ-wP ok _ k1
2E 2FEx2(2—-2) 2E 2Ex(2-1)

So now,
k (1 z) 3 / 3
S ds 2E vz (2—x) 2E(5 + 2E)§ 2E \/ 2 x) 2E z(2— z))Z
sin® [dO sin Tz wk sin Tz 7rk

And this most beautiful expression becomes..

1 1 k
sinTtx 7w 2F

2F , k

S ) e

c(2—z) (2(2—2))3

() =

After a bit more algebra...

k1 1 11—z
2F wsinma (#(2 — x))?

And since we know dO© = wdz,

o(0) =

k (1-2z)dz
2F 22(2 — xz)?sin7x

0(0)do =

3.32 A central force potential frequently encountered in nuclear physics is the
rectangular well, defined by the potential

V=0 r>a
V==V r<a

Show that the scattering produced by such a potential in classical mechanics is
identical with the refraction of light rays by a sphere of radius a and relative

index of refraction
_JE+W
o E

This equivalence demonstrates why it was possible to explain refraction phe-
nomena both by Huygen’s waves and by Newton’s mechanical corpuscles. Show
also that the differential cross section is

n2a?® (ncos$ —1)(n —cos Q)

dcos g (1+n%—2ncos 9)?

(@) =

What is the total cross section?




Answer:

Ignoring the first part of the problem, and just solving for the differential
cross section,

sds
0(0) = —=
() sin ©dO
If the scattering is the same as light refracted from a sphere, then putting
our total angle scattered, ©, in terms of the angle of incidence and transmission,

@ = 2(91 - 92)

This is because the light is refracted from its horizontal direction twice, after
hitting the sphere and leaving the sphere. Where 6; — 65 is the angle south of
east for one refraction.

We know sin 6y = s/a and using Snell’s law, we know

sin 61 . s
n = — — sinfy = —
sin 65 na

Expressing © in terms of just s and a we have
.S .8
O = 2(arcsin — — arcsin —)
a na

Now the plan is, to solve for s? and then ds?/d© and solve for the cross
section via

sds 1 ds? 1 ds?
g = = _—= —_—
sin@dO  2sin© dO  4sin Q cos $ dO

Here goes. Solve for sin % and cos % in terms of s

. . .S .S . .S .S .S . .S
s — = sm(arcsm ——arcsin 7) = Sln arcsin — Ccos arcsin — —CoOS arcsin — Sin arcsin —
a a a

2 2
= Scos(arccos 1-— niaQ) - Cos(arccos(ﬁ);

Using arcsinz = arccos v'1 — 22 and sin(a —b) = sina cos b— cos asinb. Now
we have

This is

. © s
sin — = W(\/n%z —2) — Va2 — $?)

Doing the same thing for cos % yields




) 1
cos — = —(Va? — $2\/n2a? — 52 4 %)
2 na?
Using cos(a — b) = cosacosb + sinasinb. Still solving for s? in terms of cos

and sin’s we proceed

© 52
sin? — = (n2a® — s* — 2v/n2a® — s2v/a? — 5% + a® — 5°)
2  n2qt
This is
2 4 2
.9 S 9 2s 2s
sin 33 (n + 1) — W — Ry \/n2a2 — 52\/a2 — 52
Note that
€]
\/n2a2 - 82\/a2 — $2 = na?cos 5 52
So we have
&) 52 252 0 252 52 S}
.2 2 2
sin2 =2 — n 11— —92ncos—+""NV=—""(14+n?—2ncos —
2 n2a2( + a? 2 + a? ) n2a2( + 2)

Solving for s2

n2a? sin? %

s2 =
1+ n2 —2ncos

S]
2
Glad that that mess is over with, we can now do some calculus. I'm going
to let ¢? equal the denominator squared. Also to save space, lets say % =Q. 1
like using the letter q.
ds?  a?sin Qn?

) = 72[005 Q(1 —2ncos@ + nz) — nsin? Q]
q

ds®>  n?a® . 9 9 2
A sin Q[cos Q@ — 2ncos” Q + n” cos Q@ — n(l — cos” Q)]
q

Expand and collect

ds? n2a?

e q?
Group it up

sin Q[—n cos? Q + cos Q + n? cos Q — )

2 2.2
% = %sin@(ncos@ —1)(n —cos @)
q

Plug back in for @ and ¢?:



ds?>  n’a’sin S(ncos2 —1)(n—cos 9)

e (1 —2ncos £ +n2)?

Using our plan from above,

1 ds® 1 n%a?sin € (ncos $ —1)(n —cos 2)

o= =
in & S] in @ [E] — (©) 2)2
4sin 3 cos 5 dO  4sin T cos 5 (1 —2ncos 3 +n?)

‘We obtain

©) 1 n2a®(ncos S —1)(n—cos 9)
g =
4cos% (1 —QnCOS% + n?)?

The total cross section involves an algebraic intensive integral. The total
cross section is given by

Omaz
or = 277/ 0(0) sin ©dO
0

To find ©,,4, we look for when the cross section becomes zero. When
(n cos % — 1) is zero, we’ll have O,qz. If s > a, its as if the incoming particle
misses the ‘sphere’. At s = a we have maximum ©. So using ©,,,, = 2 arccos %,
we will find it easier to plug in = = cos % as a substitution, to simplify our in-
tegral.

1
_ 2 o(nx—1)(n—z)
O'T—ﬂ'A an —(172ngj+n2)22dw

where ) o o )
dr = —3 sin EdG) cos n;az =
The half angle formula, sin® = 2sin%cos % was used on the sin©, the
negative sign switched the direction of integration, and the factor of 2 had to

be thrown in to make the dz substitution.

This integral is still hard to manage, so make another substitution, this time,
let q equal the term in the denominator.

g=1-2nz+n? — dq = —2ndx

The algebra must be done carefully here. Making a partial substitution to
see where to go:

Gmin=1—-2+n*=n*—1 Gmaz =n> —2n+1=(n—1)>

op — /("_1)2 2ra’n?(nx 2— 1)(n—2) dq o /(”_1)2 —n(nx — ;l)(n — ) dq
n2—1 q —2n n2—1 q



Expanding ¢? to see what it gives so we can put the numerator in the above
integral in terms of ¢ we see
¢ =n*+1+2n2— 40z — dnz + 4n%2?

Expanding the numerator

—n(nz —1)(n — x) = —n’z — nx + n’z? + n?
If we take ¢? and subtract a n?, subtract a 1, add a 2n? and divide the whole
thing by 4 we’ll get the above numerator. That is:

P -nt+2m* -1 ¢ —(n*-1)?
4 B 4
Now, our integral is

(n—1)% 2 2 2
9 q — (n - 1)
or = /nzfl g Y

= —n(nz —1)(n — )

This is finally an integral that can be done by hand

2

ra? (n? —1)2 ra? (n? —1)2 (n=1)
=0 T g = W=

o=y 2 =

)

z n?2—1

After working out the few steps of algebra,

ma? 4n? — 8n + 4 9
—_— =TT
4 n?2-2n+1

The total cross section is

or = ra®



Homework 6: # 4.1, 4.2, 4.10, 4.14, 4.15

Michael Good
Oct 4, 2004

4.1
Prove that matrix multiplication is associative. Show that the product of two

orthogonal matrices is also orthogonal.

Answer:
Matrix associativity means
A(BC) = (AB)C

The elements for any row i and column j, are

ABC) =" 4" BunCuny)
k m

(AB)C =) (3 AirBim)Chn;

m k

Both the elements are the same. They only differ in the order of addition.
As long as the products are defined, and there are finite dimensions, matrix

multiplication is associative.

Orthogonality may be defined by
AA=T

The Pauli spin matrices, o, and o, are both orthogonal.
. (01 01\ (1 0Y\ _ It
7202 =\ 1 0 1t o)~ \o1)~
. (1 0 1 0 (1 0\ _ I
7272 =\ o0 -1 0o -1 )= \o 1)~

The product of these two:

mo= () (5 0= (0 )

Ii
<



is also orthogonal:

More generally, if

AA=1 BB=1
then both A, and B are orthogonal. We can look at

AT/BAB = Z(A\é)zk(AB)kg = ZABkiABkj = Z aksbsiakrb,«j
k k

k,s,r

The elements are

Z aksbsiakrbrj = Z bsiaksakrbrj = Z bsi(AA)srbrj

k,s,r
This is
ABAB =" bydyb,; = BBy = ;5
Therefore the whole matrix is I and the product
ABAB =1

is orthogonal.

4.2
Prove the following properties of the transposed and adjoint matrices:

AB = BA
(AB)T = BT AT

Answer:

For transposed matrices

ZE = Eij = ABji = Zajsbsi = Z bsiajs = Zéisgsj = (EAV)” = EAV
As for the complex conjugate,

(4B)! = (4B)*

From our above answer for transposed matrices we can say

AB = BA



And so we have

(AB)! = (AB)* = (BA)* = B*A* = BT Al

4.10
If B is a square matrix and A is the exponential of B, defined by the infinite
series expansion of the exponential,

n

1 B
A=eP =1+B+B*+ ...+ — + ..,
2 n!
then prove the following properties:

o eBeC = eB+C providing B and C' commute.

e A7l =¢ B
e CBCTN — cAC!

e A is orthogonal if B is antisymmetric

Answer:
Providing that B and C' commute;

BC-CB=0 BC=CB

we can get an idea of what happens:

B? C? C? B?
(1+B+7+O(B3))(1+C+7+O(03)) = 14+C+ 5 +B+BC+—5-+0(3)

This is

(B+C)?
2

Because BC' = C'B and where O(3) are higher order terms with products of
3 or more matrices. Looking at the kth order terms, we can provide a rigorous
proof.

1
1+(B+C)+§(CQ+2BC+BQ)+O(3) =1+(B+0)+ +0(3) = B¢

Expanding the left hand side of

and looking at the kth order term, by using the expansion for exp we get,
noting that i + j =k
LBiol L B
T —
- il 5 (k—j)5!



and using the binomial expansion on the right hand side for the kth order
term, (a proof of which is given in Riley, Hobsen, Bence):

k k. Bk
(B+!C _;; Bk chzg(f—jij!
we get the same term. QED.
To prove
Al _ B
We remember that
'A=1
and throw e~? on the right
A7 1Ae B =178
A-1leBe—B — B
and from our above proof we know eZe® = eB+C 5o
A-1leB-B _ ,-B
Presto,
A-l— B
To prove
OB = cAC!
its best to expand the exp
ini CBO-1y" — 1+CBC_1+CBC_12030_1 +w_‘_CBC’_lCBSL'!_lCBC_l...

0

Do you see how the middle C~1C terms cancel out? And how they cancel
each out n times? So we are left with just the C and C'~! on the outside of the
B’s.

=1 =1
> —(CBCT)" =3 —CB"C™' =CePC™!
n! n!
0 0
Remember A = e¢® and we therefore have

CBCT = cACcT!

+...



To prove A is orthogonal
if B is antisymmetric

We can look at the transpose of A

n n

_ oo B [e'e) E oo (7B)n B
A= el

But from our second proof, we know that e=? = A7, so

A=A"1

and we can happily say A is orthogonal.

4.14

e Verify that the permutation symbol satisfies the following identity in terms
of Kronecker delta symbols:

€ijp€rmp = 5zr6jm - 5zm(5jr

e Show that
€ijp€ijk = 20pk

Answer:
To verify this first identity, all we have to do is look at the two sides of the
equation, analyzing the possibilities, i.e. if the right hand side has

i=r j=m#i

we get +1. If

i=m j=r#i

we get —1. For any other set of ¢, j, r, and m we get 0.
For the left hand side, lets match conditions, if

i1=r j=mH#i

then €, = €,mp and whether or not €;;, is £1 the product of the two gives
a+1. If

i=m j=r#£i



then €.mp = €jip = —€;5p and whether or not €;;, is £1 the product is now
equal to —1.

These are the only nonzero values because for 4, j, 7, m, none can have the
same value as p. Since there are only three values, that any of the subscripts
may take, the only non-zero values are the ones above. (not all four subscripts
may be equal because then it would be e =0 as if i = j or r = m).

To show that
€ijp€ijk = 20pk
we can use our previous identity, cast in a different form:
€ijk€imp = OjmOkp — OjpOrm

This is equivalent because the product of two Levi-Civita symbols is found
from the deteriment of a matrix of delta’s, that is

€ijk€rmp = 5ir5jm5kp + 6im6jp5kr + 6ip5jr5km - 5im5jr5kp - 5ir5jp6km - 51’p5jm5kr

For our different form, we set i = r. If we also set j = m, this is called
‘contracting’ we get

€ijk€ijp = 0j;0kp — OjpOk;

Using the summation convention, §;; = 3,
€ijk€ijp = 30kp — Okp

€ijk€ijp = 20kp

4.15
Show that the components of the angular velocity along the space set of axes
are given in terms of the Euler angles by
wy = 0 cos ¢+ 1sinfsin ¢
Wy = 0 sin ¢ — v sin 6 cos ¢
w, = w cosf + qﬁ

Answer:

Using the same analysis that Goldstein gives to find the angular velocity
along the body axes (2/,y’,2") we can find the angular velocity along the space
axes (x,y, z). To make a drawing easier, its helpful to label the axes of rotation
for 9, 1/) and (;5



6 — L.O.N.
Y — 2
¢ — =z
We want

Wy:éy+1/’y+¢gy
wz:éz""_’(/)z""_q;z

Lets start with w, first to be different. If we look at the diagram carefully on
page 152, we can see that 0 is along the line of nodes, that is 6 revolves around
the line of nodes. Therefore because the line of nodes is perpendicular to the z
space axis there is no component of ¢ contributing to angular velocity around
the z space axis. 6, = 0. What about 1,7 Well, ) revolves around z’. So there
is a component along z due to a changing 1. That component depends on how
much angle there is between 2z’ and z, which is . Does this makes sense? We
find the z part, which is the adjacent side to 6. Thus we have 1), = 1 cos#.
Now lets look at ¢.. We can see that ¢ just revolves around z in the first place!
Right? So there is no need to make any ‘transformation’ or make any changes.
Lets take ¢, = ¢. Add them all up for our total w.

Wz:éz+¢z+¢z:0+¢cose+¢

Now lets do the harder ones. Try w,. What is 6,7 Well, 6 is along the line
of nodes, that is, # changes and revolves around the line of nodes axis. To find
the z component of that, we just see that the angle between the line of nodes
and the z axis is only ¢, because they both lie in the same xy plane. Yes? So
0, = 0 cos ¢. The adjacent side to ¢ with 0 as the hypotenuse. Lets look at by
See how ¢ revolves around the z axis? Well, the z axis is perpendicular to the
x axis there for there is no component of qS that contributes to the x space axis.
gﬁm = 0. Now look at wm We can see that w is along the 2’ body axis, that is,
it is in a whole different plane than z. We first have to find the component in
the same zy plane, then find the component of the x direction. So to get into
the zy plane we can take 1, , = ¥ sinf. Now its in the same plane. But where
is it facing in this plane? We can see that depends on the angle ¢. If ¢ = 0
we would have projected it right on top of the y — azis! So we can make sure
that if ¢ = 0 we have a zero component for z by multiplying by sin¢. So we
get after two projections, 1), = 1 sinfsin¢. Add these all up for our total w,,
angular velocity in the z space axis.

wzzém+1/)m+<;§m :écosqSJrq/}SinGsinqSJrO

I'll explain w, for kicks, even though the process is exactly the same. Look
for 6. 0 is along the line of nodes. Its y component depends on the angle ¢. So



project it to the y axis. Gy = fsin ¢. Look for wy Its in a different plane again,
so two projections are necessary to find its component. Project down to the zy
plane like we did before, 1), , = 1 sin and now we remember that if ¢ =0 we
would have exactly placed it on top of the y axis. Thats good! So lets make it if
¢ = 0 we have the full ¢ sin6, (ie multiply by cos ¢ because cos0 = 1). But we
also have projected it in the opposite direction of the positive y direction, (throw
in a negative). So we have wy = —z/} sin 0 cos ¢. For qby we note that ¢ revolves
around the z axis, completely perpendicular to y. Therefore no component in
the y direction. ¢, = 0. Add them all up

Wy :9y+¢y +¢3y =fsing —sinfcosd + 0
Here is all the w’s together
Wy = écos<b—|—1/}sin0sin¢
Wy = fsin¢g — ¢ sinf cos ¢
w, =1cosh+ ¢



Homework 7: # 4.22, 5.15, 5.21, 5.23, Foucault
pendulum

Michael Good
Oct 9, 2004

4.22

A projectile is fired horizontally along Earth’s surface. Show that to a first
approximation the angular deviation from the direction of fire resulting from
the Coriolis effect varies linearly with time at a rate

wcosf

where w is the angular frequency of Earth’s rotation and 6 is the co-latitude,
the direction of deviation being to the right in the northern hemisphere.

Answer:
I’ll call the angular deviation ¥. We are to find

1 = wcos Ot

We know w is directed north along the axis of rotation, that is, sticking out
of the north pole of the earth. We know 6 is the co-latitude, that is, the angle
from the poles to the point located on the surface of the Earth. The latitude, A
is the angle from the equator to the point located on the surface of the Earth.
A = 7w/2 — 0. Place ourselves in the coordinate system of whoever may be fir-
ing the projectile on the surface of the Earth. Call 3 the horizontal direction
pointing north (not toward the north pole or into the ground, but horizontally
north), call 2’ the horizontal direction pointed east, and call 2’ the vertical di-
rection pointed toward the sky.

With our coordinate system in hand, lets see where w is. Parallel transport
it to the surface and note that it is between 3y’ and z’. If we are at the north
pole, it is completely aligned with 2z, if we are at the equator, w is aligned with
y'. Note that the angle between z’ and w is the co-latitude, 6.(6 is zero at the
north pole, when w and 2’ are aligned). If we look at the components of w, we
can take a hint from Goldstein’s Figure 4.13, that deflection of the horizontal
trajectory in the northern hemisphere will depend on only the 2’ component of
w, labeled w,/. Only w, is used for our approximation. It is clear that there is



no component of w in the z’ direction. If we took into account the component
in the ¢ direction we would have an effect causing the particle to move into the
vertical direction, because the Coriolis effect is

F.=—-2m(w x v)

and wy x v would add a contribution in the 2z direction because our projectile
is fired only along z’ and ¢/, that is, horizontally. So following Goldstein’s figure,
we shall only be concerned with w,. Our acceleration due to the Coriolis force
is

a. = —2(wxv)=2(v X w)

The component of w in the 2’ direction is w,, = w cos#. Thus the magnitude
of the acceleration is

a. = 2vw cos f

The distance affected by this acceleration can be found through the equation
of motion,

1
d= §act2 = vw cos Ot>

And using a small angle of deviation, for ¢ we can draw a triangle and note
that the distance traveled by the projectile is just x = vt.

xp=d — w:é

T

vw cos Ot2
Y= ——7696°—=wcosbt
vt

Therefore the angular deviation varies linearly on time with a rate of wcos 6.
Note that there is no Coriolis effect at the equator when 6 = 7/2, therefore no
angular deviation.

5.15

Find the principal moments of inertia about the center of mass of a flat rigid
body in the shape of a 45° right triangle with uniform mass density. What are
the principal axes?

Answer:

Using the moment of inertia formula for a lamina, which is a flat closed
surface, (as explained on wolfram research) we can calculate the moment of
inertia for the triangle, with it situated with long side on the x-axis, while the
y-axis cuts through the middle. The off-diagonal elements of the inertia tensor
vanish.



a a—zx M 2M a _ 3
I, = /Udexdy = 2/ / —y?dydx = —2/ L z) dx
0 0 A a 0 3

Solving the algebra,

oM [

* =353 (=23 + 3az? — 3a*x + a*)dx = C--—= ] =
0

For I,

a ra=y Af
I, = /aa:Qda:dy = 2/ / —2%dxdy
0o Jo A

This has the exact same form, so if you're clever, you won’t do the integral
over again.

For I,

I, = 24y =I,+1,=(=+=)Md* =
o= [ola® 4 yPydedy = L + 1, = ( + p)Ma® =

We can use the parallel axis theorem to find the principal moments of inertia
about the center of mass. The center of mass is

o [¢ [0 2 [ (a—ax)
om = 20 dedy = = | ~-"d
o =2 [ [, e =G5 [

1 3

a a
1
ycm:—Q/ (a272xa+x2)dx:a217ax2+m— a4
a”Jo

)
0@ 3

,$,0). Using the

3

From symmetry we can tell that the center of mass is (0
parallel axis theorem, with ro = a/3

Ix =1, — Mr?
Iy =1,
Iz =1, — Mr§
These are
1 1 3 2 Ma?
Ix = (= — =)Mad® = (= — —)Ma® =
x = (5~ gIMa” = (g~ g)Ma 18
Ma?
Iy = :



1 9 2 9
IZ—(3 9)Ma —9Ma

5.21

A compound pendulum consists of a rigid body in the shape of a lamina sus-
pended in the vertical plane at a point other than the center of gravity. Compute
the period for small oscillations in terms of the radius of gyration about the cen-
ter of gravity and the separation of the point of suspension from the center of
gravity. Show that if the pendulum has the same period for two points of sus-
pension at unequal distances from the center of gravity, then the sum of these
distances is equal to the length of the equivalent simple pendulum.

Answer:

Looking for an equation of motion, we may equate the torque to the moment
of inertia times the angular acceleration.
IF =10
The force is —Mgsinf, and the moment of inertia, using the parallel axis
theorem is
I=Mr}+MIP

where r, radius of gyration about the center of gravity, and [ is the distance
between the pivot point and center of gravity. The equation of motion becomes

—IMgsing = (Mr] + MI*)f

Using small oscillations, we can apply the small angle approximation sin 6§ ~

—lgd = (r +17)0
lg ..
R 0+6=0

This is with angular frequency and period

2 2_|_ZZ
w = 2192 — T:—ﬂ-:27r i
rg+1 w lg

This is the same as the period for a physical pendulum

I T2 + 12
T =2my|—— =2m| -2
Mgl lg

If we have two points of suspension, [; and ls, each having the same period,
T. Then we get




2 ré—}—l% =27 T‘g-l-l%
lig lag

2B 2413
lh ly

This is

And in a more favorable form, add [; to both sides, because we are looking

for I; + I3 to be equivalent to a simple pendulum length,

2 2

g g
“+h+th="+b+h
I ly
2
"y
—(la=l)+2h =0+
lily
This is only true if
7’3 = lllg

Thus our period becomes

r2 + 12 Iily + 12 Iy +1
T =27 g 1:27r L—HZQW 2t h
lig lig g

where L is the length of a simple pendulum equivalent.

=27

L
g

5.23

about the axis of rotation is ry and the center of mass is
the hinges. Show that if f is 0.3m/s? and the door is a
1.2m wide, the time will be approximately 3.04 s.

An automobile is started from rest with one of its doors initially at right angles.
If the hinges of the door are toward the front of the car, the door will slam shut
as the automobile picks up speed. Obtain a formula for the time needed for the
door to close if the acceleration f is constant, the radius of gyration of the door

at a distance a from
uniform rectangle is

Answer:

Begin by setting the torque equal to the product of the moment of inertia

and angular acceleration.

10 = aF
The moment of inertia is I = m#3. The force is F = —mfsinf. So we get
mréf = —amf sin 0

Our equation of motion is




. a
0=— oy sin 0
To
This is rough. In our case we can not use the small angle approximation. The

door starts at 90°! How do we go about solving this then? Lets try integrating
it once and see how far we can get. Here is a handy trick

ddo dd dodo db,

Tdtdt  dt  dfdt  df
Plug this into our equation of motion

do . af
@9 —E sin @

This is separable, and may be integrated.

62 af
— = —5 cosf
2 rg

. 2
0= %f cos
)

The time may be found by integrating over the time of travel it takes for the

door to shut.
z 2
T /2 ﬁd& 7/ d9 / g
0 d9 2a

Here is where the physics takes a backseat for a few, while the math runs

the show. If we throw in a —cos90° we might notice that this integral is an
elliptic integral of the first kind, denoted K.

rg 2 dO r§ /2 do TO \f
\/;A Veost @ | et~ | gay V2K D)

This can be seen from mathworld’s treatment of elliptic integrals, at

http://mathworld.wolfram.com/EllipticIntegraloftheFirstKind.html.
Now we have

cos 0

2 2
77—/l K(i)
af 2
K (%) belongs to a group of functions called ‘elliptic integral singular val-
ues’, K (k

) A treatment of them and a table of their values that correspond to
gamma functions are given here:

http://mathworld.wolfram.com/EllipticIntegralSingularValue.html.



The ‘elliptic lambda function’ determines the value of k.. A table of lambda
functions is here

Our k, value of g corresponds to ki. From the singular value table,
(1)
4/7

B r2 FQ(l)
r= \/:M

Fortunately, there are nice calculators that will compute gamma functions
quickly. T used this one

http://www.efunda.com/math/gamma/findgamma.cfm.

I now have

K(ki) =

Our time is now

1
I(;) =363

Back to the physics. The moment of inertia of a uniform rectangle about
the axis that bisects it is %aQ. Move the axis to the edge of the rectangle using
the parallel axis theorem.

M 4
I=Mr§=Ma*+ —a*=-Md’
3 3
we now have
4
2 2
rg = —a
073

With a = .6m, that is, half of the length of the car door, assuming its mass
is uniform. And with f = .3m/s? we have

_ J4a 1 o [4(6) 1 > _ -
T—\/;4ﬁ(3.63) =\ 303 TUgT (B9 = 3035 ~ 304

Foucault Pendulum
Find the period of rotation as a function of latitude.
Hint: neglect centrifugal force, neglect change in height, solve for £ = x + iy

Answer:

The Foucault pendulum is a swinging weight supported by a long wire, so
that the wire’s upper support restrains the wire only in the vertical direction
and the weight is set swinging with no lateral or circular motion. The plane
of the pendulum gradually rotates, demonstrating the Earth’s rotation. Solve



for the period of rotation of this plane. The equation of motion for acceleration
takes into account the vertical acceleration due to gravity, the acceleration from
the tension and the Coriolis acceleration.

T
ar =g+ — — 2w X v,
m
In my system, I have x facing east, y facing north, and z facing to the sky.
This yeilds
we =0
wy = wsinf = wcos A
w, =wcosf = wsin A

The only velocity contributions come from the x and y components, for we
can ignore the change in height. The Coriolis acceleration is quickly derived

e = YwSIN AT — Tw sin Ay + Tw cos A2

Looking for the period of rotation, we are concerned only with the « and y
accelerations. Our overall acceleration equations become

i = f%:chQywsin)\
= —%y — 2Zwsin A

The g/l terms were found using approximations for the tension components,
that is, T, = —T'% — T, /ml = g/l and the same for y.

Introducing ¢ = x + iy and adding the two equations after multiplying the
second one by 14

£+ %5 = —2wsin \(—y + i1)

é—l— %5 = —2iwsin )\é

£ §5+2iwsm»§' —0

This is the damped oscillation expression. It’s solution is, using ¢ >>
wsin A, the over damped case

&= efiwsin)\t(Aei\/TFt + Be*i\/%ﬁt)
The equation for oscillation of a pendulum is

i+3q=0

It has solution



q= AtV + Be~iVt
We can simplify our expression then, using ¢
f _ qe—iw sin At

Where the angular frequency of the plane’s rotation is wcosf, or wsin A
where A is the latitude, and 6 is the co-latitude. The period can be found using,
w=2nm/T.

2w 9 — 2 T o TEarth
CosU = — L Foucault =
Tearth TFoucault cos 0

This can be checked because we know the pendulum rotates completely in
1 day at the North pole where § = 0 and has no rotation at the equator where
6 = 90°. Chapel Hill has a latitude of 36°, a Foucault pendulum takes

24 h
TFoucault = ﬂ ~ 41 hours
sin 36°

to make a full revolution.



Homework 9: # 8.19, 8.24, 8.25

Michael Good
Nov 2, 2004

8.19

The point of suspension of a simple pendulum of length [ and mass m is con-
strained to move on a parabola z = ax? in the vertical plane. Derive a Hamilto-
nian governing the motion of the pendulum and its point of suspension. Obtain
the Hamilton’s equations of motion.

Answer:
Let
2 =x+1sind
2 =ax® —lcosh
Then
1 212 12
T= Qm(x + 2%)
U = mg?'

Solving in terms of generalized coordinates, z and €, our Lagrangian is

1 : : :
L=T-U= im(fv2+2x'l cos 00-+4a 2% % +4axill sin +126?) —mg(aa®—1 cos 0)

1. .
L:L0+§qTq

where ¢ and T" are matrices. We can see

) T
()
m(1 + 4a%x?) ml(cos § + 2ax sin 6) >

T= ( ml(cos @ + 2ax sin §) mi?
with



Lo = —mg(ax® — [ cosf)

The Hamilitonian is

1
H=SpT"'p— Lo

Inverting T by

with the algebra,

1
ad —bc  m212(1 + 4az?) — m212(cos 0 + 2ax sin 0)2

this is
_ 1
~ m22(sin® 0 + 4az? — 4ax cos O sin O — 4a2x? sin® 0)
_ 1
~ m212(sin® 0 — 4ax sin 0 cos 0 + 4a2x? cos? 0)

which T’ll introduce, for simplicity’s sake, Y.

1
~ m2I2(sin — 2ax cos )2

1
T m2l2Y

So now we have
—ml(cos 0 4 2ax sin 6) )

T,I - 1 m12
T m22Yy \ —mil(cos + 2axsin ) m(1 + 4a%2?)
71 1 1 —(cos 0 + 2axsind)/l
“ mY \ —(cosf+ 2axsinb)/l (1 + 4a%22) /12

I want to introduce a new friend, lets call him J

= (cos + 2ax sin 6)

J
Y = (sin# — 2ax cos 0)?

So,
-1 1 1 —J/l
mY \ —J/l (14 4a%x?)/1?

Proceed to derive the Hamiltonian,

1
H=SpT"'p— Lo



we can go step by step,

SR —J/ pe ) _ L Pz — (J/1)po
mY \ —J/l (1+4a®2?/1? Do mY \ (=J/Dps + (14 4a®z?/1?)pg
and
1 J J 1+ 4a%2?
S N 2 2
pT p= W(px — PPz = T PoDa + Tpe)
the full Hamiltonian is
1 J 1+ 4a?z?
H= m(pi - 27pgpI + Tpg) + mg(az® — L cosf)
plugging in my Y and J
1 9 ,cosf+ 2axsind 1+ 4a%2? , 9
H= 2m(sin @ — 2ax cos 0)? (P2 l Popa 12 py)+mglaz”—lcos6)
Now to find the equations of motion. They are
_oH oW . om . oM
T ope T ope T Tow T o6

The first two are easy, especially with my substitutions.

Pe]

xii[ J = 1 [ _ cost 4 2axsin b

T my Pe T P m(sin @ — 2ax cos 9)? Pa l

- 1 1+ 4a%2? 1

0 — — - = — 9 2 i 9 x
mYl[ Tpat l Pl ml(sin 6 — 2ax cos 9)2[ (cos 6-+2a sin f)p,+

But the next two are far more involved. I handled the

l

partial with respect

to x by taking the product rule between the two main pieces, the fraction out
front, and mess inside the parenthesis that has p terms. I then broke each p
term and began grouping them. Go slowly, and patiently. After taking the

derivative before grouping, my p, looked like this:

o
Pz = o
OH 1 [74(1 sin 0 n 8a’x 2)
Ox  2m(sin@ — 2ax cos )? | Pobe iz P
—2(—2acosb) 9 .cosf0+2axsinb 1+ 4a%2? ,
- D Rk Mk 2
2m(sin 6 — 2ax cos 0)3 iz l PPz + 12 py] + 2mgax

1+ 4a2a?

)

o]



Now start simplifying. Lets group the p terms.

4a(cos @ + 2axsinf)
2ml?[sin 6 — 2azx cos 6]3 Po

4a cos 6

2
2m[sin 6 — 2ax cos 6]3 Pe

and the longest one..

2a
Im[sin 6 — 2azx cos 6)

3 [sin? @ — 2 — 2azx cos O sin O] pgp,

Adding them all up yields, for p,:

OH 2a o) 2+c059+2a:1csin9 5 2 —sin?6 + 2axsinf cos =
—— = cos - Dol —2mgax
Ox m[sin @ — 2ax cos 0]3 Pe 12 Po l Pabo g
Now for the next one, pg:
. OH
Do = 90

Taking the derivative, you get a monster, of course

OH 1 2sin@  4axcost

an . p) [ - ]pé)pm

90 2m[sin 6 — 2ax cos 4] l l
9 .cosf+ 2azsind 1+4a%2? 5 —2(cosf + 2azsin6) .

—9 L epa [sind
e l PPz + 12 o) [Zm[sin 0 — 2ax cos 6]3 +mgesin
separating terms..
—(cosf 4 2axsinf) ,
m[sin 6 — 2ax cos 0]3pz
cosf + 2axsing 1+ 4a’z? ,
m[sin § — 2ax cos 0]3 2z e

and the longest one...

[ (sin — 2ax cos 6)? 2(cos 0 + 2ax sin 0)? |

Im[sin€ — 2azcos O3  Im[sinf — 2ax cos f]3 Pope
add them all up for the fourth equation of motion, py
oH 1 ((cos 6 + 2azs 9)(2+1+4a2$2 2)
- = cos ax sin _
90  m[sinf — 2ax cos 63 P 2 P
[(sin @ — 2az cos 0)? + 2(cos  + 2ax sin 6)?]
- PoPz

l



Together in all their glory:

H 1
9 = [(cos 6 + 2azx sin 0)(p2 +

. 1+ 4a2a? 9
Po=""5¢ m[sin @ — 2ax cos 0]3

l2 p9)

[(sin @ — 2ax cos )% + 2(cos § + 2ax sin 0)?]
- I DPoPx

) 0H 2a fcos 6 2 COS 0+ 2axsind , 2—sin®6+ 2axsinécosf 1—2
= ——— = ——— 2 - +Do|—2mgax
b Ox m[sin @ — 2ax cos 0]3 P 12 Po l PaPo g
i 1 [ _ cosf + 2axsinf ]
~ m(sinf — 2ax cos )2 Pe l be
. 1 1+ 4a®z?
ml(sin @ — 2ax cos 0)? [=(cos 6 + 2 sin f)p. + l o]

8.24

A uniform cylinder of radius a and density p is mounted so as to rotate freely
around a vertical axis. On the outside of the cylinder is a rigidly fixed uniform
spiral or helical track along which a mass point m can slide without friction.
Suppose a particle starts at rest at the top of the cylinder and slides down under
the influence of gravity. Using any set of coordinates, arrive at a Hamiltonian
for the combined system of particle and cylinder, and solve for the motion of
the system.

Answer:

My generalized coordinates will be 6, the rotational angle of the particle
with respect to the cylinder, and ¢ the rotational angle of the cylinder. The
moment of inertia of a cylinder is

1 1
I ==-Mad* = =prha*
2 2

There are three forms of kinetic energy in the Lagrangian. The rotational
energy of the cylinder, the rotational energy of the particle, and the translational
kinetic energy of the particle. The only potential energy of the system will be
the potential energy due to the height of the particle. The hardest part of this
Lagrangian to understand is likely the translational energy due to the particle.
The relationship between height and angle of rotational for a helix is

h = cl

Where c is the distance between the coils of the helix. MathWorld gives a
treatment of this under helix. Understand that if the cylinder was not rotating



then the rotational kinetic energy of the particle would merely be %a292, but
the rotation of the cylinder is adding an additional rotation to the particle’s
position. Lets write down the Lagrangian,

1. . .
L= 5[{;52 + %[aQ(e + $)% + *6%] + mgch
This is
1~ ..
L= Lo+ 54 Tq
Solve for T.
ma? + mc? ma? . 0
T = 2 2 q = .
ma I+ ma 1)
Using the same 2 by 2 inverse matrix form from the previous problem, we
may solve for T~ 1.

7! =

1 < I+ ma? —ma? >

(ma? + mc?)(I + ma?) — m2a* —ma®  m(a® + c?)

Now we can find the Hamiltonian.
| pep—
H= ip T *p— Lo
This is

I +ma®) — 2ma’pgpy + pim(a® + )
B 2[m(a® + ¢2)(I + ma?) — m2a?]

— mgch

From the equations of motion, we can solve for the motion of the system.
(duh!) Here are the EOM:

OH .
00 Po = mgc
OH .
_% = D¢ = 0
OH _ j_ (I +ma?)ps — ma?py
Opy m(a? + c2)(I + ma?) — m?a*
oH _ b= —ma’pg + pgm(a® + c?)

e m(a? + c?)(I + ma?) — m2a*

To solve for the motion, lets use the boundary conditions. 6(0) = $(0) =0
leads to pg(0) = pe(0) = 0 leads to

po = mgct py =10



Pluggin and chuggin into 6 and (b and integrating, yields the motion

—m2a?gct?
2[m(a? 4+ ¢2)(I + ma?) — m2a?*]

¢ =

B (I +ma?)mgct?
-~ 2[m(a? + ) (I + ma?) — m2a?)

If we plug in I = £ Ma? where M is the mass of the cylinder, we obtain

B fmgctz
2[me? + M (a? + c2)]

_ (m+ %M)gct2
2[me? + %M(a2 + 2)]

8.25

Suppose that in the previous exercise the cylinder is constrained to rotate uni-
formly with angular frequency w. Set up the Hamiltonian for the particle in an
inertial system of coordinates and also in a system fixed in the rotating cylin-
der. Identify the physical nature of the Hamiltonian in each case and indicate
whether or not the Hamiltonians are conserved.

Answer:

In the laboratory system, the particle moves through an angle ¢ = 0 + ¢.
The cylinder moves uniformly, ¢ = wt, so the kinetic energy

1 . . 1 .
T= §ma2(9 +¢)* + §m0292
may be expressed

1 . 1 .
T= imazz/}Q + imc2(1/) —w)?

The potential energy may be written

U= —mgc(yp —wt)

So we have
1 . .
L= 5m(a®$? + (¢ = w)?) + mge(yh - wi)
%2 =p =ma®Y + mc* (¥ — w)
and with

H= 36T (5—a) - Ly



we find T-! from

1~
L=§QT”q+Qa+L0

We can see things better if we spread out L

1 . 1 . .1
L= §ma21/12 + §mc2w2 — mctw) + §m02w2 + mge(yh — wt)

50
L 209
Ly = Fmew + mgce(yp — wt)

and

1
T7l'=——
m(a? + ¢?)
Therefore, for our Hamiltonian, we have
(p—mc*w)?  mcPw?
2m(a? + ¢2?) 2

This is dependent on time, therefore it is not the total energy.

Higp = —mge( — wt)

For the Hamiltonian in the rotating cylinder’s frame, we express the move-
ment in terms of the angle € this is with respect to the cylinder.

Y=0+¢=0+uwt
p=0+d=0+w

1 . 1 .
T= §ma2(9 +w)? + 5m0292

U= —mgch
Lo 9 o L oo
L= zma 0 +w)”+ Zme 0% + mgch

Lz%éT@+@+Lo
Spread out L
L= %[ma2 +mc?)6% + ma?6w + 1ma2w2 + mgcl
It becomes clear that



ma? + mc?

1
Ly = gmazw + mgch

Using again,
1 -1
H=cp-a)T (p-a)-Lo
we may write

(p—mad*w)? 1
H="———'—— —ma“w — mgch
2m(a? +¢c%) 2 g
This is not explicitly dependent on time, it is time-independent, thus con-
served.



Homework 10: # 9.2, 9.6, 9.16, 9.31

Michael Good
Nov 2, 2004

9.2
Show that the transformation for a system of one degree of freedom,

Q =qcosa —psina

P =g¢gsina+pcosa
satisfies the symplectic condition for any value of the parameter «. Find a
generating function for the transformation. What is the physical significance of

the transformation for a = 0?7 For o = /2?7 Does your generating function
work for both of these cases?

Answer:
The symplectic condition is met if

MJM =J
We can find M from

(= Mn

[ cosa —sina q
“ \ sina  cosa P

which is

¢

We know J to be

Solving M JM we get

—cosa —sina

MINT — cpsa —sina —sina cqsoz _ 0 1
sina  cos« —cosa —sino -1 0

M(JM)—M( —sina cosa )




Therefore

MJM = J

and the symplectic condition is met for this transformation. To find the
generating function, I will first attempt an F; type and proceed to solve, and
check at the end if there are problems with it. Rearranging to solve for p(Q, q)
we have

Q q cos «
p=—— + —
sin «v sin «v
The related equation for F} is
_O0Fy
= o0

Integrating for F; yields

2 5
Qg ceosa oy

P =—— .
sin o 2sin

Solve the other one, that is P(Q, q), it along with its relevant equation is

Qcosa qcos’a

P =g¢gsina— — -
sin o sin «v
F
p:_b
oQ

Integrating

2
1
—F =q¢Qsina — @ cota + qQ(—— —sina) + h(q)
2 sin «

2
—-F = & cot a + ﬂ + h(q)
2 sin o
2
= Q—cotaf ﬂ + h(q)
2 sin o
Using both Fy’s we find
Qq

Fi=-

1 5 2
sin o +§(q + @) cota

This has a problem. It blows up, sky high, when o = nw. But otherwise its
ok, lets put the condition, o # nw. If we solve for F» we may be able to find
out what the generating function is, and have it work for the holes, o = nn.
F5(q, P,t)’s relevant equations are

_oF,
p= dq



P gsina

p =
CcOoS & COS &
P 2
F, = q fq—tana+f(P)
COS « 2
and
0F,
©=9p

Q =qcosa— (P —gsina)tana

2

2 sin® a

P
Fy = qPcosa — — tana + ¢qP +g(q)
2 cos o
P2
Fy = qP(cosa + —cosa) — — tana + g(q)
cos o 2
P P?
F=-2" " tana+g(q)
cos o 2

So therefore
1 P
Fy = ——(¢* + P*)tana + A
2 cos o
This works for @ = n7 but blows sky high for a = (n+ %)71’ So I'll put a con-

dition on F5 that oo # (n+ %)F The physical significance of this transformation
for a = 0 is easy to see cause we get

@ =qcos0—psin0 =gq
P =gsin0 —pcosO=p

This is just the identity transformation, or no rotation. For oo = 7/2 we get

Q:qcosgfpsing:fp

T m
P: 1 — — —_ =
qst p(2052 q

Where the p’s and ¢’s have been exchanged.



9.6 The transformation equations between two sets of coordinates are
Q =log(1+ ¢'/* cosp)
P =2(1+4q"?cosp)q'/?sinp

e Show directly from these transformation equations that ), P are canonical
variables if ¢ and p are.

e Show that the function that generates this transformation is

Fy=—(e? —1)%tanp

Answer:

@ and P are considered canonical variables if these transformation equations
satisfy the symplectic condition.

MJM =J
Finding M:
¢ =M
Q q
=M -
(7)-+(
oG 2 o
w= 0w (B B
j dq op
0Q _ q /2 cosp
9q  2(1+4 ¢'/2cosp)
0Q —q"?sinp
op 1+ q'/2cosp
OP
— = q_l/2 sinp + 2cospsinp
dq
oP
— = 2q1/2 cos p + 2q cos® p — 2gsin® p
dp
Remembering

cos> A —sin® A = cos2A and 2sin Acos A = sin 24
cos(A — B) = cos Acos B + sin Asin B



we can proceed with ease.

0 1 _a M?cosp —¢*sinp
JM = 2(14q'/2 cos p) 14+q1/2 cosp
—-1.0 ¢ ?sinp+sin2p 2¢Y?cosp+ 2gcos2p

q_l/2 cos p ql/2 sin p

~1/2ginp + sin 2 2¢1/2 cosp + 2q cos 2
IM — q p P 2q p q P
" 2(144¢'/2 cos p) 14+q'/2 cosp

Now

q71/2005p —1/2 sin . —1/2 & . 1/2
~ AT + sin 2 q sinp +sin2p 2q¢/“cosp + 2qcos 2p
MJM = ( 2(1+?1é2 Cosp) 1 P P ) < qil/2 cos p ql/zsinp

/ .
—q'/?sinp 1/2 —_9 ‘"cosp _q ' ~smp
2q / 2(1+q1/2 cos p) 1+q1/2 cosp

Thq /% cosp cosp + 2q cos 2p

You may see that the diagonal terms disappear, and we are left with some
algebra for the off-diagonal terms.

MM — 0 messy
ugly 0

Lets solve for ugly.

g /% cosp
2(1 + q'/2 cosp)

—q¢'/?sinp

m(q’l/2 sin p-+sin 2p)— (2¢"/? cos p+2q cos 2p)

ugly =

—sin®p — ¢/?sinpsin 2p — cos? p — ¢/ cos pcos 2p

ugly =
9 1+ ¢q'/2cosp

—(1 4 ¢*/?(cos 2p cos p + sin 2psin p))
1+ q/2cosp

ugly =

—(1 4 ¢'/? cosp)

-1
1+ qg/2cosp

ugly =

Not so ugly anymore, eh? Suddenly ugly became pretty. The same works
for messy except it becomes positive 1 because it has no negative terms out
front. So finally we get

- 0 1
M.]M_<_1 0)—J

which is the symplectic condition, which proves () and P are canonical vari-
ables. To show that

Fy=—(e? —1)*tanp



generates this transformation we may take the relevant equations for Fj,
solve them, and then solve for our transformation equations.

OF:
1= =52 = (2~ 1 sec?y]
P= 7% = —[-2(e? — 1) tan ple®

Solving for @

qg=(e? —1)%sec?p

1+ @

Ve,
v/secZp
Q=1In(1+ q'? cosp)

This is one of our transformation equations, now lets plug this into the
expression for P and put P in terms of ¢ and p to get the other one.

P=2(1+ q'/? cosp — 1)tanp(1l + q'"? cosp)

P =2¢"?sinp(1 + ¢*/? cos p)

Thus Fj is the generating function of our transformation equations.

9.16
For a symmetric rigid body, obtain formulas for evaluating the Poisson brackets

6, £(0,0,0)] [, £(0,6,0)]

where 0, ¢, and 1 are the Euler angles, and f is any arbitrary function of the
Euler angles.

Answer:

Poisson brackets are defined by

[, v] _ Ou Ov _8u8v
TP 9g; Op; Opi Ogs

From Goldstein’s section on Euler angles, we learned

QB_Ilb—IlaCOSG_ptﬁ—pd,COSH
~ Iisin®9  Isin’0

So calculating

. Dy — Py cos O
[qsvf}_[ Ilsin29 f]



Note that f = f(6, ¢,1) and not of momenta. So our definition becomes

b Of
[¢7 f] = - ] ]
Ip; 9q;
Taking only two derivatives because (;5 doesn’t depend on py. We get
1 of cosf Of

0.1 = e as) T Ganta au

1 8f of
I sin20( oY + %C%e)

[0, /] =
For the next relation,

)
DS

and

. — 0
¢:@7P7¢ p.wzcos cosf
I3 I;sin” 6

This yields

. _ 1 cos?f  Of cos 6 g
b, f1= (13+1151n 0 31/1 —(= I, sin? 0 Oy

I, sin% 0 Iscos?0  Of I3cosf Of

)

[, ) = _(1311 sin20 | LI sin20 00 | I,I sin20 06
[, f] = m(@ cos@a—£ — (I3 cos? 0 + I, sin® §) gi)
Both together, in final form
6.1 = g (g 5 o0s0)
[, f] = ﬁ([{g cos Gg—f; — (I3 cos? 0 + I, sin® G)%)

9.31
Show by the use of Poisson brackets that for one-dimensional harmonic oscillator

there is a constant of the motion u defined as

k
u(q,p,t) = In(p + imwq) — iwt,w = \/7
m

What is the physical significance of this constant of motion?




Answer:

‘We have

du ou
u. Hl+ ==
o~ A

which we must prove equals zero if u is to be a constant of the motion. The
Hamiltonian is

2 2
P kq
H(q,p) = om T

So we have

du _0udH oudH  ou
dt — dq dp  Op Iq ot
du imw P 1

) (kq) — iw

dt p+iqu(E _eriqu

du  iwp—kq . iwp — mw?q .
= = —" -

— = , = - w
dt  p+imwq P+ imwq
du . p+iwmg . ) _
— =W — W = W — W
dt P+ tmwq
du
-0
dt
Its physical significance relates to phase.
Show Jacobi’s Identity holds. Show
[f,gh] = g[f,h] + [f, gl
where the brackets are Poisson.
Answer:
Goldstein verifies Jacobi’s identity
[u» [v7 w]] + [va [wa u]] + [wv [ua v]] =0

using an efficient notation. I will follow his lead. If we say

=t o0
T 8771 E (917287]]

Then a simple way of expressing the Poisson bracket becomes apparent

[u, 1}] = uiJijvj




This notation becomes valuable when expressing the the double Poisson

bracket. Here we have
[w, [v, w]] = wJs5[v, w]; = ;i (v Jiwr)

Taking the partial with respect to 1; we use the product rule, remembering

Jx; are just constants,
[u, [v, w]] = u;Jij (VijJw + viJrwiy)

doing this for the other two double Poisson brackets, we get 4 more terms,
for a total of 6. Looking at one double partial term, w we see there are only
two terms that show up

Jiijluivkwlj and inJkluivkwjl

The first from [u, [v, w]] and the second from [v, [w, u]]. Add them up, real-

izing order of partial is immaterial, and J is antisymmetric:
(Jij + Jji) Jruwvgwy; =0

All the other terms are made of second partials of u or v and disappear in
the same manner. Therefore

[u) [Uv w]] + [Ua [w’ u]] + [w7 [u’ U]] =0
Its ok to do the second property the long way:

o gh) = 2L 2ah) _ 0F 2lgh)
’ 0q; Op; Op; 0g;
_0f 99, Oh, Of Oh O

Grouping terms

h)

_0fdg, 0fdg,  0f Oh _ Of Oh

[fv gh] = dq; Op; Op; Oq; g&qi Op; gapi 0q;

[f,gh]l = [f, glh + g[f, D]



Homework 11: # 10.7 b, 10.17, 10.26

Michael Good
Nov 2, 2004

10.7

e A single particle moves in space under a conservative potential. Set up
the Hamilton-Jacobi equation in ellipsoidal coordinates u, v, ¢ defined in
terms of the usual cylindrical coordinates r, z, ¢ by the equations.

r =asinhovsinu z = acoshvcosu
For what forms of V' (u, v, ¢) is the equation separable.

e Use the results above to reduce to quadratures the problem of point parti-
cle of mass m moving in the gravitational field of two unequal mass points
fixed on the z axis a distance 2a apart.

Answer:

Let’s obtain the Hamilton Jacobi equation. This will be used to reduce the
problem to quadratures. This is an old usage of the word quadratures, and
means to just get the problem into a form where the only thing left to do is take
an integral.

Here

1 1 1 .
T = §m7'"2 + §m22 + §m7’2¢2

r = asinhvsinu

7 = a cosh v sin u® + a sinh v cos ut

z = acoshvcosu
%z = asinh v cosuv — a cosh v sin un

Here

#2422 = a%(cosh? v sin? u4sinh? v cos? u) (V% +42) = a?(sin? u4sinh? v) (% +42)



To express in terms of momenta use

oL
Po=5o = ma?(sin? u 4 sinh? v)o
0
oL
Pu= 5o = ma?(sin? u 4 sinh? v)1
"

because the potential does not depend on ¥ or u. The cyclic coordinate ¢
yields a constant I'll call ag

5
Dy = mr-p = g

So our Hamiltonian is

+V

2
_ p; + i Po
2ma?(sin® u 4 sinh®v) ~ 2ma? sinh® v sin® u
To find our Hamilton Jacobi expression, the principle function applies
S=Wy+W,+agp— Et

So our Hamilton Jacobi equation is

1 Wy OWy 1 oW,
+ + +V(w,v,¢0) = E
2ma?(sin® u 4 sinh? v)  u )y v 2ma? sinh® vsin®u = ¢ ) (,0,9)
This is
1 oW, oW, 1 1 1

)()%Jr(sin2 u+sinh? v)V (u, v, $) = (sin? u+sinh? v) E

(S (5%

A little bit more work is necessary. Once we solve for V (u, v, ¢) we can then
separate this equation into u, v and ¢ parts, at which point we will have only
integrals to take.

I suggest drawing a picture, with two point masses on the z axis, with the
origin being between them, so they are each a distance a from the origin. The
potential is then formed from two pieces

Gli G?TLMQ
F—ai| |7+ aZ]

2ma? 2ma? “sinh®?v  sin’u

V:

To solve for the denominators use the Pythagorean theorem, remembering
we are in cylindrical coordinates,
|7 Faz]* = (zFa)> +72
Using the results from part (a) for r and z,

|7 T a2)? = a®(coshv cosu T 1) + a%sinh? v sin®



o o 2 .12 .
|7 F a2|* = a*(cosh® v cos® u F 2 coshw cosu + 1 + sinh® v sin? u)

Lets rearrange this to make it easy to see the next step,

|7 F a2|? = a®(sinh? v sin® u + cosh? v cos? u + 1 F 2 cosh v cos u)

2

Now convert the sin?« = 1 — cos? u and convert the cosh?v = 1 + sinh? v

|7 F a2|? = a®(sinh? v + cos? u 4 1 F 2 cosh v cos u)

Add the 1 and cosh? v

|7 T a2|® = a®(cosh® v + cos? u F 2 cosh v cos u)
|7 F a2|* = (a(coshv F cosu))?
So our potential is now
GmM, B GmM,
a(coshv — cosu)  a(coshv + cosu)

V=-—

~ 1 GmM(coshv + cosu) + GmMa(coshv — cos u)

2
a cosh” v — cos? u

V =
Note the very helpful substitution
cosh? v — cos? u = sin® u + sinh® v
Allowing us to write V

1 GmM; (coshv + cosu) + GmMz(coshv — cosu)

A . 190
a sin? u + sinh? v

V:

Plug this into our Hamilton Jacobi equation, and go ahead and separate out
u and v terms, introducing another constant, A:

1 W,, 1 o

2ma2( ou ) 2ma? sin® u

1
— —Gm(My — M3) cosu — Esin®u= A
a

1 ow,

( L _%
v

2ma? sinh? v

)? +

1
— —Gm(M, — Ms) coshv — Esinh?v = —A
2ma? a

The problem has been reduced to quadratures.



10.17

Solve the problem of the motion of a point projectile in a vertical plane, using
the Hamilton-Jacobi method. Find both the equation of the trajectory and the
dependence of the coordinates on time, assuming the projectile is fired off at
time ¢ = 0 from the origin with the velocity vy, making an angle § with the

horizontal.

Answer:

I'm going to assume the angle is 6 because there are too many «’s in the
problem to begin with. First we find the Hamiltonian,

2 2

- p
H=L+i+mgy

2m  2m

Following the examples in section 10.2, we set up the Hamiltonian-Jacobi
equation by setting p = 95/9q and we get

1,08, 1,08, as
(8x) +2m(8y) tmgy + ot =0

The principle function is

2m

S(x, ap,y, o, t) = Wa(z, 00) + Wy (y, @) — ot

Because z is not in the Hamiltonian, it is cyclic, and a cyclic coordinate has
the characteristic component W,, = ¢;a;.

S(.’E, Az, Y, QO t) =Tay + Wy(y, a) —at
Expressed in terms of the characteristic function, we get for our Hamiltonian-
Jacobi equation

2
T

ow,

1
Yoy (YRt mgy =a
2m  2m- Oy
This is
ow,
= 2 — a2 —92m2
By V2ma — a2 — 2m2gy

Integrated, we have

1
Wy(y, o) = —3m72g(2m04 — ai — 2m29y)3/2

Thus our principle function is

5 (2ma — o2 —2m?gy)3/? — ot

S(x,amvyvavt) = TOyg + _m

Solving for the coordinates,




98 1

8= 0 = —m—g(2ma —a? —o2mPgy)t/? —t
a8 x
By = 5. =2 + ::Zg (2ma — a2 — 2m3gy)*/?

Solving for both z(t) and y(t) in terms of the constants 3, 8., a and «,

2

g s Q@ a?
)= —2(¢ _
y(®) 2( +0)"+ mg  2m2g
x(t) = B, + %o (——1 (2ma — o2 — 2m2gy)t/?)
Tm myg ¥

2(t) = B + “E(B+1)

We can solve for our constants in terms of our initial velocity, and angle 8
through initial conditions,

2(0) =0 = B =~ =24

2

a o

g 52
0 :0 —_— _— =
y(0)=0——3p g " 2mig

#(0) = vy cosf = i
m

9(0) = vy sin6 = —g8

Thus we have for our constants

v sin
-9
2
Bz = % cos fsin 6
g

2

m mu

o= 2—g(v§ sin® 0 + vg cos® ) = —2
g

2

;= mug cos B

vp sin 0 vd  vicos?6

2
)"+ 2%
g visin?0  v3  wdcos?

9,9 .
t) = -2 ot —
y(t) 5 + g sin 2 . %



y(t) = —gt2 + vp sin 6t

and for x(t)

2
o

ind
z(t) = — cosfsin @ + vy cos 920
)

+ v cos Ot

x(t) = vg cos Ot

Together we have
_ Y., .
y(t) = _it + vg sin 0t

x(t) = vg cos Ot

10.26
Set up the problem of the heavy symmetrical top, with one point fixed, in the
Hamilton-Jacobi mehtod, and obtain the formal solution to the motion as given

by Eq. (5.63).

Answer:

This is the form we are looking for.

u(t) du
- /
wo) /(1 —u?)(a = Bu) — (b — au)?
Expressing the Hamiltonian in terms of momenta like we did in the previous
problem, we get

_ ) P (py — py cos)?
213 21 21, sin® 0

Setting up the principle function, noting the cyclic coordinates, we see

+ Mghcos 6

5(9,E7¢7aw7¢7 ad)?t) = W9(67E) +’(/JO¢¢ + ¢Oé¢ — LBt

Using
05 _
dq

we have for our Hamilton-Jacobi equation, solved for the partial S’s

p

o L oWy

215 2]1( 00

Turning this inside out:

(g — vy cos 6)?
21, sin® 0

)2+ + Mghcos = F



0 04121,11 (g — vy cos 6)2
—Wy(0,FE) =1\/21L1 E — — — 21 Mghcos 6
89 0( ) ) \/ 1 13 Sin20 1 gh cos

When integrated,

2T — 0)2
Wy = /(2[1E— vt (29 T O ) — 21, Mgh cos 6)'/2d6
I3 sin“ 6
Now we are in a position to solve
oS  OWy
Yo=98= 28
oW, 21,df
aE@ = ﬁe "Ft = / a2 I, (a —a ];3089)2
22LE - - — 5y — 211 M gh cos 0)'/2

Using the same constants Goldstein uses

2

_-T 26 9

“T71 T 1 LhL
2M gl
B = Fi
1
where
Qgp = I1b
ay = la

and making these substitutions

I,df
Bo+1t= 2 b 02
(L(2E — ) — =22 — 1,20 gh.cos 0)!/2
do
Bo+t= /
(o = E5557 — Beos)!/?

For time ¢, the value of 6 is 6(t)

/9(” do
t= 5
00) (o — =20 _ giog0)1/2

sin? 6
The integrand is the exact expression as Goldstein’s (5.62). Making the
substitution u = cos # we arrive home

u(®) du
- /u«» V(I —u?)(a — Bu) — (b — au)?



Homework 12: # 10.13, 10.27, Cylinder

Michael Good
Nov 28, 2004

10.13
A particle moves in periodic motion in one dimension under the influence of a

potential V(z) = F|z|, where F is a constant. Using action-angle variables, find
the period of the motion as a function of the particle’s energy.

Solution:
Define the Hamiltonian of the particle

P2
H=FE=-—+F|q|
2m

Using the action variable definition, which is Goldstein’s (10.82):

J=]{pdq

J:%\/Qm(E—Fq) dq

For F' is greater than zero, we have only the first quadrant, integrated from
q¢=0tog=E/F (where p=0). Multiply this by 4 for all of phase space and
our action variable J becomes

we have

E/F

J =4 V2my/FE — Fqdq

0
A lovely u-substitution helps out nicely here.

u=F—Fq — du= —F dq
0 1
J:4/ V2mu'’? —— du
E _F

g 4v/2m /E L2 d — 8v2m 5372
F 3F




Goldstein’s (10.95) may help us remember that

0H
oJ
and because E = H and 7 = 1/v,

=V

This is

And our period is

10.27

Describe the phenomenon of small radial oscillations about steady circular mo-
tion in a central force potential as a one-dimensional problem in the action-angle
formalism. With a suitable Taylor series expansion of the potential, find the pe-
riod of the small oscillations. Express the motion in terms of J and its conjugate
angle variable.

Solution:

As a reminder, Taylor series go like

f(@) = f(@) + (@~ a)f'(a) + o3 (@ — af (@) +

Lets expand around some r( for our potential,

1 1
U(r) =U(rg) + (r —ro)U (ro) + 5(1" —70)2U (ro) + ...
Using the form of the Hamiltonian, involving two degrees of freedom, in
polar coordinates,(eq’n 10.65) we have
1 1?
H=_—(p?
2m (pr +

Defining a new equivalent potential, U(r) the Hamiltonian becomes

)+ V()

r2

1
H=_—p2+U
5P +U(r)

The rg from above will be some minimum of U(r),

12
U/(To) = _ﬁ + V’(To) =0
0



The second derivative is the only contribution
U'=— +V"(rg) =k
mry (ro)
where k > 0 because we are at a minimum that is concave up. If there is a
small oscillation about circular motion we may let
r=r9+ A
where A will be very small compared to rg. Thus our Hamiltonian becomes

1
H = %]ﬁ + U(ro +A)

This is

1 1
H= %Pz +U(ro) + 5(7’ —19)2U" (o)

_L2 12 1" _
H—zmpr+U(r0)+2)\ U'(ro) =F

If we use the small energy € defined as
e=F— U(?”o)
We see

1, 1
— 2SN
€= gnbrty

This energy is the effect on the frequency, so following section 10.6

Jw

= 22
2T

‘We have for the action variable

[m
J=2 —
e\ %

and a period

oJ o |™
T = — = i _
e k
with motion given by
r=r1ry+ sin 27w
Tmw

mJw
Dr =1/ cos 27w
™



A particle is constrained to the edge of a cylinder. It is released and bounces
around the perimeter. Find the two frequencies of its motion using the action
angle variable formulation.

Solution:

Trivially, we know the frequency around the cylinder to be its angular speed
divided by 27 because it goes 27 radians in one revolution.

_f
o

And also simply, we may find the frequency of its up and down bouncing
through Newtonian’s equation of motion.

Vo

1
h = —gt?
59
2h
t=4/—
g

Multiply this by 2 because the period will be measured from a point on the
bottom of the cylinder to when it next hits the bottom of the cylinder again.
The time it takes to fall is the same time it takes to bounce up, by symmetry.

2
T—o /M _ ,_1]9
g 2V 2h

To derive these frequencies via the action-angle formulation we first start by
writing down the Hamiltonian for the particle.

2 2

— pz p9
H=F= —=
mgz -+ 2m + 2mR?

Noting that pg is constant because there is no external forces on the system,
and because 6 does not appear in the Hamiltonian, therefore it is cyclic and its
conjugate momentum is constant.

po = mHR>

we may write

Jg = 27Tp9

based on Goldstein’s (10.101), and his very fine explanation. Breaking the
energy into two parts, one for # and one for z, we may express the Fy part as
a function of Jy.
12 Iy

E = =
T 9mR? T 4n22mR2




The frequency is

)
0= dJy  4Am2mR2
Jo 2mpy Do mOR2

Vg = = =

T 4mmR2  4r?mR2 - 27rmR?2 2nmR2
Thus we have

0

T or

The second part is a bit more involved algebraically. Expressing the energy
for z:

Vo

7

E, =mgz+
2m

Solving for p, and plugging into

J:]{pdq

J, = \/Qmj{(Ez - mgz)l/2 dz

we get

we can do this closed integral by integrating from 0 to A and multiplying by
2.

h
2 -1
J. = 2V2m=(E, — mgz)**(—)
3 mg’ |,

The original energy given to it in the z direction will be mgh, its potential
energy when released from rest. Thus the first part of this evaluated integral is
zero. Only the second part remains:

4 1
J. = —\2m—E?3/?
3 mg

Solved in terms of F,

The frequency is




All we have to do now is plug what J, is into this expression and simplify
the algebra. As you may already see there are many different steps to take to
simplify, I’ll show one.

b= (23, [meys 1
i (3(49\/;) )[4\/E(m9h)3/2]1/3

39

Now we have a wonderful mess. Lets gather the numbers, and the constants
to one side
%(%)2/3 211/3 g2/3m1/3 g1 /31 /6
(%)1/321/6 m1/2g1/2h1/2

V, =

You may see, with some careful observation, that the m’s cancel, and the
constant part becomes

gl/?
hi/2

The number part simplifies down to

1

2/2

y _1\/?_1 a
92V h 2V 2h

as we were looking for from Newton’s trivial method. Yay! Our two fre-
quencies together

Thus we have

1 /g

Y= 5\ a2

The condition for the same path to be retraced is that the ratio of the fre-
quencies to be a rational number. This is explained via closed Lissajous figures
and two commensurate expressions at the bottom of page 462 in Goldstein.



