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Chapter 1

Problem 1.1

A nucleus, originally at rest, decays radioactively by emitting an electron of mo-
mentum 1.73 MeV/c, and at right angles to the direction of the electron a neutrino
with momentum 1.00 MeV/c. ( The MeV (million electron volt) is a unit of energy,
used in modern physics, equal to 1.60 x 10−6 erg. Correspondingly, MeV/c is a
unit of linear momentum equal to 5.34 x 10−17 gm-cm/sec.) In what direction does
the nucleus recoil? What is its momentum in MeV/c? If the mass of the residual
nucleus is 3.90 x 10−22 gm, what is its kinetic energy, in electron volts?

Place the nucleus at the origin, and suppose the electron is emitted in the
positive y direction, and the neutrino in the positive x direction. Then the
resultant of the electron and neutrino momenta has magnitude

|pe+ν | =
√

(1.73)2 + 12 = 2 MeV/c,

and its direction makes an angle

θ = tan−1 1.73

1
= 60◦

with the x axis. The nucleus must acquire a momentum of equal magnitude
and directed in the opposite direction. The kinetic energy of the nucleus is

T =
p2

2m
=

4 MeV2 c−2

2 · 3.9 · 10−22 gm
·
1.78 · 10−27 gm

1 MeV c−2
= 9.1 ev

This is much smaller than the nucleus rest energy of several hundred GeV, so
the non-relativistic approximation is justified.
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Problem 1.2

The escape velocity of a particle on the earth is the minimum velocity required
at the surface of the earth in order that the particle can escape from the earth’s
gravitational field. Neglecting the resistance of the atmosphere, the system is con-
servative. From the conservation theorem for potential plus kinetic energy show
that the escape velocity for the earth, ignoring the presence of the moon, is 6.95
mi/sec.

If the particle starts at the earth’s surface with the escape velocity, it will
just manage to break free of the earth’s field and have nothing left. Thus after
it has escaped the earth’s field it will have no kinetic energy left, and also no
potential energy since it’s out of the earth’s field, so its total energy will be zero.
Since the particle’s total energy must be constant, it must also have zero total
energy at the surface of the earth. This means that the kinetic energy it has at
the surface of the earth must exactly cancel the gravitational potential energy
it has there:

1

2
mv2

e − G
mMR

RR
= 0

so

v =

√

(

2GMR

RR

)

=

(

2 · (6.67 · 1011 m3 kg−3 s−2) · (5.98 · 1024 kg)

6.38 · 106 m

)1/2

= 11.2 km/s ·
1 m

1.61 km
= 6.95 mi/s.



Homer Reid’s Solutions to Goldstein Problems: Chapter 1 3

Problem 1.3

Rockets are propelled by the momentum reaction of the exhaust gases expelled from
the tail. Since these gases arise from the reaction of the fuels carried in the rocket
the mass of the rocket is not constant, but decreases as the fuel is expended. Show
that the equation of motion for a rocket projected vertically upward in a uniform
gravitational field, neglecting atmospheric resistance, is

m
dv

dt
= −v′

dm

dt
− mg,

where m is the mass of the rocket and v′ is the velocity of the escaping gases relative
to the rocket. Integrate this equation to obtain v as a function of m, assuming a
constant time rate of loss of mass. Show, for a rocket starting initially from rest,
with v′ equal to 6800 ft/sec and a mass loss per second equal to 1/60th of the initial
mass, that in order to reach the escape velocity the ratio of the weight of the fuel
to the weight of the empty rocket must be almost 300!

Suppose that, at time t, the rocket has mass m(t) and velocity v(t). The
total external force on the rocket is then F = gm(t), with g = 32.1 ft/s2, pointed
downwards, so that the total change in momentum between t and t + dt is

Fdt = −gm(t)dt. (1)

At time t, the rocket has momentum

p(t) = m(t)v(t). (2)

On the other hand, during the time interval dt the rocket releases a mass
∆m of gas at a velocity v′ with respect to the rocket. In so doing, the rocket’s
velocity increases by an amount dv. The total momentum at time t + dt is the
sum of the momenta of the rocket and gas:

p(t + dt) = pr + pg = [m(t) − ∆m][v(t) + dv] + ∆m[v(t) + v′] (3)

Subtracting (2) from (3) and equating the difference with (1), we have (to
first order in differential quantities)

−gm(t)dt = m(t)dv + v′∆m

or

dv

dt
= −g −

v′

m(t)

∆m

dt
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which we may write as

dv

dt
= −g −

v′

m(t)
γ (4)

where

γ =
∆m

dt
=

1

60
m0s

−1.

This is a differential equation for the function v(t) giving the velocity of the
rocket as a function of time. We would now like to recast this as a differential
equation for the function v(m) giving the rocket’s velocity as a function of its
mass. To do this, we first observe that since the rocket is releasing the mass
∆m every dt seconds, the time derivative of the rocket’s mass is

dm

dt
= −

∆m

dt
= −γ.

We then have
dv

dt
=

dv

dm

dm

dt
= −γ

dv

dm
.

Substituting into (4), we obtain

−γ
dv

dm
= −g −

v′

m
γ

or

dv =
g

γ
dm + v′

dm

m
.

Integrating, with the condition that v(m0) = 0,

v(m) =
g

γ
(m − m0) + v′ ln

(

m

m0

)

.

Now, γ=(1/60)m0 s−1, while v′ =-6800 ft/s. Then

v(m) = 1930 ft/s ·

(

m

m0
− 1

)

+ 6800 ft/s · ln
(m0

m

)

For m0 � m we can neglect the first term in the parentheses of the first term,
giving

v(m) = −1930 ft/s + 6800 ft/s · ln
(m0

m

)

.

The escape velocity is v = 6.95 mi/s = 36.7 · 103 ft/s. Plugging this into the
equation above and working backwards, we find that escape velocity is achieved
when m0/m=293.

Thanks to Brian Hart for pointing out an inconsistency in my original choice
of notation for this problem.
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Problem 1.4

Show that for a single particle with constant mass the equation of motion implies
the following differential equation for the kinetic energy:

dT

dt
= F · v,

while if the mass varies with time the corresponding equation is

d(mT )

dt
= F · p.

We have

F = ṗ (5)

If m is constant,

F = mv̇

Dotting v into both sides,

F · v = mv · v̇ =
1

2
m

d

dt
|v|2

=
dT

dt
(6)

On the other hand, if m is not constant, instead of v we dot p into (5):

F · p = p · ṗ

= mv ·
d(mv)

dt

= mv ·

(

v
dm

dt
+ m

dv

dt

)

=
1

2
v2 d

dt
m2 +

1

2
m2 d

dt
(v2)

=
1

2

d

dt
(m2v2) =

d(mT )

dt
.
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Problem 1.5

Prove that the magnitude R of the position vector for the center of mass from an
arbitrary origin is given by the equation

M2R2 = M
∑

i

mir
2
i −

1

2

∑

ij

mimjr
2
ij .

We have

Rx =
1

M

∑

i

mixi

so

R2
x =

1

M2





∑

i

m2
i x

2
i +

∑

i6=j

mimjxixj





and similarly

R2
y =

1

M2





∑

i

m2
i y

2
i +

∑

i6=j

mimjyiyj





R2
z =

1

M2





∑

i

m2
i z

2
i +

∑

i6=j

mimjzizj



 .

Adding,

R2 =
1

M2





∑

i

m2
i r

2
i +

∑

i6=j

mimj(ri · rj)



 . (7)

On the other hand,
r2
ij = r2

i + r2
j − 2ri · rj

and, in particular, r2
ii = 0, so

∑

i,j

mimjr
2
ij =

∑

i6=j

[mimjr
2
i + mimjr

2
j − 2mimj(ri · rj)]

= 2
∑

i6=j

mimjr
2
i − 2

∑

i6=j

mimj(ri · rj). (8)

Next,

M
∑

i

mir
2
i =

∑

j

mj

(

∑

i

mir
2
i

)

=
∑

i

m2
i r

2
i +

∑

i6=j

mimjr
2
i . (9)
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θ

r, φ

r′, φ′

(x, y)

Figure 1: My conception of the situation of Problem 1.8

Subtracting half of (8) from (9), we have

M
∑

mir
2
i −

1

2

∑

ijmimjr
2
ij =

∑

i

m2
i r

2
i +

∑

i6=j

mimj(ri · rj)

and comparing this with (7) we see that we are done.

Problem 1.8

Two wheels of radius a are mounted on the ends of a common axle of length b such
that the wheels rotate independently. The whole combination rolls without slipping
on a plane. Show that there are two nonholonomic equations of constraint,

cos θ dx + sin θ dy = 0

sin θ dx − cos θ dy = a(dφ + dφ′)

(where θ, φ, and φ′ have meanings similar to the problem of a single vertical disc,
and (x, y) are the coordinates of a point on the axle midway between the two wheels)
and one holonomic equation of constraint,

θ = C −
a

b
(φ − φ′)

where C is a constant.

My conception of the situation is illustrated in Figure 1. θ is the angle
between the x axis and the axis of the two wheels. φ and φ′ are the rotation
angles of the two wheels, and r and r′ are the locations of their centers. The
center of the wheel axis is the point just between r and r′:

(x, y) =
1

2
(rx + r′x, ry + r′y).
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If the φ wheel rotates through an angle dφ, the vector displacement of its center
will have magnitude adφ and direction determined by θ. For example, if θ = 0
then the wheel axis is parallel to the x axis, in which case rolling the φ wheel
clockwise will cause it to move in the negative y direction. In general, referring
to the Figure, we have

dr = a dφ[sin θ î − cos θ ĵ] (10)

dr′ = a dφ′[sin θ î − cos θ ĵ] (11)

Adding these componentwise we have1

dx =
a

2
[dφ + dφ′] sin θ

dy = −
a

2
[dφ + dφ′] cos θ

Multiplying these by sin θ or − cos θ and adding or subtracting, we obtain

sin θ dx − cos θ dy = a[dφ + dφ′]

cos θ dx + sin θ dy = 0.

Next, consider the vector r12 = r− r′ connecting the centers of the two wheels.
The definition of θ is such that its tangent must just be the ratio of the y and
x components of this vector:

tan θ =
y12

x12

→ sec2 θ dθ = −
y12

x2
12

dx12 +
1

x12
dy12.

Subtracting (11) from (10),

sec2 θdθ = a[dφ − dφ′]

(

−
y12

x2
12

sin θ −
1

x12
cos θ

)

Again substituting for y12/x12 in the first term in parentheses,

sec2 θdθ = −a[dφ − dφ′]
1

x12
(tan θ sin θ + cos θ)

or

dθ = −a[dφ − dφ′]
1

x12
(sin2 θ cos θ + cos3 θ)

= −a[dφ − dφ′]
1

x12
cos θ. (12)

1Thanks to Javier Garcia for pointing out a factor-of-two error in the original version of

these equations.
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However, considering the definition of θ, we clearly have

cos θ =
x12

(x2
12 + y2

12)
1/2

=
x12

b

because the magnitude of the distance between r1 and r2 is constrained to be b
by the rigid axis. Then (12) becomes

dθ = −
a

b
[dφ − dφ′]

with immediate solution
θ = C −

a

b
[φ − φ′].

with C a constant of integration.

Problem 1.9

A particle moves in the x − y plane under the constraint that its velocity vector is
always directed towards a point on the x axis whose abscissa is some given function
of time f(t). Show that for f(t) differentiable, but otherwise arbitrary, the constraint
is nonholonomic.

The particle’s position is (x(t), y(t)), while the position of the moving point
is (f(t), 0). Then the vector d from the particle to the point has components

dx = x(t) − f(t) dy = y(t). (13)

The particle’s velocity v has components

vx =
dx

dt
vy =

dy

dt
(14)

and for the vectors in (13) and (?? to be in the same direction, we require

vy

vx
=

dy

dx

or
dy/dt

dx/dt
=

dy

dx
=

y(t)

x(t) − f(t)
so

dy

y
=

dx

x − f(t)
(15)

For example, if f(t) = αt, then we may integrate to find

ln y(t) = ln[x(t) − α(t)] + C

or
y(t) = C · [x(t) − αt]

which is a holonomic constraint. But for general f(t) the right side of (15) is
not integrable, so the constraint is nonholonomic.
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θ

φ
l

a

Figure 2: My conception of the situation of Problem 1.10

Problem 1.10

Two points of mass m are joined by a rigid weightless rod of length l, the center of
which is constrained to move on a circle of radius a. Set up the kinetic energy in
generalized coordinates.

My conception of this one is shown in Figure 2. θ is the angle representing
how far around the circle the center of the rod has moved. φ is the angle the
rod makes with the x axis.

The position of the center of the rod is (x, y) = (a cos θ, a sin θ). The
positions of the masses relative to the center of the rod are (xrel, yrel) =
±(1/2)(l cosφ, l sinφ). Then the absolute positions of the masses are

(x, y) = (a cos θ ±
l

2
cosφ, a sin θ ±

l

2
sinφ)

and their velocities are

(vx, vy) = (−a sin θ θ̇ ∓
l

2
sinφ φ̇, a cos θ θ̇ ±

l

2
cosφ φ̇).

The magnitudes of these are

|v| = a2θ̇2 +
l2

4
φ̇2 ± al θ̇ φ̇(sin θ sin φ + cos θ cosφ)

= a2θ̇2 +
l2

4
φ̇2 ± al θ̇ φ̇ cos(θ − φ)

When we add the kinetic energies of the two masses, the third term cancels,
and we have

T =
1

2

∑

mv2 = m(a2θ̇2 +
l2

4
φ̇2).
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Problem 1.13

A particle moves in a plane under the influence of a force, acting toward a center
of force, whose magnitude is

F =
1

r2

(

1 −
ṙ2 − 2r̈r

c2

)

,

where r is the distance of the particle to the center of force. Find the generalized
potential that will result in such a force, and from that the Lagrangian for the
motion in a plane. (The expression for F represents the force between two charges
in Weber’s electrodynamics).

If we take

U(r) =
1

r

(

1 +
v2

c2

)

=
1

r
+

(ṙ)2

c2r

then
∂U

∂r
= −

1

r2
−

ṙ2

c2r2

and
d

dt

∂U

∂ṙ
=

d

dt

(

2ṙ

c2r

)

=
2r̈

c2r
−

2(ṙ)2

c2r2

so

Qr = −
∂U

∂r
+

d

dt

∂U

∂ṙ
=

1

r2

(

1 +
2rr̈ − (ṙ)2

c2

)

The Lagrangian for motion in a plane is

L = T − V =
1

2
mṙ2 +

1

2
mṙ2θ̇2 −

1

r2

(

1 +
2rr̈ − (ṙ)2

c2

)

.

Problem 1.14

If L is a Lagrangian for a system of n degrees of freedom satisfying Lagrange’s
equations, show by direct substitution that

L′ = L +
dF (q1, . . . , qn, t)

dt

also satisfies Lagrange’s equations, where F is any arbitrary, but differentiable,
function of its arguments.

We have
∂L′

∂qi
=

∂L

∂qi
+

∂

∂qi

dF

dt
(16)
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and
∂L′

∂q̇i
=

∂L

∂q̇i
+

∂

∂q̇i

dF

dt
. (17)

For the function F we may write

dF

dt
=
∑

i

∂F

∂qi
q̇i +

∂F

∂t

and from this we may read off

∂

∂q̇i

dF

dt
=

∂F

∂qi
.

Then taking the time derivative of (17) gives

d

dt

∂L′

∂q̇i
=

d

dt

∂L

∂q̇i
+

d

dt

∂F

∂qi

so we have

∂L′

∂qi
−

d

dt

∂L′

∂q̇i
=

∂L

∂qi
−

d

dt

∂L

∂q̇i
+

∂

∂qi

dF

dt
−

d

dt

∂F

∂qi
.

The first two terms on the RHS cancel because L satisfies the Euler-Lagrange
equations, while the second two terms cancel because F is differentiable. Hence
L′ satisfies the Euler-Lagrange equations.

Problem 1.16

A Lagrangian for a particular physical system can be written as

L′ =
m

2
(aẋ2 + 2bẋẏ + cẏ2) −

K

2
(ax2 + 2bxy + cy2),

where a, b, and c are arbitrary constants but subject to the condition that b2−ac 6=
0. What are the equations of motion? Examine particularly the two cases a = 0 = c
and b = 0, c = −a. What is the physical system described by the above Lagrangian?
Show that the usual Lagrangian for this system as defined by Eq. (1-56) is related
to L′ by a point transformation (cf. Exercise 15 above). What is the significance of
the condition on the value of b2 − ac?

Clearly we have

∂L

∂x
= −Kax − Kby

∂L

∂ẋ
= maẋ + mbẏ

so the Euler-Lagrange equation for x is

∂L

∂x
=

d

dt

∂L

∂ẋ
→ m(aẍ + bÿ) = −K(ax + by).
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Similarly, for y we obtain

m(bÿ + cÿ) = −K(bx + cy).

These are the equations of motion for a particle of mass m undergoing simple
harmonic motion in two dimensions, as if bound by two springs of spring con-
stant K. Normally we would express the Lagrangian in unravelled form, by
transforming to new coordinates u1 and u2 with

u1 = ax + by u2 = bx + cy.

The condition b2 − ac 6= 0 is the condition that the coordinate transformation
not be degenerate, i.e. that there are actually two distinct dimensions in which
the particle experiences a restoring force. If b2 = ac then we have just a one-
dimensional problem.

Problem 1.17

Obtain the Lagrangian equations of motion for a spherical pendulum, i.e. a mass
point suspended by a rigid weightless rod.

Let m and L be the mass of the particle and the length of the rod. Since the
particle is constrained to move on the surface of a sphere of radius L, we may
parameterize its position by the angles θ and ϕ, in terms of which the particle’s
position and velocity are

x = L (sin θ cosϕi + sin θ sin ϕj + cos θk)

v = L

[

(cos θ cosϕθ̇ − sin θ sin ϕϕ̇)i + (cos θ sin ϕθ̇ + sin θ cosϕϕ̇)j− (sin θθ̇k)

]

.

so the kinetic energy is

T =
1

2
mv2 =

mL2

2
θ̇2 +

mL2

2
sin2 θϕ̇2.

On the other hand, the gravitational potential energy depends only on θ :

V = −mgL cos θ

where we take the potential at the height of the fulcrum as the zero of potential.
Then the Lagrangian is

L = T − V =
1

2
mL2θ̇2 +

1

2
mL2 sin2 θϕ̇2 + mgL cos θ

and the equations of motion are

ϕ̈ = 0

θ̈ = −
( g

L
− ϕ̇2 cos θ

)

sin θ.
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If there is no motion in the azimuthal direction, ϕ̇ = 0 and the system is the
elementary one-dimensional mechanical pendulum with frequency ω0 =

√

g/L.
But any finite velocity of azimuthal spinning gives rise to an additional effect
which we may think of as mitigating the downward force of gravity, yielding an
effective gravitational acceleration

g′ = g − Lϕ̇2 cos θ.

The mitigating effect is largest near the trough of the pendulum, vanishes as
the particle passes through the vertical height of the fulcrum, and becomes
an enhancing effect in the upper hemisphere. For small oscillations about the
trough, cos θ ≈ 1 and the pendulum frequency is reduced to ω =

√

ω2
0 − ϕ̇2.

Thanks to Tomasz Szymanski for pointing out an error in an earlier version
of this solution.

Problem 1.18

A particle of mass m moves in one dimension such that it has the Lagrangian

L =
m2ẋ4

12
+ mẋ2V (x) − V 2(x),

where V is some differentiable function of x. Find the equation of motion for x(t)
and describe the physical nature of the system on the basis of this equation.

We have

∂L

∂x
= mẋ2 dV

dx
− 2V (x)

dV

dx
∂L

∂ẋ
=

m2ẋ3

3
+ 2mẋV (x)

d

dt

∂L

∂ẋ
= m2(ẋ)2ẍ + 2mẍV (x) + 2mẋ

d

dt
V (x)

In the last equation we can use

d

dt
V (x) = ẋ

dV

dx
.

Then the Euler-Lagrange equation is

d

dt

∂L

∂ẋ
−

∂L

∂x
= 0 → m2(ẋ)2ẍ + 2mẍV (x) + mẋ2 dV

dx
+ 2V (x)

dV

dx

or
(

mẍ +
dV

dx

)

(

mẋ2 + 2V (x)
)

= 0.
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If we identify F = −dV/dx and T = mẋ2/2, we may write this as

(F − mẍ)(T + V ) = 0

So, this is saying that, at all times, either the difference between F and ma is
zero, or the sum of kinetic and potential energy is zero.

Problem 1.19

Two mass points of mass m1 and m2 are connected by a string passing through
a hole in a smooth table so that m1 rests on the table and m2 hangs suspended.
Assuming m2 moves only in a vertical line, what are the generalized coordinates
for the system? Write down the Lagrange equations for the system and, if possible,
discuss the physical significance any of them might have. Reduce the problem to a
single second-order differential equation and obtain a first integral of the equation.
What is its physical significance? (Consider the motion only so long as neither m1

nor m2 passes through the hole).

Let d be the height of m2 above its lowest possible position, so that d =
0 when the string is fully extended beneath the table and m1 is just about
to fall through the hole. Also, let θ be the angular coordinate of m1 on the
table. Then the kinetic energy of m2 is just m2ḋ

2/2, while the kinetic energy
of m1 is m1ḋ

2/2 + m1d
2θ̇2/2, and the potential energy of the system is just the

gravitational potential energy of m2, U = m2gd. Then the Lagrangian is

L =
1

2
(m1 + m2)ḋ

2 +
1

2
m1d

2θ̇2 − m2gd

and the Euler-Lagrange equations are

d

dt
(m1d

2θ̇) = 0

(m1 + m2)d̈ = −m2g + m1dθ̇2

From the first equation we can identify a first integral, m1d
2θ̇ = l where l is a

constant. With this we can substitute for θ̇ in the second equation:

(m1 + m2)d̈ = −m2g +
l2

m1d3

Because the sign of the two terms on the RHS is different, this is saying that, if
l is big enough (if m1 is spinning fast enough), the centrifugal force of m1 can
balance the downward pull of m2, and the system can be in equilibrium.
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Problem 1.20

Obtain the Lagrangian and equations of motion for the double pendulum illustrated
in Fig. 1-4, where the lengths of the pendula are l1 and l2 with corresponding masses
m1 and m2.

Taking the origin at the fulcrum of the first pendulum, we can write down
the coordinates of the first mass point:

x1 = l1 sin θ1

y1 = −l1 cos θ1

The coordinates of the second mass point are defined relative to the coordi-
nates of the first mass point by exactly analogous expressions, so relative to the
coordinate origin we have

x2 = x1 + l2 sin θ2

y2 = y1 − l2 cos θ2

Differentiating and doing a little algebra we find

ẋ2
1 + ẏ2

1 = l21 θ̇
2
1

ẋ2
2 + ẏ2

2 = l21 θ̇
2
1 + l22 θ̇

2
2 − 2l1l2θ̇1θ̇2 cos(θ1 − θ2)

The Lagrangian is

L =
1

2
(m1+m2)l

2
1θ̇

2
1+

1

2
m2l

2
2 θ̇

2
2−m2l1l2θ̇1θ̇2 cos(θ1−θ2)+(m1+m2)gl2 cos θ1+m2gl2 cos θ2

with equations of motion

d

dt

[

(m1 + m2)l
2
1 θ̇1 − m2l1l2θ̇2 cos(θ1 − θ2)

]

= −(m1 + m2)gl2 sin θ1

and
d

dt

[

l2θ̇2 − l1θ̇1 cos(θ1 − θ2)
]

= −g sin θ2.

If θ̇1 = 0, so that the fulcrum for the second pendulum is stationary, then the
second of these equations reduces to the equation we derived in Problem 1.17.
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Problem 1.21

The electromagnetic field is invariant under a gauge transformation of the scalar
and vector potential given by

A → A + ∇Ψ(r, t),

Φ → Φ −
1

c

∂Ψ

∂t
,

where Ψ is arbitrary (but differentiable). What effect does this gauge transformation
have on the Lagrangian of a particle moving in the electromagnetic field? Is the
motion affected?

The Lagrangian for a particle in an electromagnetic field is

L = T − qΦ(x(t)) +
q

c
A(x(t)) · v(t)

If we make the suggested gauge transformation, this becomes

→ T − q

[

Φ(x(t)) −
1

c

∂Ψ

∂t

∣

∣

∣

∣

x=x(t)

]

+
q

c
[A(x(t)) · v(t) + v · ∇Ψ(x(t))]

= T − qΦ(x(t)) +
q

c
A(x(t)) · v(t) +

q

c

[

∂Ψ

∂t
+ v · ∇Ψ(x(t))

]

= T − qΦ(x(t)) +
q

c
A(x(t)) · v(t) +

q

c

d

dt
Ψ(x(t))

= L +
q

c

d

dt
Ψ(x(t)).

So the transformed Lagrangian equals the original Lagrangian plus a total time
derivative. But we proved in Problem 1.15 that adding the total time derivative
of any function to the Lagrangian does not affect the equations of motion, so
the motion of the particle is unaffected by the gauge transformation.

Problem 1.22

Obtain the equation of motion for a particle falling vertically under the influence
of gravity when frictional forces obtainable from a dissipation function 1

2kv2 are
present. Integrate the equation to obtain the velocity as a function of time and
show that the maximum possible velocity for fall from rest is v = mg/k.

The Lagrangian for the particle is

L =
1

2
mż2 − mgz
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and the dissipation function is kż2/2, so the equation of motion is

d

dt

(

∂L

∂ż

)

−
∂L

∂z
+

∂F

∂ż
→ mz̈ = mg − kż.

This says that the acceleration goes to zero when mg = kż, or ż = mg/k, so
the velocity can never rise above this terminal value (unless the initial value of
the velocity is greater than the terminal velocity, in which case the particle will
slow down to the terminal velocity and then stay there).
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Problem 3.1

A particle of mass m is constrained to move under gravity without friction on the
inside of a paraboloid of revolution whose axis is vertical. Find the one-dimensional
problem equivalent to its motion. What is the condition on the particle’s initial
velocity to produce circular motion? Find the period of small oscillations about
this circular motion.

We’ll take the paraboloid to be defined by the equation z = αr2. The kinetic
and potential energies of the particle are

T =
m

2
(ṙ2 + r2θ̇2 + ż2)

=
m

2
(ṙ2 + r2θ̇2 + 4α2r2ṙ2)

V = mgz = mgαr2.

Hence the Lagrangian is

L =
m

2

[

(1 + 4α2r2)ṙ2 + r2 θ̇2
]

− mgαr2.

This is cyclic in θ, so the angular momentum is conserved:

l = mr2θ̇ = constant.

1
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For r we have the derivatives

∂L

∂r
= 4α2mrṙ2 + mrθ̇2 − 2mgαr

∂L

∂ṙ
= m(1 + 4α2r2)ṙ

d

dt

∂L

∂ṙ
= 8mα2rṙ2 + m(1 + 4α2r2)r̈.

Hence the equation of motion for r is

8mα2rṙ2 + m(1 + 4α2r2)r̈ = 4α2mrṙ2 + mrθ̇2 − 2mgαr

or

m(1 + 4α2r2)r̈ + 4mα2rṙ2 − mrθ̇2 + 2mgαr = 0.

In terms of the constant angular momentum, we may rewrite this as

m(1 + 4α2r2)r̈ + 4mα2rṙ2 − l2

mr3
+ 2mgαr = 0.

So this is the differential equation that determines the time evolution of r.
If initially ṙ = 0, then we have

m(1 + 4α2r2)r̈ + − l2

mr3
+ 2mgαr = 0.

Evidently, r̈ will then vanish—and hence ṙ will remain 0, giving circular motion—
if

l2

mr3
= 2mgαr

or
θ̇ =

√

2gα.

So if this condition is satisfied, the particle will execute circular motion (assum-
ing its initial r velocity was zero). It’s interesting to note that the condition on
θ̇ for circular motion is independent of r.
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Problem 3.2

A particle moves in a central force field given by the potential

V = −k
e−ar

r
,

where k and a are positive constants. Using the method of the equivalent one-
dimensional potential discuss the nature of the motion, stating the ranges of l and
E appropriate to each type of motion. When are circular orbits possible? Find the
period of small radial oscillations about the circular motion.

The Lagrangian is

L =
m

2

[

ṙ2 + r2θ̇2
]

+ k
e−ar

r
.

As usual the angular momentum is conserved:

l = mr2θ̇ = constant.

We have

∂L

∂r
= mrθ̇2 − k (1 + ar)

e−ar

r2

∂L

∂ṙ
= mṙ

so the equation of motion for r is

r̈ = rθ̇2 − k

m
(1 + ar)

e−ar

r2

=
l2

m2r3
− k

m
(1 + ar)

e−ar

r2
. (1)

The condition for circular motion is that this vanish, which yields

θ̇ =

√

k

m
(1 + ar0)

e−ar0/2

r
3/2
0

. (2)

What this means is that that if the particle’s initial θ velocity is equal to the
above function of the starting radius r0, then the second derivative of r will
remain zero for all time. (Note that, in contrast to the previous problem, in this
case the condition for circular motion does depend on the starting radius.)

To find the frequency of small oscillations, let’s suppose the particle is exe-
cuting a circular orbit with radius r0 (in which case the θ velocity is given by
(2)), and suppose we nudge it slightly so that its radius becomes r = r0 + x,
where x is small. Then (1) becomes

ẍ =
k

m

(

1 + ar0

)e−ar0

r2
0

− k

m
(1 + a[r0 + x])

e−a[r0+x]

[r0 + x]2
(3)
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Since x is small, we may write the second term approximately as

≈ k

m

e−ar0

r2
0

(1 + ar0 + ax)(1 − ax)

(

1 − 2
x

r0

)

≈ k

m
(1 + ar0)

e−ar0

r2
0

+
k

m

e−ar0

r2
0

(

a − a(1 + ar0) − 2
(1 + ar0)

r0

)

x

≈ k

m
(1 + ar0)

e−ar0

r2
0

− k

m

e−ar0

r2
0

(

2a +
2

r0
+ a2r0

)

x.

The first term here just cancels the first term in (??), so we are left with

ẍ =
k

m

e−ar0

r2
0

(

2a +
2

r0
+ a2r0

)

x

The problem is that the RHS here has the wrong sign—this equation is satisfied
by an x that grows (or decays) exponentially, rather than oscillates. Somehow
I messed up the sign of the RHS, but I can’t find where–can anybody help?

Problem 3.3

Two particles move about each other in circular orbits under the influence of grav-
itational forces, with a period τ . Their motion is suddenly stopped, and they are
then released and allowed to fall into each other. Prove that they collide after a
time τ/4

√
2.

Since we are dealing with gravitational forces, the potential energy between
the particles is

U(r) = −k

r

and, after reduction to the equivalent one-body problem, the Lagrangian is

L =
µ

2
[ṙ2 + r2θ̇2] +

k

r

where µ is the reduced mass. The equation of motion for r is

µr̈ = µrθ̇2 − k

r2
. (4)

If the particles are to move in circular orbits with radius r0, (4) must vanish at
r = r0, which yields a relation between r0 and θ̇:

r0 =

(

k

µθ̇2

)1/3

=

(

kτ2

4π2µ

)1/3

(5)
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where we used the fact that the angular velocity in the circular orbit with period
τ is θ̇ = 2π/τ .

When the particles are stopped, the angular velocity goes to zero, and the
first term in (4) vanishes, leaving only the second term:

r̈ = − k

µr2
. (6)

This differential equation governs the evolution of the particles after they are
stopped. We now want to use this equation to find r as a function of t, which
we will then need to invert to find the time required for the particle separation
r to go from r0 to 0.

The first step is to multiply both sides of (6) by the integrating factor 2ṙ:

2ṙr̈ = − 2k

µr2
ṙ

or

d

dt

(

ṙ2
)

= +
d

dt

(

2k

µr

)

from which we conclude

ṙ2 =
2k

µr
+ C. (7)

The constant C is determined from the boundary condition on ṙ. This is simply
that ṙ = 0 when r = r0, since initially the particles are not moving at all. With
the appropriate choice of C in (7), we have

ṙ =
d r

d t
=

(

2k

µ

)1/2 √

1

r
− 1

r0

=

(

2k

µ

)1/2 √

r0 − r

rr0
. (8)

We could now proceed to solve this differential equation for r(t), but since in
fact we’re interested in solving for the time difference corresponding to given
boundary values of r, it’s easier to invert (8) and solve for t(r):

∆t =

∫ 0

r0

(

dt

dr

)

dr

=

∫ 0

r0

(

dr

dt

)

−1

dr

=
( µ

2k

)1/2
∫ 0

r0

(

rr0

r0 − r

)1/2

dr
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We change variables to u = r/r0, du = dr/r0 :

=
( µ

2k

)1/2

r
3/2
0

∫ 0

1

(

u

1− u

)1/2

du

Next we change variables to u = sin2 x, du = 2 sinx cos x dx :

= 2
( µ

2k

)1/2

r
3/2
0

∫ 0

π/2

sin2 x dx

=
( µ

2k

)1/2

r
3/2
0

π

4
.

Now plugging in (5), we obtain

∆t =
( µ

2k

)1/2
(

kτ2

4π2µ

)1/2
(π

4

)

=
τ

4
√

2

as advertised.

Problem 3.6

(a) Show that if a particle describes a circular orbit under the influence of an
attractive central force directed at a point on the circle, then the force varies
as the inverse fifth power of the distance.

(b) Show that for the orbit described the total energy of the particle is zero.

(c) Find the period of the motion.

(d) Find ẋ, ẏ, and v as a function of angle around the circle and show that all
three quantities are infinite as the particle goes through the center of force.

Let’s suppose the center of force is at the origin, and that the particle’s orbit
is a circle of radius R centered at (x = R, y = 0) (so that the leftmost point
of the particle’s origin is the center of force). The equation describing such an
orbit is

r(θ) =
√

2R(1 + cos 2θ)1/2

so

u(θ) =
1

r(θ)
=

1√
2R(1 + cos 2θ)1/2

. (9)
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Differentiating,

du

dθ
=

sin 2θ√
2R(1 + cos 2θ)3/2

du

dθ
=

1√
2R

[

2 cos 2θ

(1 + cos 2θ)3/2
+ 3

sin2 2θ

(1 + cos 2θ)5/2

]

=
1

2
√

2R

1

(1 + cos 2θ)5/2

[

2 cos 2θ + 2 cos2 2θ + 3 sin2 2θ
]

. (10)

Adding (9) and (10),

d2u

dθ2
+ u =

1√
2R(1 + cos 2θ)5/2

[

(1 + cos 2θ)2 + 2 cos2θ + 2 cos2 2θ + 3 sin2 2θ
]

=
1√

2R(1 + cos 2θ)5/2
[4 + 4 cos 2θ]

=
4√

2R(1 + cos 2θ)3/2

= 8R2u3. (11)

The differential equation for the orbit is

d2u

dθ2
+ u = −m

l2
d

du
V

(

1

u

)

(12)

Plugging in (11), we have

8R2u3 = −m

l2
d

du
V

(

1

u

)

so

V

(

1

u

)

= −2l2R2

m
u4 −→ V (r) = −2l2R2

mr4
(13)

so

f(r) = −8l2R2

mr5
(14)

which is the advertised r dependence of the force.

(b) The kinetic energy of the particle is

T =
m

2
[ṙ2 + r2θ̇2]. (15)
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We have

r =
√

2R(1 + cos 2θ)1/2

r2 = 2R2(1 + cos 2θ)

ṙ =
√

2R
sin 2θ

(1 + cos 2θ)1/2
θ̇

ṙ2 = 2R2 sin2 2θ

1 + cos 2θ
θ̇2

Plugging into (15),

T = mR2θ̇2

[

sin2 2θ

1 + cos 2θ
+ 1 + cos 2θ

]

= mR2θ̇2

[

sin2 2θ + 1 + 2 cos 2θ + cos2 2θ

1 + cos θ

]

= 2mR2θ̇2

In terms of l = mr2θ̇, this is just

=
2R2l2

mr4

But this is just the negative of the potential energy, (13); hence the total particle
energy T + V is zero.

(c) Suppose the particle starts out at the furthest point from the center of force
on its orbit, i.e the point x = 2R, y = 0, and that it moves counter-clockwise
from this point to the origin. The time required to undergo this motion is half
the period of the orbit, and the particle’s angle changes from θ = 0 to θ = π/2.
Hence we can calculate the period as

τ = 2

∫ π/2

0

dt

dθ
dθ

= 2

∫ π/2

0

dθ

θ̇

Using θ̇ = l/mr2, we have

= 2
m

l

∫ π/2

0

r2(θ) dθ

=
4R2m

l

∫ π/2

0

(1 + 2 cos 2θ + cos2 2θ) dθ

=
4R2m

l
· 3π

4

=
3πR2m

l
.
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Problem 3.8

(a) For circular and parabolic orbits in an attractive 1/r potential having the same
angular momentum, show that the perihelion distance of the parabola is one
half the radius of the circle.

(b) Prove that in the same central force as in part (a) the speed of a particle at
any point in a parabolic orbit is

√
2 times the speed in a circular orbit passing

through the same point.

(a) The equations describing the orbits are

r =















l2

mk
(circle)

l2

mk

(

1

1 + cos θ

)

(parabola.)

Evidently, the perihelion of the parabola occurs when θ = 0, in which case
r = l2/2mk, or one-half the radius of the circle.

(b) For the parabola, we have

ṙ =
l2

mk

(

sin θ

(1 + cos θ)2

)

θ̇ (16)

= rθ̇
sin θ

1 + cos θ

so

v2 = ṙ2 + r2θ̇2

= r2θ̇2

[

sin2 θ

(1 + cos θ)2
+ 1

]

= r2θ̇2

[

sin2 θ + 1 + 2 cos θ + cos2 θ

(1 + cos θ)2

]

= 2r2θ̇2

[

1

1 + cos θ

]

=
2mkr3θ̇2

l2

=
2k

mr
(17)

in terms of the angular momentum l = mr2θ̇2. On the other hand, for the circle
ṙ = 0, so

v2 = r2θ̇2 =
l2

m2r2
=

k

mr
(18)
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where we used that fact that, since this is a circular orbit, the condition k/r =
l2/mr2 is satisfied. Evidently (17) is twice (18) for the same particle at the
same point, so the unsquared speed in the parabolic orbit is

√
2 times that in

the circular orbit at the same point.

Problem 3.12

At perigee of an elliptic gravitational orbit a particle experiences an impulse S (cf.
Exercise 9, Chapter 2) in the radial direction, sending the particle into another
elliptic orbit. Determine the new semimajor axis, eccentricity, and orientation of
major axis in terms of the old.

The orbit equation for elliptical motion is

r(θ) =
a(1 − ε2)

1 + ε cos(θ − θ0)
. (19)

For simplicity we’ll take θ0 = 0 for the initial motion of the particle. Then
perigee happens when θ = 0, which is to say the major axis of the orbit is on
the x axis.

Then at the point at which the impulse is delivered, the particle’s momentum
is entirely in the y direction: pi = pîj. After receiving the impulse S in the radial
(x) direction, the particle’s y momentum is unchanged, but its x momentum is
now px = S. Hence the final momentum of the particle is pf = S î+pîj. Since the
particle is in the same location before and after the impulse, its potential energy
is unchanged, but its kinetic energy is increased due to the added momentum:

Ef = Ei +
S2

2m
. (20)

Hence the semimajor axis length shrinks accordingly:

af = − k

2Ef
= − k

2Ei + S2/m
=

ai

1 + S2/(2mEi)
. (21)

Next, since the impulse is in the same direction as the particle’s distance from
the origin, we have ∆L = r × ∆p = 0, i.e. the impulse does not change the
particle’s angular momentum:

Lf = Li ≡ L. (22)

With (20) and (22), we can compute the change in the particle’s eccentricity:

εf =

√

1 +
2EfL2

mk2

=

√

1 +
2EiL2

mk2
+

L2S2

m2k2
. (23)
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What remains is to compute the constant θ0 in (19) for the particle’s orbit after
the collision. To do this we need merely observe that, since the location of the
particle is unchanged immediately after the impulse is delivered, expression (19)
must evaluate to the same radius at θ = 0 with both the “before” and “after”
values of a and ε:

ai(1 − ε2i )

1 + εi
=

af (1 − ε2f )

1 + εf cos θ0

or

cos θ0 =
1

εf

{

af (1 − ε2f )

ai(1 − εi)
− 1

}

.

Problem 3.13

A uniform distribution of dust in the solar system adds to the gravitational attrac-
tion of the sun on a planet an additional force

F = −mCr

where m is the mass of the planet, C is a constant proportional to the gravitational
constant and the density of the dust, and r is the radius vector from the sun to the
planet (both considered as points). This additional force is very small compared to
the direct sun-planet gravitational force.

(a) Calculate the period for a circular orbit of radius r0 of the planet in this com-
bined field.

(b) Calculate the period of radial oscillations for slight disturbances from this cir-
cular orbit.

(c) Show that nearly circular orbits can be approximated by a precessing ellipse
and find the precession frequency. Is the precession the same or opposite
direction to the orbital angular velocity?

(a) The equation of motion for r is

mr̈ =
l2

mr3
+ f(r)

=
l2

mr3
− k

r2
− mCr. (24)

For a circular orbit at radius r0 this must vanish:

0 =
l2

mr3
0

− k

r2
0

− mCr0 (25)
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−→ l =
√

mkr0 + m2Cr4
0

−→ θ̇ =
l

mr2
0

=
1

mr2
0

√

mkr0 + m2Cr4
0

=

√

k

mr3
0

√

1 +
mCr3

0

k

≈
√

k

mr3
0

[

1 +
mCr3

0

2k

]

Then the period is

τ =
2π

θ̇
≈ 2πr

3/2
0

√

m

k

[

1 − mCr3
0

2k

]

= τ0

[

1 − Cτ2
0

8π2

]

where τ0 = 2πr
3/2
0

√

m/k is the period of circular motion in the absence of the
perturbing potential.

(b) We return to (24) and put r = r0 + x with x � r0:

mẍ =
l2

m(r0 + x)3
− k

(r0 + x)2
− mC(r0 + x)

≈ l2

mr3
0

(

1 − 3
x

r0

)

− k

r2
0

(

1 − 2
x

r0

)

− mCr0 − mCx

Using (25), this reduces to

mẍ =

[

− 3l2

mr4
0

+
2k

r3
0

− mC

]

x

or
ẍ + ω2x = 0

with

ω =

[

3l2

m2r4
0

− 2k

mr3
0

− C

]1/2

=

[

2l2

m2r4
0

− k

mr3
0

]1/2

where in going to the last line we used (25) again.
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Problem 3.14

Show that the motion of a particle in the potential field

V (r) = −k

r
+

h

r2

is the same as that of the motion under the Kepler potential alone when expressed
in terms of a coordinate system rotating or precessing around the center of force.
For negative total energy show that if the additional potential term is very small
compared to the Kepler potential, then the angular speed of precession of the ellip-
tical orbit is

Ω̇ =
2πmh

l2τ
.

The perihelion of Mercury is observed to precess (after corrections for known plan-
etary perturbations) at the rate of about 40′′ of arc per century. Show that this
precession could be accounted for classically if the dimensionless quantity

η =
k

ka

(which is a measure of the perturbing inverse square potential relative to the grav-
itational potential) were as small as 7× 10−8. (The eccentricity of Mercury’s orbit
is 0.206, and its period is 0.24 year).

The effective one-dimensional equation of motion is

mr̈ =
L2

mr3
− k

r2
+

2h

r3

=
L2 + 2mh

mr3
+

k

r2

=
L2 + 2mh + (mh/L)2 − (mh/L)2

mr3
+

k

r2

=
[L + (mh/L)]2 − (mh/L)2

mr3
+

k

r2

If mh � L2, then we can neglect the term (mh/L)2 in comparison with L2, and
write

mr̈ =
[L + (mh/L)]2

mr3
+

k

r2
(26)

which is just the normal equation of motion for the Kepler problem, but with
the angular momentum L augmented by the additive term ∆L = mh/L.

Such an augmentation of the angular momentum may be accounted for by
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augmenting the angular velocity:

L = mr2θ̇ −→ L

(

1 +
mh

L2

)

= mr2θ̇

(

1 +
mh

L2

)

= mr2θ̇ + mr2Ω̇

where

Ω̇ =
mh

L2θ̇
=

2πmh

L2τ

is a precession frequency. If we were to go back and work the problem in the
reference frame in which everything is precessing with angular velocity Ω̇, but
there is no term h/r2 in the potential, then the equations of motion would come
out the same as in the stationary case, but with a term ∆L = mr2Ω̇ added to
the effective angular momentum that shows up in the equation of motion for r,
just as we found in (26).

To put in the numbers, we observe that

Ω̇ =

(

2π

τ

)

( m

L2

)

(h)

=

(

2π

τ

) (

mka

L2

) (

h

ka

)

=

(

2π

τ

) (

1

1 − e2

) (

h

ka

)

so

h

ka
= (1 − e2)

τ Ω̇

2π

= (1 − e2)τfprec

where in going to the third-to-last line we used Goldstein’s equation (3-62), and
in the last line I put fprec = Ω̇/2π. Putting in the numbers, we find

h

ka
= (1 − .2062) ·

(

0.24 yr
)

· 40′′
(

1◦

3600′′

) (

1 revolution

360◦

) (

1 century−1

100 yr−1

)

yr−1

= 7.1 · 10−8.
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Problem 3.22

In hyperbolic motion in a 1/r potential the analogue of the eccentric anomaly is F
defined by

r = a(e coshF − 1),

where a(1 − e) is the distance of closest approach. Find the analogue to Kepler’s
equation giving t from the time of closest approach as a function of F .

We start with Goldstein’s equation (3.65):

t =

√

m

2

∫ r

r0

dr
√

k
r − l2

2mr2 + E

=

√

m

2

∫ r

r0

r dr
√

Er2 + kr − l2

2m

. (27)

With the suggested substitution, the thing under the radical in the denom-
inator of the integrand is

Er2 + kr − l2

2m
= Ea2(e2 cosh2 F − 2e coshF + 1) + ka(e coshF − 1) − l2

2m

= Ea2e2 cosh2 F + ae(k − 2Ea) coshF +

(

Ea2 − ka − l2

2m

)

It follows from the orbit equation that, if a(e − 1) is the distance of closest
approach, then a = k/2E. Thus

=
k2e2

4E
cosh2 F − k2e2

4E
− l2

2m

=
k2

4E

{

e2 cosh2 F −
(

1 +
2El2

mk2

)}

=
k2e2

4E

[

cosh2 F − 1
]

=
k2e2

4E
sinh2 F = a2e2E sinh2 F.

Plugging into (27) and observing that dr = ae sinh F dF , we have

t =

√

m

2E

∫ F

F0

a(e coshF − 1) dF =

√

ma2

2E
[e(sinhF − sinh F0) − (F − F0)]

and I suppose this equation could be a jumping-off point for numerical or other
investigations of the time of travel in hyperbolic orbit problems.
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Problem 3.26

Examine the scattering produced by a repulsive central force f = kr−3. Show that
the differential cross section is given by

σ(Θ)dΘ =
k

2E

(1 − x)dx

x2(2 − x)2 sin πx

where x is the ratio Θ/π and E is the energy.

The potential energy is U = k/2r2 = ku2/2, and the differential equation
for the orbit reads

d2u

dθ2
+ u = −m

l2
dU

du
= −mk

l2
u

or
d2u

dθ2
+

(

1 +
mk

l2

)

u = 0

with solution

u = A cos γθ + B sin γθ (28)

where

γ =

√

1 +
mk

l2
. (29)

We’ll set up our coordinates in the way traditional for scattering experiments:
initially the particle is at angle θ = π and a great distance from the force center,
and ultimately the particle proceeds off to r = ∞ at some new angle θs. The
first of these observations gives us a relation between A and B in the orbit
equation (28):

u(θ = π) = 0 −→ A cos γπ + B sin γπ = 0

−→ A = −B tan γπ. (30)

The condition that the particle head off to r = ∞ at angle θ = θs yields the
condition

A cos γθs + B sin γθs = 0.

Using (30), this becomes

− cosγθs tan γπ + sin γθs = 0
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or

− cos γθs sin γπ + sin γθs cos γπ = 0

−→ sin γ(θs − π) = 0

−→ γ(θs − π) = π

or, in terms of Goldstein’s variable x = θ/π,

γ =
1

x − 1
. (31)

Plugging in (29) and squaring both sides, we have

1 +
mk

l2
=

1

(x − 1)2
.

Now l = mv0s = (2mE)1/2s with s the impact parameter and E the particle
energy. Thus the previous equation is

1 +
k

2Es2
=

1

(x − 1)2

or

s2 = − k

2E

[

(x − 1)2

x(x − 2)

]

.

Taking the differential of both sides,

2s ds = − k

2E

[

2(x − 1)

x(x − 2)
− (x − 1)2

x2(x − 2)
− (x − 1)2

x(x − 2)2

]

dx

= − k

2E

[

2x(x − 1)(x − 2) − (x − 1)2(x − 2) − x(x − 1)2

x2(x − 2)2

]

= − k

2E

[

2(1 − x)

x2(x − 2)2

]

. (32)

The differential cross section is given by

σ(θ)dΩ =
| s ds |
sin θ

.

Plugging in (32), we have

σ(θ)dΩ =
k

2E

[

(1 − x)

x2(x − 2)2 sin θ

]

dx

as advertised.
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Chapter 7

Problem 7.2

Obtain the Lorentz transformation in which the velocity is at an infinitesimal angle
dθ counterclockwise from the z axis, by means of a similarity transformation applied
to Eq. (7-18). Show directly that the resulting matrix is orthogonal and that the
inverse matrix is obtained by substituting −v for v.

We can obtain this transformation by first applying a pure rotation to rotate
the z axis into the boost axis, then applying a pure boost along the (new) z
axis, and then applying the inverse of the original rotation to bring the z axis
back in line with where it was originally. Symbolically we have L = R−1KR

where R is the rotation to achieve the new z axis, and K is the boost along the
z axis.

Goldstein tells us that the new z axis is to be rotated dθ counterclockise
from the original z axis, but he doesn’t tell us in which plane, i.e. we know θ
but not φ for the new z axis in the unrotated coordinates. We’ll assume the z
axis is rotated around the x axis, in a sense such that if you’re standing on the
positive x axis, looking toward the negative x axis, the rotation appears to be
counterclockwise, so that the positive z axis is rotated toward the negative y

1
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axis. Then, using the real metric,

L =









1 0 0 0
0 cos dθ sin dθ 0
0 − sin dθ cos dθ 0
0 0 0 1

















1 0 0 0
0 1 0 0
0 0 γ −βγ
0 0 −βγ γ

















1 0 0 0
0 cos dθ − sin dθ 0
0 sin dθ cos dθ 0
0 0 0 1









=









1 0 0 0
0 cos dθ sin dθ 0
0 − sin dθ cos dθ 0
0 0 0 1

















1 0 0 0
0 cos dθ − sin dθ 0
0 γ sin dθ γ cos dθ −βγ
0 −βγ sin dθ −βγ cos dθ γ









=









1 0 0 0
0 cos2 dθ + γ sin2 dθ (γ − 1) sin dθ cos dθ −βγ sin dθ
0 (γ − 1) sin dθ cos dθ sin2 dθ + γ cos2 dθ −βγ cos dθ
0 −βγ sin dθ −βγ cos dθ γ









.

Problem 7.4

A rocket of length l0 in its rest system is moving with constant speed along the z
axis of an inertial system. An observer at the origin observes the apparent length
of the rocket at any time by noting the z coordinates that can be seen for the head
and tail of the rocket. How does this apparent length vary as the rocket moves from
the extreme left of the observer to the extreme right?

Let’s imagine a coordinate system in which the rocket is at rest and centered
at the origin. Then the world lines of the rocket’s top and bottom are

xt′
µ = {0, 0, +L0/2, τ} xb′

µ = {0, 0,−L0/2, τ} .

where we are parameterizing the world lines by the proper time τ . Now, the rest
frame of the observer is moving in the negative z direction with speed v = βc
relative to the rest frame of the rocket. Transforming the world lines of the
rocket’s top and bottom to the rest frame of the observer, we have

xt
µ = {0, 0, γ(L0/2 + vτ), γ(τ + βL0/2c)} (1)

xb
µ = {0, 0, γ(−L0/2 + vτ), γ(τ − βL0/2c)} . (2)

Now consider the observer. At any time t in his own reference frame, he is
receiving light from two events, namely, the top and bottom of the rocket moving
past imaginary distance signposts that we pretend to exist up and down the z
axis. He sees the top of the rocket lined up with one distance signpost and the
bottom of the rocket lined up with another, and from the difference between the
two signposts he computes the length of the rocket. Of course, the light that
he sees was emitted by the rocket some time in the past, and, moreover, the
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light signals from the top and bottom of the rocket that the observer receives
simultaneously at time t were in fact emitted at different proper times τ in the
rocket’s rest frame.

First consider the light received by the observer at time t0 coming from
the bottom of the rocket. Suppose in the observer’s rest frame this light were
emitted at time t0 − ∆t, i.e. ∆t seconds before it reaches the observer at the
origin; then the rocket bottom was passing through z = −c∆t when it emitted
this light. But then the event identified by (z, t) = (−c∆t, t0 − ∆t) must lie on
the world line of the rocket’s bottom, which from (2) determines both ∆t and
the proper time τ at which the light was emitted:

−c∆t = γ(−L0/2 + vτ)
t0 − ∆t = γ(τ + βL0/2c)

=⇒ τ =

(

1 + β

1 − β

)1/2

t0−
L0

2c
≡ τb(t0).

We use the notation τb(t0) to indicate that this is the proper time at which the
bottom of the rocket emits the light that arrives at the observer’s origin at the
observer’s time t0. At this proper time, from (2), the position of the bottom of
the rocket in the observer’s reference frame was

zb(τb(t0)) = −γL0/2 + vγτb(t0)

= −γL0/2 + vγ

{

(

1 + β

1 − β

)1/2

t0 −
L0

2c

}

(3)

Similarly, for the top of the rocket we have

τt(t0) =

(

1 + β

1 − β

)1/2

t0 +
L0

2c

and

zt(τt(t0)) = γL0/2 + vγ

{

(

1 + β

1 − β

)1/2

t0 +
L0

2c

}

(4)

Subtracting (3) from (4), we have the length for the rocket computed by the
observer from his observations at time t0 in his reference frame:

L(t0) = γ(1 + β)L0

=

(

1 + β

1 − β

)1/2

L0.
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Problem 7.17

Two particles with rest masses m1 and m2 are observed to move along the observer’s
z axis toward each other with speeds v1 and v2, respectively. Upon collision they
are observed to coalesce into one particle of rest mass m3 moving with speed v3

relative to the observer. Find m3 and v3 in terms of m1, m2, v1, and v2. Would it
be possible for the resultant particle to be a photon, that is m3 = 0, if neither m1

nor m2 are zero?

Equating the 3rd and 4th components of the initial and final 4-momentum
of the system yields

γ1m1v1 − γ2m2v2 = γ3m3v3

γ1m1c + γ2m2c = γ3m3c

Solving the second for m3 yields

m3 =
γ1

γ3

m1 +
γ2

γ3

m2 (5)

and plugging this into the first yields v3 in terms of the properties of particles
1 and 2:

v3 =
γ1m1v1 − γ2m2v2

γ1m1 + γ2m2

Then

β3 =
v3

c
=

γ1m1β1 − γ2m2β2

γ1m1 + γ2m2

1 − β2
3 =

γ2
1m2

1 + 2γ1γ2m1m2 + γ2
2m2

2 − [γ2
1m2

1β
2
1 + γ2

2m2
2β

2
2 − 2γ1γ2m1m2β1β2]

(γ1m1 + γ2m2)2

=
γ2
1m2

1(1 − β2
1) + γ2

2m2
2(1 − β2

2) + 2γ1γ2m1m2(1 − β1β2)

(γ1m1 + γ2m2)2

=
m2

1 + m2
2 + 2γ1γ2m1m2(1 − β1β2)

(γ1m1 + γ2m2)2

and hence

γ2
3 =

1

1 − β2
3

=
(γ1m1 + γ2m2)

2

m2
1 + m2

2 + 2γ1γ2m1m2(1 − β1β2)
. (6)

Now, (5) shows that, for m3 to be zero when either m1 or m2 is zero, we must
have γ3 = ∞. That this condition cannot be met for nonzero m1, m2 is evident
from the denominator of (6), in which all terms are positive (since β1β2 < 1 if
m1 or m2 is nonzero).
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Problem 7.19

A meson of mass π comes to rest and disintegrates into a meson of mass µ and a
neutrino of zero mass. Show that the kinetic energy of motion of the µ meson (i.e.
without the rest mass energy) is

(π − µ)2

2π
c2.

Working in the rest frame of the pion, the conservation relations are

πc2 = (µ2c4 + p2
µc2)1/2 + pνc (energy conservation)

0 = pµ + pν (momentum conservation).

From the second of these it follows that the muon and neutrino must have the
same momentum, whose magnitude we’ll call p. Then the energy conservation
relation becomes

πc2 = (µ2c4 + p2c2)1/2 + pc

−→ (πc − p)2 = µ2c2 + p2

−→ p =
π2 − µ2

2π
c.

Then the total energy of the muon is

Eµ = (µ2c4 + p2c2)1/2

= c2

(

µ2 +
(π2 − µ2)2

4π2

)1/2

=
c2

2π

(

4π2µ2 + (π2 − µ2)2
)1/2

=
c2

2π
(π2 + µ2)

Then subtracting out the rest energy to get the kinetic energy, we obtain

K = Eµ − µc2 =
c2

2π
(π2 + µ2) − µc2

=
c2

2π
(π2 + µ2 − 2πµ)

=
c2

2π
(π − µ)2

as advertised.
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Problem 7.20

A π+ meson of rest mass 139.6 MeV collides with a neutron (rest mass 939.6 MeV)
stationary in the laboratory system to produce a K+ meson (rest mass 494 MeV)
and a Λ hyperon (rest mass 1115 MeV). What is the threshold energy for this
reaction in the laboratory system?

We’ll put c = 1 for this problem. The four-momenta of the pion and neutron
before the collision are

pµ,π = (pπ, γπmπ), pµ,n = (0, mn)

and the squared magnitude of the initial four-momentum is thus

pµ,T pµ
T = −|pπ|2 + (γπmπ + mn)2

= −|pπ|2 + γ2
πm2

π + m2
n + 2γπmπmn

= m2
π + m2

n + 2γπmπmn

= (mπ + mn)2 + 2(γπ − 1)mπmn (7)

The threshold energy is the energy needed to produce the K and Λ particles
at rest in the COM system. In this case the squared magnitude of the four-
momentum of the final system is just (mK + mΛ)2, and, by conservation of
momentum, this must be equal to the magnitude of the four-momentum of the
initial system (7):

(mK + mΛ)2 = (mπ + mn)2 + 2(γπ − 1)mπmn

=⇒ γπ = 1 +
(mK + mΛ)2 − (mπ + mn)2

2mπmn
= 6.43

Then the total energy of the pion is T = γπmπ = (6.43 · 139.6 MeV) = 898
MeV, while its kinetic energy is K = T − m = 758 MeV.

The above appears to be the correct solution to this problem. On the other
hand, I first tried to do it a different way, as below. This way yields a different
and hence presumably incorrect answer, but I can’t figure out why. Can anyone
find the mistake?

The K and Λ particles must have, between them, the same total momentum
in the direction of the original pion’s momentum as the original pion had. Of
course, the K and Λ may also have momentum in directions transverse to the
original pion momentum (if so, their transverse momenta must be equal and
opposite). But any transverse momentum just increases the energy of the final
system, which increases the energy the initial system must have had to produce
the final system. Hence the minimum energy situation is that in which the K and
Λ both travel in the direction of the original pion’s motion. (This is equivalent
to Goldstein’s conclusion that, just at threshold, the produced particles are at
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rest in the COM system). Then the momentum conservation relation becomes
simply

pπ = pK + pλ (8)

and the energy conservation relation is (with c = 1)

(m2
π + p2

π)1/2 + mn = (m2
K + p2

K)1/2 + (m2
Λ + p2

Λ)1/2. (9)

The problem is to find the minimum value of pπ that satisfies (9) subject to the
constraint (8).

To solve this we must first resolve a subquestion: for a given pπ, what is the
relative allocation of momentum to pK and pΛ that minimizes (9) ? Minimizing

Ef = (m2
K + p2

K)1/2 + (m2
Λ + p2

Λ)1/2.

subject to pK + pΛ = pπ, we obtain the condition

pK

(m2
K + p2

K)1/2
=

pΛ

(m2
Λ

+ p2
Λ
)1/2

=⇒ pK =
mK

mΛ

pΛ (10)

Combining this with (8) yields

pΛ =
mΛ

mK + mΛ

pπ pK =
mK

mK + mΛ

pπ. (11)

For a given total momentum pπ, the minimum possible energy the final system
can have is realized when pπ is partitioned between pK and pΛ according to
(11). Plugging into (8), the relation defining the threshold momentum is

(m2
π + p2

π)1/2 + mn =

(

m2
K +

(

mK

mK + mΛ

)2

p2
π

)1/2

+

(

m2
Λ +

(

mΛ

mK + mΛ

)2

p2
π

)1/2

Solving numerically yields pπ ≈ 655 MeV/c, for a total pion energy of about
670 MeV.
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Problem 7.21

A photon may be described classically as a particle of zero mass possessing never-
theless a momentum h/λ = hν/c, and therefore a kinetic energy hν. If the photon
collides with an electron of mass m at rest it will be scattered at some angle θ with
a new energy hν′. Show that the change in energy is related to the scattering angle
by the formula

λ′ − λ = 2λc sin2 θ

2
,

where λc = h/mc, known as the Compton wavelength. Show also that the kinetic
energy of the recoil motion of the electron is

T = hν
2
(

λc

λ

)

sin2 θ
2

1 + 2
(

λc

λ

)

sin2 θ/2
.

Let’s assume the photon is initially travelling along the z axis. Then the sum
of the initial photon and electron four-momenta is

pµ,i = pµ,γ + pµ,e =









0
0

h/λ
h/λ









+









0
0
0

mc









=









0
0

h/λ
mc + h/λ









. (12)

Without loss of generality we may assume that the photon and electron move
in the xz plane after the scatter. If the photon’s velocity makes an angle θ with
the z axis, while the electron’s velocity makes an angle φ, the four-momentum
after the collision is

pµ,f = pµ,γ + pµ,e =









(h/λ′) sin θ
0

(h/λ′) cos θ
h/λ′









+









pe sinφ
0

pe cosφ
√

m2c2 + p2
e









=









(h/λ′) sin θ + pe sin φ
0

(h/λ′) cos θ + pe cosφ

(h/λ′) +
√

m2c2 + p2
e









.

(13)

Equating (12) and (13) yields three separate equations:

(h/λ′) sin θ + pe sinφ = 0 (14)

(h/λ′) cos θ + pe cosφ = h/λ (15)

h/λ′ +
√

m2c2 + p2
e = mc + h/λ (16)

From the first of these we find

sinφ = − h

λ′pe
sin θ =⇒ cosφ =

[

1 +

(

h

λ′pe

)2

sin2 θ

]1/2
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and plugging this into (15) we find

p2
e =

h2

λ2
+

h2

λ′2
− 2

h2

λλ′
cos θ. (17)

On the other hand, we can solve (16) to obtain

p2
e = h2

(

1

λ
− 1

λ′

)2

+ 2mch

(

1

λ
− 1

λ′

)

.

Comparing these two determinations of pe yields

cos θ = 1 − mc

h
(λ′ − λ)

or

sin2 θ

2
=

mc

2h
(λ′ − λ) =

1

2λc
(λ′ − λ)

so this is advertised result number 1.
Next, to find the kinetic energy of the electron after the collision, we can

write the conservation of energy equation in a slightly different form:

mc +
h

λ
= γmc +

h

λ′

=⇒ (γ − 1)mc = K = h

(

1

λ
− 1

λ′

)

= h

(

λ′ − λ

λλ′

)

= h

(

2λc sin2(θ/2)

λ[λ + 2λc sin2(θ/2)]

)

=
h

λ

(

2χ sin2(θ/2)

1 + 2χ sin2(θ/2)

)

where we put χ = λc/λ.

Problem 7.22

A photon of energy E collides at angle θ with another photon of energy E. Prove
that the minimum value of E permitting formation of a pair of particles of mass m
is

Eth =
2m2c4

E(1 − cos θ)
.

We’ll suppose the photon of energy E is traveling along the positive z axis,
while that with energy E is traveling in the xz plane (i.e., its velocity has
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spherical polar angles θ and φ = 0). Then the 4-momenta are

p1 =

(

0, 0,
E

c
,
E

c

)

p2 =

(E
c

sin θ, 0,
E
c

cos θ,
E
c

)

pt = p1 + p2 =

(E
c

sin θ, 0,
E + E cos θ

c
,
E + E

c

)

It’s convenient to rotate our reference frame to one in which the space portion
of the composite four-momentum of the two photons is all along the z direction.
In this frame the total four-momentum is

p′t =

(

0, 0,
1

c

√

E2 + E2 + 2EE cos θ,
E + E

c

)

. (18)

At threshold energy, the two produced particles have the same four-momenta:

p3 = p4 =
(

0, 0, p, (m2c2 + p2)1/2
)

(19)

and 4-momentum conservation requires that twice (19) add up to (18), which
yields two conditions:

2p = 1

c

√
E2 + E2 + 2EE cos θ −→ p2c2 = 1

4
(E2 + E2 + 2EE cos θ)

2
√

m2c2 + p2 = E+E

c −→ m2c4 + p2c2 = 1

4
(E2 + E2 + 2EE)

Subtracting the first of these from the second, we obtain

m2c4 =
EE
2

(1 − cos θ)

or

E =
2m2c4

E(1 − cos θ)

as advertised.
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Chapter 9

Problem 9.1

One of the attempts at combining the two sets of Hamilton’s equations into one
tries to take q and p as forming a complex quantity. Show directly from Hamilton’s
equations of motion that for a system of one degree of freedom the transformation

Q = q + ip, P = Q∗

is not canonical if the Hamiltonian is left unaltered. Can you find another set of
coordinates Q′, P ′ that are related to Q,P by a change of scale only, and that are
canonical?

Generalizing a little, we put

Q = µ(q + ip), P = ν(q − ip). (1)

The reverse transformation is

q =
1

2

(

1

µ
Q+

1

ν
P

)

, p =
1

2i

(

1

µ
Q− 1

ν
P

)

.

The direct conditions for canonicality, valid in cases (like this one) in which the

1
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transformation equations do not depend on the time explicitly, are

∂Q

∂q
=

∂p

∂P

∂Q

∂p
= − ∂q

∂P

∂P

∂q
= − ∂p

∂Q

∂P

∂p
=

∂q

∂Q
.

(2)

When applied to the case at hand, all four of these yield the same condition,
namely

µ = − 1

2iν
.

For µ = ν = 1, which is the case Goldstein gives, these conditions are clearly
not satisfied, so (1) is not canonical. But putting µ = 1, ν = − 1

2i we see that
equations (1) are canonical.
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Problem 9.2

(a) For a one-dimensional system with the Hamiltonian

H =
p2

2
− 1

2q2
,

show that there is a constant of the motion

D =
pq

2
−Ht.

(b) As a generalization of part (a), for motion in a plane with the Hamiltonian

H = |p|n − ar−n,

where p is the vector of the momenta conjugate to the Cartesian coordinates,
show that there is a constant of the motion

D =
p · r
n

−Ht.

(c) The transformation Q = λq, p = λP is obviously canonical. However, the same
transformation with t time dilatation, Q = λq, p = λP, t′ = λ2t, is not. Show
that, however, the equations of motion for q and p for the Hamiltonian in part
(a) are invariant under the transformation. The constant of the motion D is
said to be associated with this invariance.

(a) The equation of motion for the quantity D is

dD

dT
= {D,H} +

∂D

∂t

The Poisson bracket of the second term in D clearly vanishes, so we have

=
1

2
{pq,H} −H

=
1

4

{

pq, p2
}

− 1

4

{

pq,
1

q2

}

−H. (3)

The first Poisson bracket is

{

pq, p2
}

=
∂(pq)

∂q

∂(p2)

∂p
− ∂(pq)

∂p

∂(p2)

∂q

= (p)(2p) − 0

= 2p2 (4)
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Next,

{

pq,
1

q2

}

=
∂(pq)

∂q

∂
(

1

q2

)

∂p
− ∂(pq)

∂p

∂
(

1

q2

)

∂q

= 0 −
(

− 2

q3

)

q

=
2

q2
(5)

Plugging (4) and (5) into (3), we obtain

dD

dt
=
p2

2
− 1

2q2
−H

= 0.

(b) We have

H = (p2
1 + p2

2 + p2
3)

n/2 − a(x2
1 + x2

2 + x2
3)

−n/2

so

∂H

∂xi
= anxi(x

2
1 + x2

2 + x2
3)

−n/2−1

∂H

∂pi
= 2npi(p

2
1 + p2

2 + p2
3)

n/2−1.

Then

{p · r, H} =
∑

i

{

∂(p1x1 + p2x2 + p3x3)

∂xi

∂H

∂pi
− ∂(p1x1 + p2x2 + p3x3)

∂pi

∂H

∂xi

}

=
∑

i

{

np2
i (p

2
1 + p2

2 + p2
3)

n/2−1 − anx2
i (x

2
1 + x2

2 + x2
3)

−n/2−1

}

= n(p2
1 + p2

2 + p2
3)

n/2 − an(x2
1 + x2

2 + x2
3)

−n/2 (6)

so if we define D = p · r/n−Ht, then

dD

dT
= {D,H} − ∂D

∂t

=
1

n
{p · r, H} − ∂D

∂t

Substituting in from (6),

= |p|n − ar−n −H

= 0.
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(c) We put

Q(t′) = λq

(

t′

λ2

)

, P (t′) =
1

λ
p

(

t′

λ2

)

. (7)

Since q and p are the original canonical coordinates, they satisfy

q̇ =
∂H

∂p
= p

ṗ = −∂H
∂q

=
1

q3
.

(8)

On the other hand, differentiating (7), we have

dQ

dt′
=

1

λ
q̇

(

t′

λ2

)

=
1

λ
p

(

t′

λ2

)

= P (t′)

dP

dt′
=

1

λ3
ṗ

(

t′

λ2

)

=
1

λ3

1

q
(

t′

λ2

)

=
1

Q3(t′)

which are the same equations of motion as (8).

Problem 9.4

Show directly that the transformation

Q = log

(

1

p
sin p

)

, P = q cot p

is canonical.

The Jacobian of the transformation is

M =

(

∂Q
∂q

∂Q
∂p

∂P
∂q

∂P
∂p

)

=

( − 1

q cot p

cot p −q csc2 p

)

.
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Hence

M̃JM =

( − 1

q cot p

cot p −q csc2 p

)(

0 1
−1 0

)( − 1

q cot p

cot p −q csc2 p

)

=

( − 1

q cot p

cot p −q csc2 p

)(

cot p −q csc2 p
1

q − cot p

)

=

(

0 csc2 p− cot2 p
cot2 p− csc2 p 0

)

=

(

0 1
−1 0

)

= J

so the symplectic condition is satisfied.

Problem 9.5

Show directly for a system of one degree of freedom that the transformation

Q = arctan
αq

p
, P =

αq2

2

(

1 +
p2

α2q2

)

is canonical, where α is an arbitrary constant of suitable dimensions.

The Jacobian of the transformation is

M =





∂Q
∂q

∂Q
∂p

∂P
∂q

∂P
∂p





=





(

α
p

)

1

1+( αq
p )2 −

(

αq
p2

)

1

1+(αq
p )2

αq p
α



 .

so

M̃JM =







(

α
p

)

1

1+( αq
p )

2 αq

−
(

αq
p2

)

1

1+(αq
p )2

p
α











αq p
α

−
(

α
p

)

1

1+(αq
p )2 +

(

αq
p2

)

1

1+( αq
p )2





=





0 1

−1 0





= J

so the symplectic condition is satisfied.
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Problem 9.6

The transformation equations between two sets of coordinates are

Q = log(1 + q1/2 cos p)

P = 2(1 + q1/2 cos p)q1/2 sin p

(a) Show directly from these transformation equations that Q,P are canonical
variables if q and p are.

(b) Show that the function that generates this transformation is

F3 = −(eQ − 1)2 tan p.

(a) The Jacobian of the transformation is

M =





∂Q
∂q

∂Q
∂p

∂P
∂q

∂P
∂p





=





(

1

2

)

q−1/2
cos p

1+q1/2 cos p
− q1/2

sin p
1+q1/2 cos p

q−1/2 sin p+ 2 cos p sin p 2q1/2 cos p+ 2q cos2 p− 2q sin2 p





=





(

1

2

)

q−1/2
cos p

1+q1/2 cos p
− q1/2

sin p
1+q1/2 cos p

q−1/2 sin p+ sin 2p 2q1/2 cos p+ 2q cos 2p



 .

Hence we have

M̃JM =





(

1

2

)

q−1/2
cos p

1+q1/2 cos p
q−1/2 sin p+ sin 2p

− q1/2
sin p

1+q1/2 cos p
2q1/2 cos p+ 2q cos 2p





×





q−1/2 sin p+ sin 2p 2q1/2 cos p+ 2q cos 2p

−
(

1

2

)

q−1/2
cos p

1+q1/2 cos p
q1/2

sin p
1+q1/2 cos p





=





0 cos
2 p+sin

2 p+q1/2
cos p cos 2p+q1/2

sin p sin 2p
1+q1/2 cos p

− cos
2 p+sin

2 p+q1/2
cos p cos 2p+q1/2

sin p sin 2p
1+q1/2 cos p

0





=





0 1

−1 0





= J

so the symplectic condition is satisfied.
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(b) For an F3 function the relevant relations are q = −∂F/∂p, P = −∂F/∂Q.
We have

F3(p,Q) = −(eQ − 1)2 tan p

so

P = −∂F3

∂Q
= 2eQ(eQ − 1) tan p

q = −∂F3

∂p
= (eQ − 1)2 sec2 p.

The second of these may be solved to yield Q in terms of q and p:

Q = log(1 + q1/2 cos p)

and then we may plug this back into the equation for P to obtain

P = 2q1/2 sin p+ q sin 2p

as advertised.

Problem 9.7

(a) If each of the four types of generating functions exist for a given canonical
transformation, use the Legendre transformation to derive relations between
them.

(b) Find a generating function of the F4 type for the identity transformation and
of the F3 type for the exchange transformation.

(c) For an orthogonal point transformation of q in a system of n degrees of freedom,
show that the new momenta are likewise given by the orthogonal transforma-
tion of an n−dimensional vector whose components are the old momenta plus
a gradient in configuration space.

Problem 9.8

Prove directly that the transformation

Q1 = q1, P1 = p1 − 2p2

Q2 = p2, P2 = −2q1 − q2

is canonical and find a generating function.

After a little hacking I came up with the generating function

F13(p1, Q1, q2, Q2) = −(p1 − 2Q2)Q1 + q2Q2
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which is of mixed F3, F1 type. This is Legendre-transformed into a function of
the F1 type according to

F1(q1, Q1, q2, Q2) = F13 + p1q1.

The least action principle then says

p1q̇1 + p2q̇2 −H(qi, pi) = P1Q̇1 + P2Q̇2 −K(Qi, Pi) +
∂F13

∂p1

ṗ1 +
∂F13

∂Q1

Q̇1

+
∂F13

∂q2
q̇2 +

∂F13

∂Q2

Q̇2 + p1q̇1 + q1ṗ1

whence clearly

q1 = −∂F13

∂p1

= Q1 X

P1 = −∂F13

∂Q1

= −p1 − 2Q2

= −p1 − 2p2 X

p2 =
∂F13

∂q2
= Q2 X

P2 = −∂F13

∂Q2

= −2Q1 − q2 = −2q1 − q2 X.

Problem 9.14

By any method you choose show that the following transformation is canonical:

x =
1

α
(
√

2P1 sinQ1 + P2), px =
α

2
(
√

2P1 cosQ1 −Q2)

y =
1

α
(
√

2P1 cosQ1 +Q2), py = −α
2

(
√

2P1 sinQ1 − P2)

where α is some fixed parameter.
Apply this transformation to the problem of a particle of charge q moving in a plane
that is perpendicular to a constant magnetic field B. Express the Hamiltonian for
this problem in the (Qi, Pi) coordinates, letting the parameter α take the form

α2 =
qB

c
.

From this Hamiltonian obtain the motion of the particle as a function of time.

We will prove that the transformation is canonical by finding a generating
function. Our first step to this end will be to express everything as a function
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of some set of four variables of which two are old variables and two are new.
After some hacking, I arrived at the set {x,Q1, py, Q2}. In terms of this set, the
remaining quantities are

y =

(

1

2
x− 1

α2
py

)

cotQ1 +
1

α
Q2 (9)

px =

(

α2

4
x− 1

2
py

)

cotQ1 −
α

2
Q2 (10)

P1 =

(

α2x2

8
− 1

2
xpy +

1

2α2
p2

y

)

csc2Q1 (11)

P2 =
α

2
x+

1

α
py (12)

We now seek a generating function of the form F (x,Q1, py, Q2). This is of mixed
type, but can be related to a generating function of pure F1 character according
to

F1(x,Q1, y,Q2) = F (x,Q1, py, Q2) − ypy.

Then the principle of least action leads to the condition

pxẋ+ pyẏ = P1Q̇1 + P2Q̇2 +
∂F

∂x
ẋ+

∂F

∂py
ṗy +

∂F

∂Q1

Q̇1 +
∂F

∂Q2

Q̇2 + yṗy + pyẏ

from which we obtain

px =
∂F

∂x
(13)

y = − ∂F

∂py
(14)

P1 = − ∂F

∂Q1

(15)

P2 = − ∂F

∂Q2

. (16)

Doing the easiest first, comparing (12) and (16) we see that F must have
the form

F (x,Q1, py, Q2) = −α
2
xQ2 −

1

α
pyQ2 + g(x,Q1, py). (17)

Plugging this in to (14) and comparing with (14) we find

g(x,Q1, py) =

(

−1

2
xpy +

1

2α2
p2

y

)

cotQ1 + ψ(x,Q1). (18)

Plugging (17) and (18) into (13) and comparing with (10), we see that

∂ψ

∂x
=
α2

4
x cotQ1
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or

ψ(x,Q1) =
α2x2

8
cotQ1. (19)

Finally, combining (19), (18), (17), and (15) and comparing with (11) we see
that we may simply take φ(Q1) ≡ 0. The final form of the generating function
is then

F (x,Q1, py, Q2) = −
(

α

2
x+

1

α
py

)

Q2 +

(

α2x2

8
− 1

2
xpy +

1

2α2
p2

y

)

cotQ1

and its existence proves the canonicality of the transformation.
Turning now to the solution of the problem, we take the B field in the z

direction, i.e. B = B0k̂, and put

A =
B0

2

(

− y î + x ĵ
)

.

Then the Hamiltonian is

H(x, y, px, py) =
1

2m

(

p − q

c
A
)2

=
1

2m

[

(

px +
qB0

2c
y

)2

+

(

py − qB0

2c
x

)2
]

=
1

2m

[

(

px +
α2

2
y

)2

+

(

py − α2

2
x

)2
]

where we put α2 = qB/c. In terms of the new variables, this is

H(Q1, Q2, P1, P2) =
1

2m

[

(

α
√

2P1 cosQ1

)2

+
(

α
√

2P1 sinQ1

)2
]

=
α2

m
P1

= ωcP1

where ωc = qB/mc is the cyclotron frequency. From the Hamiltonian equations
of motion applied to this Hamiltonian we see thatQ2, P1, and P2 are all constant,
while the equation of motion for Q1 is

Q̇1 =
∂H

∂P1

= ωc −→ Q1 = ωct+ φ

for some phase φ. Putting r =
√

2P1/α, x0 = P2/α, y0 = Q2/α we then have

x = r(sinωct+ φ) + x0, px =
mωc

2
[r cos(ωct+ φ) − y0]

y = r(cosωct+ φ) + y0, py =
mωc

2
[r sin(ωct+ φ) + x0]

in agreement with the standard solution to the problem.
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z={|y������|t������)��vV��t���y���z���� Á�� ���5½)y��=t+��z5z����+y ±/²�³ ¤
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$ t¨¶ ¶�ya�Dt+t¨wDy��3z�t�}At�v����©��t�tD�=£|�x����z�y��3�D����t��£R�x���¬z=t
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Ò Ù � ¹ %|¹=Ý�¹�»�¹ ± Ú ² Þ Ù � ¹=Ý�¹�» Ú Ç » % ß Ý ±�Ø Ù�� Ú
� §�����z���t�� Ù�� Ú �Ay)��t���y)�ÏÅ¨Æ�Ð Ñ ÞÑ � Ô Ã Ç ÏÅ�Æ � Ã Ð » ß �  Å � � Ã Ô Ã Ç ÏÅ � � Ã ² Ý¶5�xz�{��´t��=����v���t�v��Rz���t��

Þ Ù � Ú ² 7 � 9 � : � Å¨Æ Ý ß8Æ � � : Ã ß Ï� : Ã Ð » ß �  Å � � : Ã Ô Ã Ø6 �i» ²×³ z={|���n�®����}|vx�x¯�y���z�t
Þ Ù � Ú ²87 � 9 � :	� Å¨Æ Ý ß8Æ Ã Ù�
 Ã¸ Ç 
 Ã� Ú � : Ã���.£ z�{|y8}|�=t��|v�y�� �.y���tD�+y������.��z�z�{���z�t���z={|yP��t��=����vn{�������tD�|���~tD�=����vxv��¨z=t����5¶5��z={�´�=y)§��|y��.��ª
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� ² Æ � Ã 
� Þ I Ù · Ú Þ Ã Ù · Ú Þ @ Ù · Ú³ Ë I Ù � Ú�Ë Ã Ù � Ú³ ³ Ï �
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Ò Ù Ó ¹ ± Ú ² Þ Ù´± Ú Ó Ç Ë Ù´± Ú Ø¿ {|y)� Ù Ï�ÏàÚ �Ay)��t���y)� ÏÅ¨Æ�Þ Ã Ù ± ÚLß Æ
� ± Ó Ç$Þ : Ù´± Ú Ó Ç Ë : Ù´± Ú ²�³|Ø� ��z=�{|���|��}.t¨¶3y���3t�� Ó ¹�¶3yat��Rz�����Þ : Ù´± Ú ² Æ	� ± ²DR Þ Ù´± Ú ² ÏÅ Æ
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t��=�|�xz)������£�¶5{|y)��y�¶�y�{��àw�y/�=y)�®z��=����z�y�£z�{�y��x��z�y)�����v/t¨wDy��¼z�{�y�¶5{|t�v�y�}Ay��=�xtR£ z�t~���8����z�y)�����vit¨w�y)�az�{|y�¯��=�®z¬§�������z�y)�® Î}Ay��=�xtR£���.£9�Í�|v�z=�x}�vx��y)£��uª M z�t���t���}.y)���=�¨z�y Ú² ß M<�Æ ����� Å�Æ Ý ß�Å¨Æ � Ó ¸�� @�A Ã ß � Å¨Æ Ý � @BA Ã��



���������
	������� �
����������������������������� �!�����"�$#%���&��'���(�*),+�-/.*01�2��43�5 �
�|�Rz5z={|ya¯����z�z=y��=��{|y)��yaw¨���|����{|y)�5���x�.��y�Ý ² � Ó ¸ ����t� ² M<�Æ � � Å�Æ Ý � Ø @�A Ã Ù Ï*<DÚ

� "R}|�=y)�=�®���|�Íz�{|y���������v�z=t��|�������x��z=y��=���©t�� � ¹�¶�y¼z�{�y���t��Rz�����Ý ² ÏÅ�ÆÕÐ <�Æ �M Ô Ã AN@ � Ã AB@ Ø¿ {|y¼�´�=y)§��|y��.��ª9���
� ² Ñ ÝÑ �² Ï<�Æ Ð <�Æ �M Ô Ã AB@ � � I AN@+ v��|�D�����|�Í�����´��tD� Ù Ï <DÚ �² Ï<�ÆÕÐ <�Æ �M Ô Ã AB@ Ð M<�Æ � Ô �

I AB@ Ï
� Å¨Æ Ý² �M � Å�Æ Ý Ø Ù Ï M Ú

���Íz�{|y5t�z�{|y)�i{�����£���t��Íz�{�y5���������Lt��Ay)vxy)��y���z=����ª���t�������£|y���¨z���t��.�
¶3y5��tD�|v�£+�=y)�D�®tD�Í����´t�v�v�t¨¶©� P 6 ��z�{|y¬}�����z�����v�y���z����z=��tD�Rz©¶5��z={6��t���y���z���� Á ² � Å¨Æ Ý�������£���zn���©��vx¶��àªR��|��£|y��©z={|y��������|y)����yÍt��Lz�{�y¬��tD����z����z5�´t����y �'² 9 Á�� 9 ± ¹|z�{�y��6z={|y�z�����y¬�xz©z=��º�y��5�´t��z�{�y�}�����z�����v�y C �©���|�xz�����v
�+tD��y���z��|� z=t9£Ry)�)�àª�z=t�½�y)��t.�|¶5{|���{6���nt��|y� ¾�´tD�|�®z={�z�{|y�z�t�z��v}Ay��=�xtR£�t���z�{|y���t�z=�xtD���R���
� I A � ² Á9 Á�� 9 ± ² � Å�Æ Ý� Ø¿ {|y¼z�t�z=��v�}.y)����tR£9���L�����®z M � I A � ���.£�z={|ya�´��y�§��|y�����ª����
� ² Ï � M � I A � ² �M � Å¨Æ Ý�����D����t��£|������yn¶5�xz�{ Ù Ï M Ú ¤ f gihÍj6k�l�m o�p9q�o	�

� }�����z�����v�y+t������D��� Æ ��t¨w�y��n���8t��|y�£R����y������xtD� ����£Ry�����}At�z�y)��z�����v � ² ß � � � Ó ��Ø ¥|t��y���y��=����y)�Lz={��¨z����=y©�|y����¨z=�xwDy�z�{|y��+t�z���t������/�At�����£Ry)£9����£�t������xv�v��¨z�tD��ªD¤�
3ªÍz�{|y��+y�z�{|tR£9t������z���t��R ¢������v�y�w¨���=�����|vxy��5¯��.£P��� y&"R}|�=y)�=�®��t����´tD�nz={|y+}.y)����tR£~t��/��t�z���t�� �D�����´�|����z���t��8t��z�{�y�}�����z�����v�y C �3y��|y)���Dª�¤¿ {|y��n�����xvxz�tD�R Î¡�����t��|�Vy�§D�.�¨z���t������À ² ÏÅ�ÆÕÐ Ñ"ÒÑAÓnÔ Ã ß �� Ó � Ç Ñ"ÒÑ ± ²�³|Ø
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Û y��®y)y�º9����t�v��Rz���t���t���z�{|ya�´tD��� Ò ² � Ù Ó ¹�Ý Ú/ß Ý ± ¹R����¶5{|���{��)����yÝ ² ÏÅ¨Æ�Ð/Ñ �ÑAÓ�Ô Ã ß �� Ó �t��

Ñ �ÑAÓ ² � Å¨Æ � Ý Ç �� Ó � �
I A Ã

Ñ �ÑAÓ ² � Å¨Æ � �� Ó � ß � Ý � �
I A Ã ¹���x����y�¶�y�ºu�|t¨¶Öz={|y�y���y��=��ª6�����|y����¨z=�xwDy�¤ ¿ {|y��8z�{�y�z��|�=�|���|��}.tD�x��z=��t��Uz={|y���t�z=�xtD����=ya�¨z Ó ² � � � � Ý � ¹|����£9z�{|y��D��z=�xtD��w¨���=�����|v�ya���� ² � Á 9 � Ù Ï � Ú² M � Å¨Æ 7�� A � ���¸ � �Ó ß Ý �
I A Ã 9 Ó² M � � Å¨ÆÝ 7 I¸ � Ï� ß Ï � I A Ã 9 � Ø Ù Ï � ÚÛ y�{��àw�y

7 I¸ � Ï� ß¦Ï � I A Ã 9 � ² 7 I¸ � Ï5ß �� 9 �
��{����|��yaw¨���=�����|v�y)��z�t�» ² � I A Ã ¹ Å 9 » ² 9 � � � � P² Å 7 I¸ â Ï5ß » Ã 9 »
$ t¨¶_�{�������y�z�t�» ² �®��� Ó ¹ 9 » ² ��tD� Ó 9 Ó P² Å 7�� A Ã¸ ��t�� Ã Ó 9 Ó²�� Å��t Ù Ï � Ú �Ay)��t���y)�

� ² Å � � � Å�Æ� Ý � Ø¿ {|y)��z={|y Ù ��t����®z=���Dz Ú �n���+��vxz�t���������y "u}���y�����y)£��x��z=y��=����t�� z={|y�����z���t���w¨���=�����|vxy¼���À ² Ý ² , Æ ��Ã � Ã� Ã Ø
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¿ {|y¼�´�=y)§��|y��.��ª��D����tR�����¨z=y)£�¶5�xz�{�z={|y���tD���=y)��}.tD��£R���|�����|�Dvxy¼w¨���=�����|vxya���

� ² Ñ ÀÑ � ² Ï � Æ � Ã � Ã� @² � Ý � @BA Ã
� � � Å¨Æ Ø Ù Ï ' Ú

6 z*C �¼�x��z=y��=y)�®z����|��z=t���t���}����=y�z={|����¶5�xz�{Pz�{|y���t�v��Rz���t��P¶�y+t��Rz�����|y)£6z�t + �=t��|v�y�� < ¤ < ����x����yU����z�{.�¨z��)����yiz�{�yU��t�z=�xtD��t��Rz={|yU}����®z=����vxy�� Ù �¨� z=y��
z�{|y�t��=�|��z��vD�+t�z���t���������z=t�}|}Ay)£ Ú���5t��|y� Î£|�x��y��.�®��t�����v"¶5��z={�z�{|y�ºu����£�t����´t����yav��à¶_��t�������£Ry��=y)£�{|y��=y�¤ 6 ��z�{���zn}|�=t��|v�y��z�{�y�y��|y)���Dª�t���z�{|yaz�¶3t� Î}�����z�����v�ya�®ªR�®z�y���¶�tD�|v�£��AyÝ ²�� Å � Ã¸ S% Ã ß �� ¸+ v��|�D�����|�6�x�1t��|�Íy&"R}|�=y)�=�®��t�� Ù y)§�����z���t�� Ù � Ú ���1��t�v��Rz=�xtD����z=t ��{���}Rz�y)� <�Ú �´t�� � ¸����z�y)������t�� � �|¶3y¼¯���£ Ý ² Ð � � � Æ� � Å Ô Ã AN@ Ø¿ {|y)�1z={|y6�´�=y)§��|y)����ª«t���z={|y~��t�z=�xtD���3�´��tD� Ù Ï ' Ú �3��� � ² IÃ�� ¤ ¿ {|y�z=�x��y6�´tD��z�{|y}����®z=����vxy���z�ta� ��v�v�����z�t�y����{�t�z={|y��i¶3t��|v�£+�.y/������z3��§D�.����z�y��� Î}.y)����tR£"���®t�tD�+z�{|���iz={|y�tD��ª¶3y¼¶3t���v�£���y�z z=�x��ya�´tD�5}�����z�����v�y)�3z=tÍ� ��vxv �x��z�t�y����{�t�z�{�y�� ² ÏM � ² � Å¶5{|y)��y�����z�{�y����.�®¶3y��i¶3y©t��|z=�����|y�£Í������{���}Rz�y)� < ¶���� � � M � Å Ø 
��|z 6 ����� C z/¯.���|�=y5t��Rz¶5{|y)��y 6 ��������ºu���|���+�+���®z=��ºDy�¤f gihÍj6k�l�m o�p9q�o �
� }����®z=����vxynt��"�����=� Æ ���U��t����®z�������|y�£¬z=t���t¨w�y©tD����������wDy5�x��z={|ynwDy���z�������v�}|v����|yn£Ry�¯��|y�£�uª�z�{�y�}��������y�z=������y)§����¨z=�xtD��� Ì ²��®Ù Ï5ß ��tD� Å � ÚÓ ²��®Ù Å � Ç ���x� Å � Ú Ø¿ {|y)��y5���iz={|y©��������vA��tD����z����z/����àwu��z�¨z=�xtD����v��´t����y©�D��z=�x�|�¬�x��z={|y©w�y)�®z=���)��v Ì £R����y���z=�xtD��¤ 
3ªz�{�y���y�z�{�tu£Pt��/����z���t��R ¢������v�y�wà����������vxy���¯���£�z={|y��´�=y)§��|y)����ª�t��/t������xv�v��¨z���t����´tD����v�v ���|�xz�����v��tD��£R�xz���t����5�����{�z�{���z5z�{|y���� "u���¬����t����6����vxy����5z�{�����tD�5y)§�����vVz=t � � M.Ø¿ {|y�ºu�x��y�z����ay���y��=��ª����

� ² Æ Å Ù SÓ Ã Ç SÌ Ã Ú² Æ � ÃÅ = Ù Å S�����x� Å � Ú Ã Ç Ù Å S� Ç Å S����tD�/� Ú Ã ?²�, Æ � Ã ��tD� Ã � S� Ã Ø
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����������������������������� �!�����"�$#%���&��'���(�*),+�-/.*01�2��43�5 ÏàÅ
¿ {|ya}At�z�y)��z�����v�y)�|y��=��ª����

� ² Æ9ËuÌ ² Æ9Ë �®Ù Ï3ß ��t�� Å � Ú² Å¨Æ�Ë � ���x� Ã � Ø Ù Ï , Ú¿ {|y)��z={|y � ��������|�D���������
� ²�, Æ � Ã ��tD� Ã � S� Ã ß�Å�Æ9Ë � �®��� Ã ���tÍz={|y������|t������)��vV��t���y���z���� ��tD�¨���|���¨z�y¼z=t �~���
Á 1 ² Ñ �Ñ S� ² Ï � Æ � Ã ��t�� Ã � S����.£�z={|y��n���+��vxz�t������������À ² Ý ² Á�1 S� ß �²�, Æ � Ã ��t�� Ã � S� Ã�Ç Å¨Æ�Ë � ����� Ã �² Á Ã 1<DÅ¨Æ � Ã ��tD� Ã � Ç Å¨Æ�Ë � ���x� Ã � ØsutDvxwu���|�+�´t�� Á�1 ���5�Í�´�|����z���t���t��iÝµ����£ �
¹|¶�y�{.�àw�yÁ 1 ² M � � Å�Æ Ý���tD��� � Ï5ß Å�Æ9Ë �Ý �®��� Ã � � I A Ã Ø¿ {|y�����z���t���w¨���=�����|vxy¼�´tD�5}.y)����tR£R���a��t�z���t������

� ² � Á 1 9 �² Ï � � � Å¨Æ Ý 7 1 
¸ ��tD�/� � Ï5ß Å¨Æ�Ë �Ý ���x� Ã � � I A Ã 9 �
+ �|z)� ² � Ã ������ ���x��� P² Ï � Ý � �Ë 7 0 
¸ â Ï�ß � Ã 9 � Ø�©y)��y¼z={|y��|}|}Ay��©����z�y)����¨z���t���vx������z©���

� ¸ ² � Å�Æ9Ë �Ý �®����� ¸¶5{|y)��y)��¸����
z�{|y3����"R�x�Í�|� w¨��v��|y��¨z®z�����|y)£¬�uª � Ø ����z={|y�t�z={|y���{����.£"���=y��´y��=�=�x�|�n�����ºz�t Ù Ï , Ú � Å�Æ9Ë � �®��� Ã �.¸¼���
�����®z�z�{|y¼}At�z�y)��z�����vVy��|y)���Dª�t���z={|y�}.����z�����v�y��¨z��xz=�3����"R�x�Í�|�
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{|y)�x�D{Dz��/¶5{|���{1���������®z��xz=�+z=t�z��v�y��|y)���Dª��®������y��xz�{.���+½�y)��t º����|y�z�����y)�|y��=��ª���z+z={��¨z}At����Dz�¤/�©y)����y

�A¸ ² � ÝÝ ² Ï Ø¿ {|y�����z���t����x��z=y������v"���3z�{�y��
� ² Ï � Ý � �Ë 7 I¸ â Ï5ß � Ã 9 �²�, Ý � �Ë ��� � â Ï�ß � Ã Ç �®��� � I � ��� I¸² M � Ý � �Ë Ø¿ {|y)��z={|y��n���+��vxz�t���������y "R}|��y�����y)£9�x��z=y��=����t��
z={|y�����z���t���w¨���=�����|vxya���À ² Ý ² ÏM � � Ë � ����.£�z={|ya�´��y�§��|y�����ª����L�����®z

� ² Ñ ÀÑ � ² ÏM � � Ë � Øf gihÍj6k�l�m o�p9q�o �
� z�{|�=y�y� Î£|�x��y��.�®��t�����vi{����=��t��|���+tD�=����vxv��¨z=t��¼{�����z�{|y��´tD�=��y+��t����®z=���Dz � I �x�8z={|y Ó ����£ Ì£R����y���z=�xtD��������£ � @ �x��z�{�y �+£R����y���z=�xtD��¤  ���x�|����ª�v�����£R�=���)��vV��tut��£R�����¨z=y)� Ù ¶5�xz�{�z�{|y���"R���3t��z�{�yÍ��ªuv��x�.£Ry��¼�x�Pz�{|y ��£|�x�=y)��z���t�� Ú £Ry)�=���=�x�Ay�z={|y+�+t�z���t��~���~z=y��=���nt��iz�{|y���tD���=y)��}.tD��£R���|�����z���t��R ¢������v�ynw¨���=�����|v�y)�)�u��{|t¨¶5���|�+{|t¨¶�z�{�y��´�=y)§��|y)������y)�5�)�����.y�tD�Rz=���x�|y�£"¤ ¿ ����.���´tD���µz=tz�{�y��®}|�=t�}Ay����¬�D��z���t��| Î���|��v�y�w¨���������|v�y)��z=t�y�v��x�������¨z=y�£Ry��Dy��|y)�=��z�y��´��y�§D��y������xy���¤¿ {|y�� ��������|�D��������� Æ Å = S� Ã Ç � Ã S% Ã Ç S� Ã ? ß ÏÅ � I � Ã ß ÏÅ � @ � Ã Ø¶5�xz�{6�����|t��|������vV�+tD��y���z=� Á � ² Æ S�Á � ² Æ � Ã S%Á�� ² Æ S� Ø
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¿ {|y��n�����xvxz�tD�|���������À ²�� Á � S� � ß �² Æ Å = S� Ã Ç � Ã S% Ã Ç S� Ã ? Ç ÏÅ � I � Ã Ç ÏÅ � @ � Ã² Á.Ã�Å¨ÆÊÇ ÁAÃ �Å�Æ � Ã Ç ÁAÃ�Å¨ÆáÇ ÏÅ � I � Ã Ç ÏÅ � @ � Ã Ø


