M is a smooth manifold

$$\varphi: R \times M \to M$$
 $\varphi_t(p) := \varphi(t, p)$ satisfies:

- 1. $\varphi_0(p) = p$
- 2. $\varphi_s \circ \varphi_t = \varphi_{s+t}$ for all $s, t \in R$

Then $\{\varphi_i\}$ is called a one-parameter group on M

Examples

- 1. The flow of a vector field
- 2. $\varphi_A(t) = \exp(tA)$ is a one-parameter group with $\frac{d}{dt} \exp(tA) \Big|_{t=0} = A$ where $\exp A = \sum_{k=0}^{\infty} \frac{1}{k!} A^k$ defines a map $M_{n \times n} \xrightarrow{\exp} GL(n, R)$ and $M_{n \times n}(R)$ is the Lie algebra of GL(n,R) with [A,B] = AB BA

其他 DeepSeek 提供的 one-parameter groups

- 1. Modular group in number theory
- 2. Rotation groups
- The group of rotations in \mathbb{R}^2 (or \mathbb{R}^3) can be parametrized by an angle θ . For example:

$$R_{ heta} = egin{pmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{pmatrix},$$

where $heta \in \mathbb{R}$. This forms a one-parameter group under matrix multiplication.

- 3. Scaling froups
- The group of scaling transformations in \mathbb{R}^n can be parametrized by a scaling factor $\lambda > 0$:

$$S_{\lambda}(x) = \lambda x.$$

This forms a one-parameter group under composition.

- 4. Heisenberg group
- 5. Affine groups
- The affine group Aff(1) consists of transformations of the form:

$$f_t(x) = a_t x + b_t$$

where $a_t>0$ and $b_t\in\mathbb{R}$. Specific choices of a_t and b_t can give rise to one-parameter subgroups.

- 6. Lie groups and their subgroups
- In general, any Lie group G has one-parameter subgroups corresponding to elements of its Lie algebra \mathfrak{g} . These are not limited to matrix groups and can include more abstract groups, such as diffeomorphism groups or gauge groups in physics.

7. Dynamics systems

• In dynamical systems, one-parameter groups can arise from the time evolution of a system. For example, the flow of a Hamiltonian system or the time evolution of a quantum state under a Hamiltonian operator can form a one-parameter group.

In classical mechanics $\,^{\circ}$ the flows of a Hamiltonian system is a one-parameter group of symplectomorphisms $\,^{\circ}$

- The heat equation $\partial_t u = \Delta u$ generates a one-parameter semigroup of operators that describe the evolution of temperature distributions.
- \circ The wave equation $\partial_{tt}u=\Delta u$ generates a one-parameter group of transformations on phase space.
- One-parameter groups describe geometric flows, such as:
 - The Ricci flow in differential geometry, which evolves a Riemannian metric over time.
 - Mean curvature flow, which describes the evolution of surfaces in Riemannian manifolds.

8. Translation groups

• The group of translations on \mathbb{R}^n forms a one-parameter group when parametrized by a single direction. For example:

$$T_t(x) = x + tv,$$

where $v \in \mathbb{R}^n$ is a fixed vector and $t \in \mathbb{R}$.

9. Galilean and Lorentz boosts

• In physics, Galilean boosts (in non-relativistic mechanics) and Lorentz boosts (in special relativity) form one-parameter groups. For example, a Lorentz boost in the x-direction is parametrized by rapidity ϕ :

$$\Lambda_\phi = egin{pmatrix} \cosh \phi & -\sinh \phi \ -\sinh \phi & \cosh \phi \end{pmatrix}.$$

- In general relativity, one-parameter groups describe the flow of spacetime symmetries. For example:
 - Killing vector fields generate one-parameter groups of isometries, which preserve the metric of spacetime.
 - Cosmological models often use one-parameter groups to describe the expansion or contraction of the universe.

10. Circle actions

• The circle group S^1 (or \mathbb{R}/\mathbb{Z}) acts on spaces via periodic transformations. For example, the action of S^1 on \mathbb{C} by multiplication:

$$z\mapsto e^{2\pi it}z$$
,

where $t \in \mathbb{R}$, forms a one-parameter group.

Q:在 M 上給定一個光滑的切向量場 X,是否存在 M 的 one-parameter group φ , 使得 X 是 φ , 所誘導的切向量場 ?

A: 若M是 compact differential manifold, X是M上的 smooth 切向量場,則X在M上決定一個 one-parameter group。

Relationship between tagent vector fields and one-parameter groups:

- A smooth tangent vector field X can generate a local one-parameter group of transformations $\phi(t)$, which is constructed from the integral curves of X.
- \circ Specifically, for each point $p \in M$, there exists an integral curve $\gamma_p(t)$ satisfying:

$$\gamma_p(0) = p \quad ext{and} \quad rac{d}{dt} \gamma_p(t) = X(\gamma_p(t)).$$

• These integral curves locally define a one-parameter group $\phi(t)$, where $\phi(t)(p) = \gamma_p(t)$.

If the manifold is compact or the vector field X is complete (meaning its intehral curves are defined foe all time $\ t \in R$), then the one-parameter group $\ \varphi_{t}$ can be defined globally on M \circ

If M is non-compact and X is not complete, then φ_t may only exist locally \circ That is, for each point $p \in M$, there exists a neighborhood U and a time interval $(-\varepsilon, \varepsilon)$ such that φ_t is defined on U \circ

Induced Tangent Vector Field:

• The tangent vector field X induced by the one-parameter group $\phi(t)$ is defined as:

$$X_p = \left. rac{d}{dt} \phi(t)(p)
ight|_{t=0}.$$

 \circ This means X is the **generator** of the one-parameter group $\phi(t)$.