Killing vector fields on S^3

Killing vector field on S^3 are vector fields that generate isometries of S^3 of (They preserve the metric, $L_K g = 0$)

Killing vector fields on S^3 :

1. Isometry Group: The isometry group of S^3 with the round metric is SO(4), the group of orthogonal transformations of \mathbb{R}^4 with determinant 1. This group has dimension 6, so there are 6 linearly independent Killing vector fields on S^3 .

Killing vector fields on S^3 are the generators of the isometry group SO(4)

- 2. Lie Algebra Structure: The Killing vector fields on S^3 form a Lie algebra isomorphic to the Lie algebra $\mathfrak{so}(4)$, which is the Lie algebra of SO(4). The Lie algebra $\mathfrak{so}(4)$ is 6-dimensional and can be decomposed as $\mathfrak{so}(4) \cong \mathfrak{su}(2) \oplus \mathfrak{su}(2)$.
- 3. **Explicit Construction**: The Killing vector fields on S^3 can be explicitly constructed using the embedding of S^3 in \mathbb{R}^4 . Let (x_1,x_2,x_3,x_4) be coordinates in \mathbb{R}^4 , so that S^3 is defined by $x_1^2+x_2^2+x_3^2+x_4^2=1$. The Killing vector fields correspond to the infinitesimal generators of rotations in \mathbb{R}^4 . These can be written as:

$$X_{ij} = x_i \partial_j - x_j \partial_i$$

where i, j = 1, 2, 3, 4 and i < j. There are 6 such vector fields, corresponding to the 6 independent planes of rotation in \mathbb{R}^4 .

There are 6 linearly independent Killing vector fields, corresponding to the 6 dimensions of SO(4)

4. Relation to SU(2): The 3-sphere S^3 can be identified with the Lie group SU(2), and the Killing vector fields correspond to the left-invariant vector fields on SU(2). These vector fields are generated by the Lie algebra $\mathfrak{su}(2)$, which is 3-dimensional. However, the full set of Killing vector fields on S^3 includes both left-invariant and right-invariant vector fields, giving a total of 6 independent Killing vector fields.