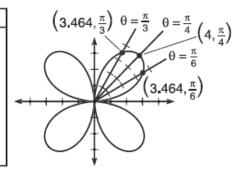


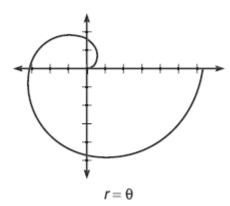
Graph $r = 4\sin 2\theta$ without weeping.

Solution: To solve this, we will allow θ to take on values from 0 to 2π and find the corresponding r values. The table below gives the major angles of the first quadrant, and the result, r, when those angles, θ , are plugged into $r=4\sin 2\theta$. If you continue this process for the other three quadrants, you will obtain a similar shape.

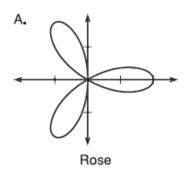
θ	$r = 4 \sin \theta$	point on graph, (r, θ)
0	0	(0, 0)
$\frac{\pi}{6}$	$\frac{4\sqrt{3}}{2}\approx 3.464$	$(3.464, \frac{\pi}{6})$
$\frac{\pi}{4}$	4	$\left(4,\frac{\pi}{4}\right)$
<u>π</u> 3	$\frac{4\sqrt{3}}{2}\approx 3.464$	$(3.464, \frac{\pi}{6})$
$\frac{\pi}{2}$	0	$\left(0,\frac{\pi}{2}\right)$

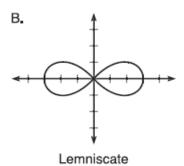


2. Predict the graph of $r=\theta,\,0\leq\theta\leq2\pi,$ and justify your prediction.

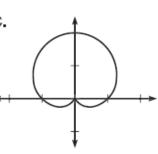


Below are examples of common polar curves. Match the graphs to the correct equations below.





C.



Cardioid

D.

Limaçon

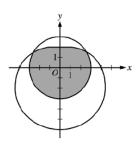
$$r = 1 + \sin \theta$$

$$r = 2 + 3\cos\theta$$

$$r^2 = 9\cos 2\theta$$

$$r = 2\cos 3\theta$$

The graphs of the polar curves r = 3 and $r = 4 - 2\sin\theta$ are shown in the figure above. The curves intersect when $\theta = \frac{\pi}{6}$ and $\theta = \frac{5\pi}{6}$.

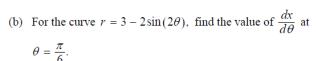


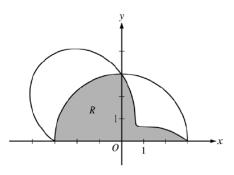
- (a) Let S be the shaded region that is inside the graph of r = 3 and also inside the graph of $r = 4 - 2\sin\theta$. Find the area of S.
- (b) A particle moves along the polar curve $r = 4 2\sin\theta$ so that at time t seconds, $\theta = t^2$. Find the time t in the interval $1 \le t \le 2$ for which the x-coordinate of the particle's position is -1.
- (c) For the particle described in part (b), find the position vector in terms of t. Find the velocity vector at time t = 1.5.

ANS (a) 24.709 (b) 1.428 (c)
$$v(1.5) = (-8.072, -1.673)$$
 2013BC

The graphs of the polar curves r = 3 and $r = 3 - 2\sin(2\theta)$ are shown in the figure above for $0 \le \theta \le \pi$.

(a) Let R be the shaded region that is inside the graph of r = 3 and inside the graph of $r = 3 - 2\sin(2\theta)$. Find the area of R.



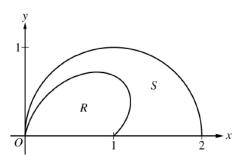


(c) The distance between the two curves changes for $0 < \theta < \frac{\pi}{2}$.

Find the rate at which the distance between the two curves is changing with respect to θ when $\theta = \frac{\pi}{3}$.

(d) A particle is moving along the curve $r = 3 - 2\sin(2\theta)$ so that $\frac{d\theta}{dt} = 3$ for all times $t \ge 0$. Find the value of $\frac{dr}{dt}$ at $\theta = \frac{\pi}{6}$.

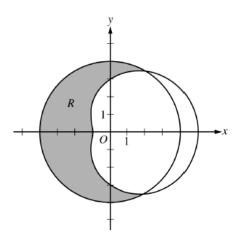
1. dt 6 ANS (a) 9.708 (b) -2.366 (c) 2 (d) -6 2014BC



- 2. The figure above shows the polar curves $r = f(\theta) = 1 + \sin \theta \cos(2\theta)$ and $r = g(\theta) = 2\cos \theta$ for $0 \le \theta \le \frac{\pi}{2}$. Let R be the region in the first quadrant bounded by the curve $r = f(\theta)$ and the x-axis. Let S be the region in the first quadrant bounded by the curve $r = g(\theta)$, and the x-axis.
 - (a) Find the area of R.

2.

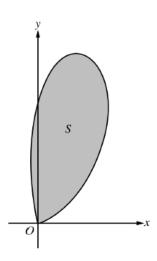
- (b) The ray $\theta = k$, where $0 < k < \frac{\pi}{2}$, divides *S* into two regions of equal area. Write, but do not solve, an equation involving one or more integrals whose solution gives the value of *k*.
- (c) For each θ , $0 \le \theta \le \frac{\pi}{2}$, let $w(\theta)$ be the distance between the points with polar coordinates $(f(\theta), \theta)$ and $(g(\theta), \theta)$. Write an expression for $w(\theta)$. Find w_A , the average value of $w(\theta)$ over the interval $0 \le \theta \le \frac{\pi}{2}$.
- (d) Using the information from part (c), find the value of θ for which $w(\theta) = w_A$. Is the function $w(\theta)$ increasing or decreasing at that value of θ ? Give a reason for your answer.
- ANS (a) 0.648 (b) (c) 0.485 (d) decreasing at 0.518 2017BC



- 5. The graphs of the polar curves r=4 and $r=3+2\cos\theta$ are shown in the figure above. The curves intersect at $\theta=\frac{\pi}{3}$ and $\theta=\frac{5\pi}{3}$.
 - (a) Let R be the shaded region that is inside the graph of r = 4 and also outside the graph of $r = 3 + 2\cos\theta$, as shown in the figure above. Write an expression involving an integral for the area of R.
- (b) Find the slope of the line tangent to the graph of $r = 3 + 2\cos\theta$ at $\theta = \frac{\pi}{2}$.
 - (c) A particle moves along the portion of the curve $r = 3 + 2\cos\theta$ for $0 < \theta < \frac{\pi}{2}$. The particle moves in such a way that the distance between the particle and the origin increases at a constant rate of 3 units per second. Find the rate at which the angle θ changes with respect to time at the instant when the position of the particle corresponds to $\theta = \frac{\pi}{3}$. Indicate units of measure.

Area =
$$\frac{1}{2} \int_{\pi/3}^{5\pi/3} (4^2 - (3 + 2\cos\theta)^2) d\theta$$
 (b) $\frac{2}{3}$

(c) $-\sqrt{3}$ radians/second 2018BC



- 2. Let S be the region bounded by the graph of the polar curve $r(\theta) = 3\sqrt{\theta}\sin\left(\theta^2\right)$ for $0 \le \theta \le \sqrt{\pi}$, as shown in the figure above.
 - (a) Find the area of S.
- (b) What is the average distance from the origin to a point on the polar curve $r(\theta) = 3\sqrt{\theta}\sin\left(\theta^2\right)$ for $0 \le \theta \le \sqrt{\pi}$?
 - (c) There is a line through the origin with positive slope m that divides the region S into two regions with equal areas. Write, but do not solve, an equation involving one or more integrals whose solution gives the value of m.
 - (d) For k > 0, let A(k) be the area of the portion of region S that is also inside the circle $r = k \cos \theta$. Find $\lim_{k \to \infty} A(k)$.
- ANS (a) (b) (c) (d) 2019BC