§ Local theory of Symplectic manifolds

2.1 Isotopy

Definition

Let M is a manifold ' $\phi: M \times R \rightarrow M$

If $\phi_t : M \to M$ satisfies

- 1. $\phi_0 = id$
- 2. $\phi_t(m) := \phi(m, t)$ is a diffeomorphism for every $t \in R$

Then ϕ is an isotopy

For every isotopy ϕ , we construct a vector field X_t on M by letting $\frac{d\phi_t}{dt} = X_t \circ \phi_t$ or, in other words, $\phi_*(\frac{\partial}{\partial t}\Big|_{(m,t)}) = X_{t \circ \phi_t(m)}$

Where $\phi_*: T_{(m,t)}(M imes R) o T_{\phi(m)}M$ is the push-forward of ϕ \circ

Hence there is a family of vector fields $\{X_t\}$ in M \circ On the other hand \circ given a R-famiy of compactly-supported vector fields $\{X_t\}$, we can solve the differential equation $\frac{d\phi_t}{dt} = X_t \circ \phi_t$ to get back the isotopy $\phi \circ$

Definition

A one-parameter group of diffeomorphisms of a manifold is an isotopy with the extra property $\phi_{s+t} = \phi_s \circ \phi_t$

例 X is a vector field on a manifold M , $\varphi_t: M \to M$

1.
$$\varphi_0(m) = m$$
 for $\forall m \in M$

2.
$$\frac{d\varphi_t(m)}{dt} = X_{(\varphi_t(m))}$$

Then φ_t is the exponential map (or the flow) of X , denote φ_t by exp(t X)

Definition

The Lie derivative of a form α along a vector field X is given by

$$L_X \alpha \coloneqq \frac{d}{dt} \varphi_t^* \omega \big|_{t=0}$$

Cartan formula $L_x \omega = d(i_x \omega) + i_x d\omega$

Proposition

For a family of 2-form ω_t , $\frac{d}{dt}\varphi_t^*\omega_t = \varphi_t^*(L_{X_t}\omega_t + \frac{d\omega_t}{dt})$

Proof

$$\frac{d}{dt}\varphi_t^*\omega = \varphi_t^*L_X\omega \quad \text{, then}$$

$$\frac{d}{dt}\varphi_t^*\omega_t = \left(\frac{d}{ds}\varphi_s^*\right)\Big|_{s=t\omega_t} + \varphi_t^*\left(\frac{d}{ds}\omega_s\right)\Big|_{s=t}$$

$$= \varphi_t^*L_{X_t}\omega_t + \varphi_t^*\frac{d\omega_t}{dt} = \varphi_t^*\left(L_{X_t}\omega_t + \frac{d\omega_t}{dt}\right)$$

2.2 Moser Theorem

Let M be a compact manifold , and $\omega_0, \omega_1 \in \Omega^2(M)$ be in same de Rham cohomology (餘詞)group \circ Suppose $\omega_t = (1-t)\omega_0 + t\omega_1$ be symplectic for all $t \in [0,1]$, then there is an isotopy ϕ such that $\phi_t^* \omega_t = \omega_0$ for all $t \in [0,1]$

 $(\omega_0, \omega_1 \in \Omega^2(M))$ be in same de Rham cohomology group $\Leftrightarrow \omega_0 - \omega_1$ is exact \circ i.e.

$$\exists \sigma \in \Omega^1$$
, such that $\omega_1 - \omega_0 = d\sigma$)

Proof

$$\omega_t = (1-t)\omega_0 + t\omega_1 \quad \cdot \quad \cdot \cdot \frac{d\omega_t}{dt} = \omega_1 - \omega_0 = d\sigma$$

From Cartan formula $L_{X_t}\omega_t = i_{X_t}d\omega_t + d(i_{X_t}\omega) = d(i_{X_t}\omega)$

there is an isotopy ϕ such that $\phi_t^* \omega_t = \omega_0$ for all $t \in [0,1]$

Moser's equation : $i_{X_t}\omega_t + \sigma = 0$

But ω_t is non-degenerate, so we can solve X_t for each $t \in [0, 1]$ smoothly by the uniqueness theorem of differential equations. Given such X_t we can find its isotopy by compactness of M.

Theorem 2.8 (Tubular Neighbourhood Theorem). Suppose Q is an submanifold of a manifold M, the normal bundle of Q is defined by

$$NQ = \{(q,n) : q \in X; n \in N_xQ := \frac{T_xM}{T_xQ}\}$$

Then there exist a convex neighbourhood $\tilde{\mathcal{U}}$ of the zero section of NQ, a neighbourhood \mathcal{U} of Q, and a diffeomorphism $\varphi: \tilde{\mathcal{U}} \to \mathcal{U}$ such that $\phi(q, 0) = q$ for all $q \in Q$.

2.3 Darboux Theorem

Every symplectic form ω of a 2n-dimenional symplectic manifold M is locally diffeomorphic to the standard form

$$\sum_{i=1}^{n} dx_{i} \wedge dy_{i} \text{ on } \mathbb{R}^{2n}$$

M 為 2n 維光滑流形, ω 為在點 $x \in M$ 鄰域的非退化 閉 2-form,則在 x 鄰域可
選局部座標系 { $q^{1}, q^{2}, ..., q^{n}, p_{1}, ..., p_{n}$ } 使得 $\omega = \sum_{i} dp_{i} \wedge dq^{i}$ 。

此局部座標稱為 Darboux 座標。