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Abstract
In this article we consider a closed Riemannian manifold (M, ¢) and A
a subset of M. The purpose of this article is the comparison between the
eigenvalues (Ag(M));~ of a Schrodinger operator P := —A¢ 4+ V on the
manifold (M, g) and the eigenvalues (A (M — A));~ of P on the manifold
(M — A, g) with Dirichlet boundary conditions.

1 Introduction

The behaviour of the spectrum of a Riemannian manifold (M, g) under topo-
logical perturbation has been the subject of many research. The most famous
exemple is the crushed ice problem [Kac], see also [Ann]. This problem consists
to understand the behaviour of Laplacian eigenvalues with Dirichlet boundary
on a domain with small holes. This subject was first studied by M. Kac [Kac]
in 1974. Then, ]J. Rauch and M. Taylor [Ra-Ta] studied the case of Euclidian
Laplacian in a compact set M of R" : they showed that the spectrum of AR is
invariant by a topological excision of a M by a compact subset A with a New-
tonian capacity zero. Later, S. Osawa, I. Chavel and E. Feldman [Ca-Fe1], [Ca-
Fe2] treated the Riemmannian manifold case. They used complex probalistic
techniques based on Brownian motion. In [Ge-Zh], F. Gesztesy and Z. Zhao in-
vestigate the study the case of a Schrodinger operator with Dirichlet boundary
conditions R”, they use probabilistic tools. In 1995, in a nice article [Cou] G .
Courtois studied the case of Laplace Beltrami operator on closed Riemannian
manifold. He used very simple techniques of analysis. In [Be-Co] J. Bertrand
and B. Colbois explained also the case of Laplace Beltrami operator on compact
Riemannian manifold. In this article we focus on the the Schrédinger operator
—Ag + V case on a closed Riemannian manifold.

Assumption. The manifold is closed (i.e. compact without boundary); the function
V is bounded on the manifold M and miny; V > 0.

In this work we show that under “little” topological excision of a part A
from the manifold, the spectrum of —Ag + V on M — A is close of the spectrum
on M. More precisely, the “good” parameter for measuring the littleness of A
is a type of electrostatic capacity defined by :

cap(A) := inf{Q(u), ue H'(M), /Mudvg —0,u—e € H(M— A)}
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where e; denotes the first eigenfunction of the operator —Ag + V on the mani-
fold M, and Q is the following quadratic form :

= [ 1dgl* v+ [ Vgl av
Qlg) = | lagP ave+ [ Vigl* avg
and HY(M — A) is the Sobolev space defined by :

H§(M — A) := {g € H}(M), g = 0 on a open neighborhood of A }

the closure is for the norm |[.|| ;1 (yy), H 1(M) is the usual Sobolev space on M.

Indeed, more cap(A) is small, more the spectrum —A¢ + V on M — A is close
of the spectrum on M in the following sense :

Theorem. Let (M, g) a closed Riemannian manifold. For all integer k > 1, there
exists a constant Cy depending on the manifold (M, g) and on the potential V such
that for all subset A of M we have :

0 <A (M—A) = A (M) < Cyr/eap(A).

The organization of this paper is the following : in the part 2 we start
by recall some classicals results in spectral theory and about usual Sobolev
spaces, next we define our specific Sobolev space H} (M — A) and the notion of
Schrodinger capacity. In particular, we explain the link between the function-
nal Hilbert space H}(M — A) and Schrodinger capacity cap(A). The last part
of this paper is a detailed proof of the main theorem.

2 Spectral problem background

2.1 Schrodinger operator on a Riemannian manifold
We recall here some generality on spectral geometry. In Riemannian geometry,

n
. . c . . o 92
the Laplace Beltrami operator is the generalisation of Laplacian A = ];a—x]?_ on
R". For a C? real valued function f on a Riemannian manifold and for a local
chart ¢ : U C M — R of the manifold M, the Laplace Beltrami operator is
given by the local expression :

1y alos )
%*@%mﬂf’ ) =

where ¢ = det(g;;) and g/ = (gj) L.

The spectrum of this operator is a nice geometric invariant, see Berger, Gaudu-
chon and Mazet [BGM] and [Bé-Be]. The spectrum of Laplace Beltrami opera-
tor has many applications in geometry topology, physics etc ...

For every Riemannian manifold (M, g) with dimension n > 1 we have the
“natural” Hilbert space L?(M) = L?(M,dV), V, is the Riemannian volume
form associated to the metric g. For V a function from M to R, we define the
Schrodinger operator on the manifold (M, g) by the linear unbounded operator
on the set of smooth compact supports real valued functions C&°(M) C L2(M)
by: —Ag + V.



2.2 Sobolev spaces

Let us denotes by C°(M) the set of smooth functions with compact support
in M. The set C°(M) is also called the set of test functions in the language of
distributions. Recall first that the Lebesgue space L?(M) on the manifold (M, g)
is defined by :

L*(M) := {f : M — R measurable such that / ]2 dVy < —i—oo}.
M

This space is a Hilbert space for the scalar product :
U,0)p 1= ‘ uvdV,.
(w,0)2:= [ wodv
Next the Sobolev space H' (M) is defined by :
HY (M) := C>(M)

where the closure is for the norm ||.|| g1 : [[u]| g1 := 1/ [[u]|72 + [|du|?..

An other point of view to define the space H!(M) is the following :
HY(M) = {u € L2(M); du € L2(M)}

where the derivation is the sense of distribution.
The space H'(M) is a Hilbert space for the scalar product :

(,v)pp = (1, v) 2 + (du,dv) ;2 .
For finish, the Sobolev space H} (M, g) is defined by :
Hy(M) := C(M)

the closure is for the norm ||. [ 1) -
So we have:

C®(M) C H{(M) ¢ H' (M) C L2(M).

Recall that, for the norm |.[[12(5;) we have :

C2(M) = L2(M).

2.3 Spectral problem

The spectral problem is the following : find all pairs (A, u) with A € R and
u € L?>(M) such that :

—Agu + Vu = Au (2.2)

(with u € L?(M) in the non-compact case).



In the case of manifold with boundary, we need boundary conditions on
the functions u, for example the Dirichlet conditions : u = 0 on the boundary
of M, or Neumann conditions : g—z = 0 on the boundary of M. In the case of
closed manifolds (compact without boundary) we don’t have conditions.

For our context (the closed case) the natural space to look here is the Sobolev
space H!'(M).
Recall here a classical theorem of spectral theory (see for example [Re-Sil) :
Theorem. For the above problems, the operator —Aq + V is self-adjoint, the spectrum
of the operator —Ag + V consists of a sequence of infinite increasing eigenvalues with
finite multiplicity :

M(M) < Ap(M) <o < (M) < -+ — +oo.
Moreover, the associate eigenfunctions (ex )~ is a Hilbert basis of the space L*(M).

Definition. We define the quadradic form Q with domain D(Q) := H'(M) by

Qo) = [ ldgl* dve+ [ vigl av

Recall also (see for example [Co-Hi]) the minimax variational characteriza-
tion for eigenvalues : for all k > 1

A(M) = min maxR(¢) (2.3)
ECHY(M)¢€EE
dim(E)=k ¢#0

where R(¢) is the Rayleigh quotient of the function ¢ :

R(g) := TQ(;;P;%. (2.4)

In our context, a consequence of the minimax principle is :

Proposition. The first eigenvalue A1 (M) and ey the first eigenfunction of the operator
0—%}\1— V on the manifold (M, g) satisfy A1 (M) > miny; V > 0and ey > 0ore; <
in M.

Proof. 1It’s clear that
[ Vdes v+ [ Ve dvg > minV fler][Fa
and on the other hand

/M de? dVe +/MV ler2 vy = _/M Agerer dvg+/Mv e 2 dV,

— [ (~ag+ V) ererdVy = 2 (M) en [z u

so A1 (M) > miny V. Next, suppose the function e; changes sign into M, since
ey € H'(M), the function f := |e;| belongs to H'(M) and |df| = |de;| (see
for example [Gi-Tr]), hence R(f) = R (e1). So, the function f is a first eigen-
function of —A¢ + V on the manifold M which satisfies f > 0 on M, f vanish
into Mand (—Ag + V) f = A1(M)f > 0 on M. Using the maximum principle
[Pr-We], the function f can not achieved it minimum in an interior point of the
manifold M, hence f does not vanish on M, so we obtain a contradiction. [



3 Proof of the main theorem

3.1 Somes other usefull spaces

We define on the space H!(M) the x-norm by :

2 2 2
ully = dul|” dV, +/ Vu|® dV,
o= [ lauf ave+ [ Vil avg
so, without difficulty we have :

Proposition. The application ||.||, is a norm on the space H'(M); moreover this
norm is equivalent to the Sobolev norm ||| (pr)- In particular HY(M), ||.||, is a
Banach space.

Let us denotes by C°(M — A) the set of smooth functions with compact
support on M — A. For a compact subset A of the manifold M the usual
Sobolev space H} (M — A) is defined by the closure of CZ®°(M — A) for the norm

-l (-
H{(M — A) :=C®(M — A).

What happens when the set A is not compact ? For example if A is a dense
and countable subset of points of the manifold M, the space of test functions
C(M — A) is reduced to {0}. Therefore we cannot define the space H} (M —

A). In this case, we propose a definition of H} (M — A) for any subset A of M.

Definition. We define the Sobolev spaces H}(M — A) and H} (M — A) by :
HY(M — A) := {g € H'(M), g = 0 on a open neighborhood of A };

H{(M — A) := H{(M — A)
where the closure is for the norm ||.{| 1 (1) -
We have the :

Proposition. If the set A is compact, the previous definition of the space Hj (M — A)
coincides with the usal ones.

Proof. Let f € H{(M — A) := H}(M — A), then by definition : for all ¢ > 0
there exists g € H}(M — A) such that || f — g]| Hi(m) < € So, we will show that

we can write g as a limit of sequence from the space C°(M — A) and conclude.
Since § € H}(M — A) there exists an open set U O A such that gu = 0.
Consider two open sets U; and U, of the manifold M such that :

ACU, M—UCUW, UiNnU, =@,
and consider also a function ¢ € D(M) such that :
Puy, = 0, Pu, = 1.

Of course, the function ¢ belongs to the space C°(M — A). Next, since § €
HI(M — A) C HY(M) and as the set of smooth functions C*(M) is dense in



H!(M) : there exists a sequence (g,),, in C*°(M) such that 1_1)1_1: gn = g for the
n [ee)
norm ||. | g1 (yy) - Therefore we claim that : EI_I: ¢8n = g for the norm |[.{| g1 (pp)-
n [e<)

Indeed, start by, for all integer 7 :
lpgn — &l ay < llgn = gl vu) + l9gn — 8l

< l1gn = 8l (y + 198 — &lIFn (1) -
Next, we observe that, for all integer 7 :

logn — &linuy = llogullin )
= /u |9gnl® dVng/l‘l |Apgn + pdga|* dVy
< /u |9gul? dVg+/u |dpgnl’ dVng/u |pdgnl’ dVg+2/u |dpgnpdgn| dVs
< (l9llZ 1gn T2y + 14911 (a l1gnlI T2
+ 119115 Idgnll T2y + 2 1149l H(PHOO/U |gndgn| dVg

< [l9llz lgn 172y + 1491l 181172

+ 19112 gl Z2qu) + 2 140l 19l g2y 1l 2y
by Cauchy-Schwarz inequality.
Finally we get for all integer  :

logn — &l ) < ligalifnw) (211002 + Idel% +2lldell. Il -

As a consequence, we have for all integer 7 :
2 2
l9gn — &llen () < 18n — 8llEn (m-u)

+lgnllz ) (2 10ll% + IdolZ +2 ldg ], o) -
Now, it suffices to note that ngtH%ﬂ(u) = llgn —8H%{1(u) < llgn _gH%{l(M)
(since ¢ = 0 on the open set U) and we have finally :

lpgn = 8llEn () <

lgn = 812y (121913 + 4l + 2 ldoll .. ) -
The sequence (¢gx), belong to C°(M — A)N and since nli)&lwgn = g for the
norm ||.|| H1(m) the previous inequality implies nLiIEoo(Pg” = g for the norm
-l (-

So we have shown that every function f € H{(M — A) := H}(M—A) isa
limit (for the norm |.[| ;1 (1)) of a sequence of CZ°(M — A).

Conversely, since C®(M — A) C H}(M — A) we get :

Hj(M —A) :==C®(M—A) C H}(M — A) :=H}(M — A).



Let us also denote the spaces H.(M) and S (M) by :

HY(M) := {f e H'(M), ./Z;Afdvg - 0};

and

Sa(M) := {u € HY(M), u—e € Hg(M—A)}.

In the definition of the space H}(M) the condition [, fdV, = 0 is analog to

a boundary condition. We observe that the space H!(M) is a Hilbert space for
the norm :

ull, = /M|du|2 dVg+/MV\u\2 dVy;

and S, (M) is just an affine closed subset of H'(M).

3.2 Schrddinger capacity
Next, we introduce the Schrodinger capacity of the set A ;

Definition. Let us consider the Schrodinger capacity cap(A) of the set A defined
by

cap(A) :== inf{/M |dul? dVg + /M Vul? dVe, u € SA(M)}. (3.1)

Let us remark that : there exists an unique function u4 € S4(M) such that

cap(A) = /M |dup)? dVq + /MV ual? dVs.

Indeed : here the capacity cap(A) is just the distance between the function 0
and the closed space S4(M). This distance is equal to ||u,4 ||, where 14 is the
orthogonal projection of 0 on S 4 (M) :

cap(A) = dy (0,54(M)) := inf {[[ul|,, u € SA(M)} = [[uall,-

In the following lemma we give the relationships between the capacity cap(A),
the functions 14, e; and the Sobolev spaces Hj (M — A), H'(M).

Lemma. For all subset A of the manifold M, the following properties are equivalent :
(i) cap(A) = 0;
(Zl) Up = 0,‘
(iii) e; € HY (M — A);
(iv) HY (M — A) = HY(M).

Proof. 1t is clear from the formula (3.1) that (i) < (ii) < (iii). Next, suppose
the property (iii) holds : so there exists a sequence (v,), € H{(M — A)N

such that lir}r’l vn = e for the norm .|| ;15 - So, for all smooth function
n— —+00

¢ € C*(M) we have 2111 (¢vn)/e1 = @ for the norm ||.[| 1 5y, indeed for all
n o]

integer n :
2 2 2
$on _ :/ Pon_ dV+/‘d((pv”)—d dV.
‘ €1 q)’Hl(M) M| € ¢ § M e] ¢ 8




First, we have for all integer # :

i

2
(4
g ave= [ alpu el v

€1

<

2
2 2
Hq)Hoo Hv” - elHLZ(M)

€1 |l o

so, since lim v, = e; for the norm |[.[| 1,y we have
n— 400

PUn

2

lim
n—+oo JM

On the other hand, for all integer n :

2 2
()] - e af

gl
2

( ) @) vner + @d (vy) e1 — puud (e1) — d (@) e%’ dVe
< Hd(pvnel dge? + gdvne; — @uade ? 2

) 2

< el (qu)vnel — dge; ) + || pdvyer — (pvndel|Lz(M))
2
<o Mgl el lom = el 2 )+

2
91l ller (40 — dex) + exdes — v | 2|
2
149l lletllo 1o = el 2 4g) +

[eo)

€1

<

2
@Ml llexllco 1dvn = derl 2 5y + N9l llderllco [ler = vnHLz(M)} ;

so, since lim v, = eq for the norm ||. we have
’ n=too 1 I HH](M)

lim /‘ <ﬂ>—d
n—+o0o

Therefore, for all function ¢ € C®(M) we have lim £
n—4oo 1

dVg = 0.

= ¢ for the norm

-1l )

Next, by density of C*(M) in H'(M) : for all function f € H!(M) we have
im {2 f g fon 1M — AN i

nlir}rloo e f . Since the sequence ( o )n € Hy(M — A)™ we get finally that

f belongs to space H} (M — A). Finally, it is easy to see that (iv) = (iii). O

An obvious consequence of this lemma is the following result :

Proposition. The spectrum of —Ag + V on the manifold (M, g) and on the manifold
(M — A, g) are equal if and only if cap(A) =



3.3 The Poincaré inequality
Now, let introduce the Poincaré inequality :

Theorem. If Ay(M) denotes the first eigenvalue of the operator —Ag + V on the
manifold (M, g), the following inequality

2 cap(A)
luallz2om) < A (M

(3.2)

~—

holds for all subset A of M.

Proof. The case cap(A) = 0is an obvious consequence of the lemma in section
3.2. Suppose here that cap(A) > 0, then [[ua||;2(ps) > 0. The first eigenvalue

A1(M) of the operator —Ag 4 V on the manifold (M, g) is given by :

dol> + V]e* dV
/\l(M): min mafo‘ q0| + |(P‘ g

ECHY(M) ¢€E 2qy
dim(E)(:l) 9#0 fM \§0| 8

dol?> +V |o|* dV
min S ldel” +V]gl” dV,

peHi(M) [\ ]9 dVq
9#0
Since u 4 belongs to the space H! (M) we get Ay (M) < _cap(A) O

— 2
HuAHLZ(M>

3.4 The main theorem
Recall our main result :

Theorem. Let (M, g) a compact Riemannian manifold. For all integer k > 1, there
exists a constant Cy depending on the manifold of (M, g) and the potential V such that
for all subset A of M we have :

0< /\k(M — A) — /\k(M) < Ck\/cap(A).

Remark. We can easily adapt the proof for a compact Riemannian manifold
with boundary.

Proof. Let us denote by (eg),~ an orthonormal basis of the space L?(M) with
eigenfunctions of the operator —Ag + V on the manifold (M, g). For all integer
k > 1, we consider the sets

Fy :=span{ey, ey, ..., e}

oo 2) s

First, observe that Ex C H}(M — A). Forallj € {1,...,k} we introduce also
the functions ¢; := e; ( — 'z—f) € E.

and



e Step 1: we compute the L?-inner product (¢;, ¢;), () for all pairs (i,]) €
{1,...,k}?*:

2
<4’i'¢j>L2(M) = /M <1 - %) dVg

Thus, for all pair (i,j) € {1,...,k}> we get :

61‘6]‘ ui
‘<¢i’¢j>L2(M)_5irj SZ/M ?uA dVg+/M Ei@jg dVg,
hence, by Cauchy-Schwarz inequality we obtain
[CX— T lallzgan + max |2 ual?
VHITLRM) Y = Tk || e ALY 1<ij<k|| €2 AllL2(m)
<2 max ,/vol ) luall )+ max i 142
T 1<i <k AlL2(m 1<ij<k|| €2 AllL2(m)

hence by Poincaré inequality we have

00000~ 0] < B (/cap(4) + cap())

where By = By (e1, €2, ..., e, A1 (M), M) > 0, and since the eigenfunctions ey, ey, ..., e,
and the eigenvalue A1 (M) depends only on (M, g) and V, for all integer k the
constant By depends only on (M, g) and V, ie: By = Bx (M, V).

Therefore, there exists ¢ 6]0, 1[ (depends on the constant By) such that for all

A C M we have:
‘Hiz(M) - 1’ < Diy/ cap(A)

where (and for the same reasons as in the study of By) for all integer k, the con-
stant Dy depends only on M and V, ie Dy = Dy (M, V).

cap(A) < gx = dim(E;) = kand Vj € {1,..., k}

e Step 2: Let a function ¢ = f ( - lé—f) € Ey, with f € F. Without loss gener-

ality we can assume that [|f[| 2 = 1, indeed : we have R(¢) = R (Ul%)
LM

and in our context we intererest in the Rayleigh quotient of ¢ (see the end of
the final step of the proof).
Setv, := 'Z—f, we have :

] Vgl ave = [ laf —d (for)l? vy
_ /M|df|2 dVg—l—/M\dva—l—fdvA\z dVg—Z/Mdfd (foa) AV
= [ 1l ave+ [ ldfoal ave+ [ fdoal avy

10



+2/dd dV—z/d2 dV—z/dd av
MfUAfUA o M\f| vadVg MfUAf s
_ dZdVJr/d 2dV+/ do4 2 dV
[ 1dFP Vet [ idfoal dve+ [ Ifdoaf? vy
) / \df|20AdVg—2/ dfdoaf (1—v4) dVy.
JM M

Recall we have dvy = w, and :

1
v ZdV:/V 2dV—2/V 2 dv+/v 2 4y
| vioPave= [ VIFP ave—2 [ VifPoaave+ [ Vieas? avy
hence
' 2 ' 2 ' 2 2 ' 2
./M\d47| dVg+./MV|4’\ dVg:./M\dﬂ dVg+/MV|f\ dVg*'./M\deA\ dVg

=A(f) :=B(f)

doa2 dV /v 2dV—2/d2dV /v2dv
[ Afdoal ave+ [ VieafP ave-2 | [ (afPoaaver [ ViFPoaave
=C(f) ==D(f)
—z/A'AdfdvAfa —v4) dV,.

=E(f)

¢ Study of A(f) == [y, |df|* dVs + [,, V |f|* dVy > 0: since f € F we can
k k

write f = Y wje; where (1) ;- € RFand with }_ a7 = 1 (since £l 2y =
i=1 i=1

1), thus we get

k k k k
A(f) = <Z “jdej, Z ocidei> + <\/VZ xjej, VvV uciei>
j=1 i=1 j=1 i=1 12(M)

L2(M)
= szizx]- <<de]-, dei>L2(M) + /M Veje; dVg)
ij

= thiaj (— <ej, Agei>L2(M) + /M Veje; dVg)
L]

= szizxj (ej, (=g +V) ei>L2(M)
L]

k
= Zaiaj)ti(M) <€j, ei>L2(M) = 20612/\1‘(1\4) < A(M).
l,] 1=

Hence, for all integer k, and for all function f € Fi such that | f]| 2m) = 1we
have

11



0 < A(f) < A(M). (3.3)
¢ Study of B(f) := fM|d(f)vA|2 dVy : here vy = 44 and duy = dugei—upde

€

sowe get B < ||df 12 [|va ||i2( wm) and, with the Poincaré inequality :

2
2
luallzz ) <

[eo)

1

€1

> cap(A)
) /\l (M)

€1

2
loallz2 () <

hence, for all integer k, and for all function f € Fy such that [|f|[;2(5;) = 1 we
have

0 < B(f) < Excap(A) (3.4)

where Ey = Ej (e, A1(M)) > 0, moreover since the eigenfunction e; and the
eigenvalue A1 (M) depends only on (M, g) and V, for all integer k the constant
Ey depends only on (M, g¢) and V, ie: Ex = Ex (M, V).

¢ Study of C(f) : here C(f) is equal to /M |fdval? dVy +/MV loaf|? dVg. Let

=Ci(f) =G (f)
us observe first C1(f) :

C1(f) < IIfIIZ lldoall iz

and 5
duger — uyde
2 _ Al Adeq
1doAllz2(pm) —/M - aZ Vg
2
<|1X /\due—ude|2dV
= el Ju A€l —Uade g
112
<|l— (/ \duAel\z dVg+2/ \duAdeleluA\dVg—i-/ \deluA\z dVg)
€1 fleo \/M M M
2 2 2 2
< a’ (Hd”AHLZ(M)|\€1Hoo+2|\d€1|\ooHelHooHduAHLZ(M) HuAHLZ(M)'l'HdelHooHuAHL2(M))'

Next we have also :

Caf) = [ Vieafl Ve <IIf1% [ Vloal® v

) 2
< [Iflls

1 2
- 174 dV,.
€1 OO/M ‘uA‘ g

Hence we get :

Clf) < IfI%

2

2 2
Ml e
oo

1

€1
2 2

+2 [|der || oo llerlloo 1 all iz a l1all 2y + llden | H”AHLZ(M)}

12



2

1
2 2
— % d
P |, el vy
1 2 2
< IAR ||~ [dalBagag et +2 1derllo llealo Neteall2gany 10allz2gan + Iden 2 loa 22
el (M) (M) (M) (M)
+/ \duy? dvg+/ V |ual? dvg]
M M
2 |1 2 2
<A - | [1eealBan + 1V IalEzoy

2 2
+2 [|der oo llerlloo duall 2 py l1all 2 any + lden lls H”AHLZ(M)} ;

cap(4)
A (M)

S0, since HduAH%Z(M) < cap(A) and HMAH%Z(M) <
k, and for all function f € Fy such that || f]| 2 (M) =

we get for all integer

0 < C(f) < Freap(A) (8.5)

where Fy = F(f,e1,A1(M)) > 0. Here, for k fixed, the constant F; depends
also on f, and f depends on the functions fi, fp,- -, fx (which are depends

k
only on M and V) and on the scalars a1, a5, - - -, af; since Za?‘ = 1, all the
i=1
(@j)1<j<j are bounded in RR, so finally, for all integer k the constant Fy can be
bounded by a constant (we denotes also by F, = F¢(M,V)) which depends
only on M and V.
¢ Study of |D(f)|: we have

ID| = '/M df)?vadVy + /M V|f|>vadVy

1 u VIfI®

<IfIZ || [ |52 dve+ [ Jual @
> H fHoo e ‘oo M| e 8 e N M‘”A‘ 8

2 || 1 VIfP

< max | ||df]z, el e /M lual dVq

1 VIfI?

< max <|clf|§o el —l{ ) \/ Vol(M) [[uall 2 p
, |1 VI cap(A)

< — s .
< max <|df|oc> erllo’ | e | \/ Vol(M) A1 (M)

Hence, for all integer k, and for all function f € Fy such that || f|| 2y = 1

ID(f)| < G/ cap(A) (3.6)

where (and for the same reasons as in the study of F, see the constant Fy) for all
integer k, the constant Gy depends only on M and V, ie G, = G (M, V).
¢ Study of |E(f)] : recall that E(f) = [,,dfdvaf (1 —va) dVy, hence

13



E(N|< [ ldfdoal Ifl aVe+ [ 1afdoal|foa] dVy.

For the first term [, [dfdva| |f] dVy we have :

/M ldfdoal |f] dVg < [Ifllo ldfleo \/ VOUM) ll[dvall 2 (ar)

we have see in the study of C(f) that

[EEAF
<l (lualZagun lea 2 +2 x| el diea g eallizgan + er 2 ualaqun )
=g L2(M) 00 0 o0 L2(M) L2(M) 00 L2(M)
so with K := || f|| o, [1df ] & v/ VOl(M )% we get

| lafdoal If] ave

2 2 2 2
< K\/Hd”AHB(M) le1llse +2 lldexlco llenlleo lduallzoag lluall 2oan) + lldeallse l1all 2 a)

A ca
<K$cap< A) ller ]|, + 2 [[den | ller [l oo y/cap(A) +|\d1\|2 p )

< Hyy/cap(A)

where (same reasons as above), for all integer k, the constant Hy depends only
on M and V, ie Hy = Hy (M, V).
Next, for the second term : [, |dfdva||fva| dVs we have :

/M dfdval|foal dVe < |ldflle [Iflleo lldvall12a) 10l L2 (0)

1
< 1f o ISl Woallizon | | Tallizon
ca
< dfllo 1f o |2 ,/ p Hk\/cap
<Hkoap

where (same reasons as above), for all 1nteger k, the constant H depends only
on M and V, ie H, = Hi (M, V).
So, for all integer k :

E(f)] <Ha’,M( cap<A>+cap<A>) (37)

where H) := H;! (M, V).
Finally, with the study of A(f), B(f), C(f),|D(f)|and |E(f)|, for all integer k,

14



for any function ¢ = f (1 - lé—’l“) € Ex, with f € Fe such that || f|[12(py) = 1 we
get:

/M \d¢|2dvg+/MV|¢\2dvg < M(M) + I < cap(A) +cap(A)) (3.8)

where, for all integer k, the constant I depends only on M and V, ie : [} =
I (M, V).

e Step 3 : Now we claim that : for all A C M such that cap(A) < g and
for any function ¢ € Ex we have :

19117200y > 1= Jiaa/ cap(A) (3.9)

where, for all integer k, the constant J; ,, depend only on M and V, ie: J; ,; =

Jiaa (M, V).
Indeed : let ¢ € Ey, we have seen below in step 1 that :

19172(a0) ~ 1| < Diy/cap(a)

k
therefore, since ¢ € Ey, we can write ¢ = (1 —v4)f with f = ) aje; where
i=1
(@i)1<i<k € R, As in the step two we can assume that || f| 12(m) = 1, hence we

cap(A) < gx = dim(E;) = kand Vj € {1,..., k},

k
have sz% = 1. Next, compute H(I)H%z(M) :
i=1

2 2

L2(M)

1911720y =

k k
Y (1—va) e Y aip;
i=1 i=1

L2(M)

k
2
=2t Iilliom + X @i (i) 12 -
i-1 ijit]
And since

k k
2o I9illizn = Lof {1 —2/ ejva dVg+/ vy dvg]

k
=1- Za?‘ [2 /M efuadVy — /M et} dvg}
:1—2042/ 62<2Z)A—Z)2) aVe;
4 i Ml A 8

hence

k

1911720 = 1 Y aF /M e; (ZUA - 034) dVe+ Y aiti (i $j) 12 )

i—1 ij i

15



we have seen in step 1 that, for cap(A) small enough :

00000~ 0] < Be (y/<apla) + cap(a))

hence, since all the («;); ;- are bounded in IR, and for cap(A) small enough,
we can find a constant B ,, which depends only on Mand V, ie B = B} (M, V)
such that, for cap(A) small enough :

< Byy/cap(A)

Y i (i B) 2

i,ji#j

and finally, in the same spirit as in the estimations in section 2, there exists a
constant B/ ,, which depends only on M and V, ie B}’ = B}/ (M, V) such that,

for cap(A) small enough :

kl ;'2/1\/1 e? (ZUA - vi) dVe

so finally we obtain :

< Byy/cap(A)

@120y = 1~ BY"y/cap(A)

where the constant B’ " depend only on M and V, ie : B,’(’ r= B,’(’ "(M,V).

e Final step : As a consequence from step 2 and 3, for all function ¢ € Ej
we get:

Jut |40 aVs + [V Igf2 Vg _ (M) + Ty (cap(4) + v/cap(4))
S 9% @V B 1- B}'\/cap(A)

hence for cap(A) small enough (ie : cap(A) < &) we have

fM|d¢\ dvg+fMV\<p| dVg <
fM¢ dVq

where Ly := Ly (M, V). Next, since for all k > 1

2 2
M(M—A)= min mafo|d(P‘ Wt Ju Vel 4V

ECH}(M—A) 9<E Sy 9?dVe
dim(E)=k ¢#0

k(M) + Lyy/cap(A)

and since ¢ € H} (M — A), we get for all k > 1

< Juldgl® Ve + [y, VIl Ve
S #?dVy

And the statement of the theorem is established. O

Me(M = A)

k(M) + Ciy/cap(A).
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