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A The Dirac distribution

A.1 Definition of the Dirac distribution

The Dirac distribution §(z) can be introduced by three equivalent ways.

(1) Dirac [1] defined it by relations

/OO d(z)de =1, 6(z) =0 if x # 0.

The distribution is usually depicted by the arrow of unit length (see Fig.

3(x)

1).

o]

Figure 1: Graph of the Dirac distribution §(x

).

(2) The 7sifting” property of the Dirac distribution may serve as another possible definition: Let as
suppose that a funciton f(x) is continnous over the interval (x1,25) or that it has at most finite number

of finite discontinuities over that interval. Then

L [f(zg) + f=d)], if
3 /(5), if
/ f(@)d(x —zp)da = ‘
3/ (zq), if
0 if

)

xo € (x1,T2),
Ty = T1,
Ty = T2,

zo & (21,72).

Of course, if the function is continuous, the first of the relations (2) reduces to the form

/ 2f(x)5(xfx0)dx: f(z0), if xg € (x1,22),

which is the most frequently appearing form of the sifting property (see Fig. 2).
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Figure 2: Sifting property of the Dirac distribution.

(3) Very often the Dirac distribution is defined as the limit of the sequence of functions d,(z)

0(z) = lim op(z).

p—oo

The function d,(x) have to satisfy two conditions:

(2a)
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h lim @70

li 0 de =1 d
e | p(z) dw an A Fimy o 6, ()

=0.

oo

In most cases the functions d,(x) satisfy more severe conditions:

/ dp(z)de =1 and lim §,(x #0) = 0.
oo p—co

A.2 Examples of functions ¢,(z)

(a) Probably the most obvious example of functions d,(x) is

dp(x) = p rect (pz)
(see Fig. 3). Evidently, these functions satisfy the conditions A.1(3a).

A
8p(x)

1 0 1 X

2p 2p
Figure 3: Graph of the function é,(x) = p rect (px).
(b) Another obvious example provide the functions
dp(x) = p tri (pz)

(see Fig. 4). Also these functions obviously satisfy the conditions A.1(3a).
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Figure 4: Graph of the function §,(z) = p tri (pz).

(¢) An important example is the sequence of functions

30(0) = /2 exp(-pr?)

(see Fig. 5). Let us show, that also these functions satisfy the conditions A.1(3a):

/Z Sp(z)dz = \/z/o:o exp(—pa?)dz = \/17?/0:0 exp(—2) dt = 1.

(The integral I = [ exp(—t*)dt is evaluated as follows:

I= 2/ exp(—2?) dz,
0
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Figure 5: Graph of the function &,(z) = /(p/7) exp(—pz?).

so that

I = 4/ exp(—xQ)dx/ exp(—yQ)dy:Zl/ / exp[—(2® + ¢?)] dedy =
0 0 o Jo
oo pm/2 [eS)
4/ / exp(—r?)rdpdr = 277/ exp(—r?)rdr =
o Jo 0
= 7r/ exp(—s)ds = 7.
0

Hence I = y/7.) The second condition A.1(3a) is satisfied as well:

pILrIOIC Pl #0) = % Plggc @(P(\/ZZQ) L;éoz 21:21\/E ”lggo eXp(\;;)xZ) méo: '
(d) Also the functions
Sola) = s ()
(see Fig. 6) satisfy the conditions A.1(3a):
/O;§p(x)dzr i/iﬂiiﬁ _ ;/Z 1itt2 _ %arctgt :: 1.

1 . 1
— lim
T p—oo 2pr2

lim 6,(z #0) = 1 lim —2

p—0oo T p—oo 1 + p2x?

x#0

(e) In calculations and proofs of theorems about the Fourier transform we often meet formally different
expressions of the function

1 P 1 P 1 : N .
op() = / exp(+itz) dt = */ costrdt = —oPT _ PELDT (5)
P T Jo T T px

(see Fig. 7). The first of the conditions A.1(3a) is satisfied:



A DIRAC DISTRIBUTION
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Figure 6: Graph of the function §,(z) = %H%ﬂ

3p(x)
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Figure 7: Graph of the function J,(x) = 2.

/ 5, (x)de = 7/ sinpz 7/ smydy:
oo T) o T T) o Y
_ z/msinydy:gzzl
T Jo Y w2

(cf. eg. [2], 3.721, [3], 5.2.25). The second condition A.1(3a) is however, not satisfied because the

corresponding limit does not exist: If # # 0, the function &,(z) = ¥22Z takes the values from the

interval (—-L, L) which does not depend on p. The condition A.1(3) is, of course, satisfied because

T’ T

lim,_,¢ 0,(z) = £, and hence

T?

= lim
— 00
o0 p px

dp(x #0) y sin px 7
7 lim 2D
p—oe lim, o dp(x) p—oo T P

A.3 Properties of the Dirac distribution
(a) Let us denote by x,, the roots of the equation f(z) = 0 and suppose that f’(z,) # 0. Then
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0z — xp)
6(f(®) =D 7 (1)
2 /" (n)]

Proof: Let us choose the numbers a,, b,, in a neighbourhood of each root z,, in such a way that
an < T, < b, and the function f(z) is monotonous in the interval < a,, b, >. Then

n

(o}

/wwwumm=2a, ()
where
bn bn
a:/wmuwa:g@mm—%wmmm (3)

By the substitution (z — x,,) f'(z,) =t we get

(bn 7zn)f, (wn)

1 t
I, = f’(xn)( ) 4/( | g (f’(a:n) +a:n> o(t)dt. (4)

If f'(x,) < 0, the upper limit of integration is greater than the lower one and it is

(an—xn)f (x0)
1

t
I = — +xn>6tdt:
) I\ Pl ()
(bn*mn)f/(xn)

From (2) and (3) and from the sifting property of the Dirac distribution A.1(2a) it follows

9(zn)
|f' ()l

oo

by
/ g(x)o(f(x))dx = Z |J€/((Q;Z))| — Z ‘f/(icnﬂ /g(:z:)é(ar — ) dz. (5)

— 00

n

If f'(x,,) > 0, the relation (5) follows imediately from (2), (4) and A.1(2a). Thus, the equation (1) is
proved.
Important consequences of equation (1) are:

5(—z) = (), (6)
d(ax — xg) il ] (x - %) ) (7)
) (sinw%) = |%| Z d(z — ma), (8)
(5(372 _ a2) _ (5(.1? _ a)2—|;|5(a: + a’) (9)

(b) It is
@ =51 (1) (10)
§(x) = dlj:(cx)7 (11)

where
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is the Heaviside function.
Proof:

1d /= 1 d 2 1 »
5 dr \ 7l li tgpr =~ lim ——— =4 1
2 dx (|$> QPLn;o dz 7 7 reepr 71-,,3{; 1+ p2a2 (z) (13)

(cf. A.2(4)).
(c) The following properties of the Dirac distribution are frequently used (e.g. while evaluating convo-
lutions and cross—corelations):

f(x)é(z —a) = f(a) 6(z - a), (14)
/d d(x —a)d(x—b) de = d(a — b), ¢ < min(a, b), d>max(a, b). (15)

A.4 The Dirac distribution obtained from complete system of orthonormal
functions

Interesting and often useful expressions of the Dirac distribution can be obtained from complete systems
of orthogonal functions.

Let functions v, (z), n being integers, form a complete orthonormal system of functions on an
interval (x1,z1 + a) and let z and z¢ be inner points of that interval. Then

21/) wn xO = 5($ - xO) (1)

where the summation goes over all n for which the orthonormal system {v,,(x)} is complete.
Proof: To prove (1) we shall demonstrate that the left—hand side of equation (1) has the sifting
property of the Dirac distribution

x1+a
/ F(2)6(z — 20) dz = f(zp),

1

i.e. that
m1+a
/ Zw ) Yn(x0) da = f(zg). (2)

To prove (2) we expand function f(x) into the system of orthonormal functions {v¢,(z)}, i.e.
T) = Zcm VYm (), (3)
m

where

xr1+a
%:/ f(@) () da.

1

Now we insert the series (3) into the left-hand side of equation (2), exchange the order of integration
and addition and make use of the condition of orthonormality

x1+a
/ () () d = Gy

1

x1+a

x1+a
/ Zcm wm an ¢n xO Zcm Z¢n(x0) / 1#31(33) ¢m($) dz =

1 x1

Zcm an(:];O) 6’m,n -
D cm (o) = flzo).
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Thus, we have got the right-hand side of (2) and the statement (1) is proved.
The functions

Yn(z) = exp (in27r f) . n=0,£1,42,...
a

1
vad
form the complete orthonormal system on any interval of the length |a| and hence also on the interval
(—a/2,a/2). Therefore, according to (1) it is

oo

1 _
m Z exp <i7127rm axo) = d(z — ), T,To € (7%’ g)

n=—oo

Every summand of the infinite geometric series on the left—hand side of the foregoing relation is a periodic
function with the period a. Consequently the sum of the series has the same period and for all z, z¢ it
holds

o0

1 _
m Z exp <in27rx a

n—=—oo

$0> Z d(x — xg — ma). (4)

m=—0o0

Relation (4) is important for the proof of the fact, that the Fourier transform of the lattice function
is proportional to the lattice function characterizing the reciprocal lattice (cf. section 4.3). This is true
for the lattices of any dimensions N, N being integer N > 1. (To be prepared for the proof in the space
of the dimension N > 2 we denote the length of the interval |a|, so that ¢ in equation (4) may be both
positive and negative.)

The series at the left—hand side of (4) may be rewritten in various forms. For example

1+2§jcos (n27rx_am0):a| i 8(z — 2o — ma). (5)

n=1 m=-—00

The series at the left—hand side of (4) is a geometric series of the ratio exp (127r = ‘”0) We may replace
it by the limit

00 P
Z exp (in27r x xo) = lim Z exp (in?ﬁ x x()) )
a p—oo a

n=-—oo n=-—p

By summing 2p + 1 terms of the limit we get

p . T—x
_ — 1—e 2p +1)2m =50
lim E exp | in2mw i = lim < exp | —ip27w i P [ (2p +1)27 } =
p—oo a p—oo a 1—exp (127T = ””0)

n=-p
— i(2 1r &=%
= lim < exp (—ip?ﬂ'x xO) &P [1( p'-l- xz: ¢ ] X
p—o0 a exp (17r a")

exp (—im £550) — exp (im 2772

sin [(Qp + 1w "L_a“]
m .

p—oo sin (7r %)

exp [—i(2p + )m %] — exp [ (2p+ 1)m 2= w"] }

Hence

sin [(2p+ 1)m = x"
m

p—00 sm( = "”0)

| | Z 5$—x0—ma) (6)

m=—0o0
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A.5 The Dirac distribution in Ey

(a) In Cartesian coordinates
/---/f(f)&(f— 7o) dNE = f(Z), if Ty € D. (1)
D

From the fact that

/-~~/f(:51,:v2, ooy, xN)0(xy — mo1)0(x2 — To2) ... 0(xNn — xon) dx1dEe ... dEy =
D

Zf(1301,33027~-~,$0N),

it follows that in Cartesian coordinates

N
(5(f— f()) = (5(371 — x01)5(1‘2 — 1‘02) ce (5(%‘]\] — l‘QN) = H 5(35/@ — J,‘()k). (2)
k=1

Obviously

5(a) = ﬁ 5(3). (3)

(b) General coordinates
Let the Cartesian coordinates x1, xs, ...,z be connected with general coordinates y1,¥2,...,ynN in
En by relations

1 - xl(yla"'7yN)7
To = x2(y17"'7yN)1
N = xN(y17~-~7yN)
with the Jacobian
oz, Oz,
dy1’ 7 Oyn
Ji, - yn) = | :
Oz dzn
dy1’ " Oyw
If xgp), .’L‘gp), . ,ng) and y%P), yép), . ,y](f) are coordinates of a point P and if J(y%P), . ,yj(\f)) #0,
then

o(xy — ng))cS(xg - xép)) 0(xy — xg\},))) =

1 (P) (P) (P)
= ———0(y1 —y; )o(y2 —vy L 0(yN —yN ). 4
‘J(ylvvyN” (1 1 )(2 2 ) ( N) ()
If, however, J(ygp), e ,yg\f)) = 0 and the point P is specified by k coordinates y§P), yép), . ,y,E,P) (that
means that N — k coordinates yx41, Yk+2,.-.,yn are superfluous for the specification of the point P),

we denote by

Jk(yl,...,yk):/~~/J(y1,...,y1\/)dyk+1...dyN

the integral over the N — k superfluous coordinates and it holds
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5(xy — o (g — 2S5 S(ay — 2y =
1 (P) (P) (P)
= gy 0 - 0(y2 — Oy — ) 5
[Tk (Y1, Yk)| (1 =y )02 —va 1) 0(ue — i ) (5)

(c) Example: Polar coordinates in Fs

T1 = TCOS p, T(r, ) = cosp —rsing

To = rsingy, singp rcosy

=7

(i) At points P(r(P),cp(P)), r(P) 20, it is

S(r —rPN§(p — pP)
5 — 2\)5 (g — 2Py = )r(w o)
(ii) At the point P = r(¥) = 0 the coordinate ¢ is superfluous and

a+2m
Ji(r) = / rdep = 27,
so that

6(%1)5(%‘2) = —.
(d) Example: Spherical coordinates in Fs5 (see Fig. 8)

x1 = rsindcosp,
T rsin ¥ sin ¢,

r3 = Trcost,

X,

s
/ ¢( P) /

v,

Figure 8: Spherical coordinates.

or 89 Op sincosy rcosvcosp

—rsindsin g
J(r,9,¢) = % %’f,? % = | sin¥sing rcosv¥sing rsindcosyp |=
Ozg  Ozz  Oas —rsi
52 S8 e cos v rsind 0
= 7r2sind.

(i) At the point P with coordinates (") # 0, () £ 0, 9(F) £ 7 ie. with J(r) 9F) o)) £0, it is
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P P Py, O(r =rPN5(0 — 9P)6(p — (7))
o(x1 — xg ))5(902 — x; ))6(I3 — mg )) s .

(ii) At the point P with coordinates r(*) # 0, 9() = 0, or ¥) = 7, the Jacobian J(rF), 9(F) o)) =0
and
2m
Jo(r,9) = / r?sind dp = 27r? sin ¥
0
Therefore

5(r — rPN§(0)

§(z1)0(w2)d(w3 — ng)) T omrZsind

(iii) At the point P with () =0, it is J(r("),9(") »(P)) = 0 and

T P27
Ji(r) = / / r?sind dp dv = 4mr2.
o Jo
Therefore
4(r)

dmr2’

(e) Example: Obligue coordinates (important for the Fourier transform of lattices in Ey, N > 2).
Let

6(z1)0(z2)0(w3) =

i = aik Yi, det||a;k| = det A #£0.

More explicitly this can be rewritten as

T3 = anyr+...+anNyn,
TN = an1Y1+...+aNnNyYN,
or in the matrix form
1 a1y, ..., Q1IN Y1
. _ 7
TN aAN1, ey aNN YN
ie.
T = Ay.
As
8xi
= Ak,
Oy
the Jacobian is
ail, ..., Q1IN
anNi, .-, QGNN

and
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1 P
3y — i) oy —2()) = A T IO
i.e.
1
= _ 2(P)y — 7 P)
7 - #) = 13 z1 T~ 7)
A.6 Notes and features
_1 p
») = A r e
2203 (p — Dl(n —2)! p 1
5P($) = ( _> ([ ) . 2.2\n’
(2n — 3)! © (1+ p2x?)
p [ sinpx 2
5p($) = . < o )

0y —vo) = y/Jm(xy)Jm(:vyo)a: dx

Sp(2,y) = % exp{—p[l — exp(—z* — y*)]}
p2
Op(z,y) = — circ (p\/ z? + yz)
oy = 2 V)
T,y) = —
p\T> Y A » 12 e

d(x) +0(y)
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