Counting function $N(\lambda) = \#\{j : \lambda_j(M) \le \lambda\}$

Each eigenvalue is counted with its multiplicity •

For a square torus, each eigenvalue $\lambda_{m,n} = \frac{4\pi^2}{a^2}(m^2 + n^2)$ corresponds to a point with

integer coordinates (m,n) on the plane •

An approximate number of integer points inside the circle is given by the area of the circle $^{\circ}$

$$N(\lambda) = \pi (\frac{a\sqrt{\lambda}}{2\pi})^2 + R(\lambda) = \frac{a^2\lambda}{4\pi} + R(\lambda)$$
 $R(\lambda) = o(\lambda)$ as $\lambda \to \infty$

The problem of counting the number $N(\rho)$ of integer points inside a disk of radius ρ is called Gauss circle problem \circ

Conjecture (Hardy 1916)

For any
$$\varepsilon > 0$$
, we have $R(\lambda) = O(\lambda^{1/2+\varepsilon})$ as $\lambda \to \infty$

- § Estimating the number of integer points in a disk •
- 1. Main Estimate $N(r) \approx \pi r^2$ This is because, on average, each unit square on the integer grid contains about one point, and the area of the disk is πr^2 .
- 2. Error Term E(r)

The best known current bounds are of the form : $|E(r)| = O(r^{\theta})$ with the smallest

known value for θ currently around $\frac{517}{824} \approx 0.627$ °

It is conjectured that the optimal bound is $O(r^{1/2+\varepsilon})$ for any $\varepsilon > 0$

r	N(r)	πr^2 (rounded)
0	1	0
1	5	3
2	13	13
3	29	28
4	49	50
5	81	79

G.H.Hardy S.Ramanujan

§ Bessel function and lattice point counting

Bessel functions solve differential equations that arise naturally when transforming radially symmetric functions (like the disk's characteristic function) in two dimensions °

The appearance of Bessel functions is tied to the circular symmetry of the problem \circ